
V.G. Duffy (Ed.): Digital Human Modeling, HCII 2007, LNCS 4561, pp. 969–978, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Enhancing Sense of Reality by Efficient and Precise 
Collision Detection in Virtual Environments 

Chuan-Jun Su 

Department of Industrial Engineering & Management, Yuan Ze University 
135, Far-East Rd., Chung-Li, Taiwan, ROC 

iecjsu@saturn.yzu.edu.tw 

Abstract. As the foundation of user-system interaction in virtual environments, 
collision detection is a time-consuming process and few real-time interactive 
algorithms for general objects developed. Most of the existing methods aim for 
reducing the computation time for some special cases. Collision detection 
algorithms developed are either not fast enough for practical applications or 
restricted to a class of specific model. In fact, a general analysis of the 
performance of collision detection algorithms is extremely difficult because 
performance is situation specific. The motivation of this work is to satisfy the 
real-time interaction and high precision requirements of a Virtual Environment 
(VE) for applications such as virtual design, virtual assembly, virtual training for 
manufacturing operations and maintenance. 
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1   Introduction 

Collision detection has been extensively used in the fields of robotics operation and 
process planning for manufacturing. Recently, the research in collision detection has 
also played an important role in the field of VR. Collision is required specifically to 
simulate the real-life situations of touching, grasping, moving, and striking. The 
objective of collision detection in VR is to report accurately all geometric contacts 
between objects and to respond in real-time. In a VE the user and objects may move 
with abrupt changes in direction and speed. To provide a sense of reality, a VR 
system has to efficiently and precisely perform collision checking between virtual 
objects in a dynamic environment. Due to its widespread importance, there has been 
an abundance of work on the problem of collision detection. Since Boundary 
Representation (Brep) and CSG are the most commonly used object representation 
scheme, the existing collision detection approaches for these two object models are 
reviewed in this section. 

1.1   Collision Detection Approach for Brep-Represented Objects 

Spatial decomposition techniques - Octree [1], k-d trees [2], BSP-trees, brep-indices 
[3], tetrahedral meshes, and regular grids [2] are all examples of spatial 
decomposition techniques. By dividing the space occupied by the objects, one only 
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needs to check for contact between those pairs of objects (or parts of objects) that are 
in the same or nearby cells of the decomposition. Using such decomposition in a 
hierarchical manner can further speed up the collision detection process. 

Hierarchical BV techniques - One of the fastest general-purpose polygonal model 
collision detection system is the "RAPID" system, which is based on OBBtrees, 
implemented by Gottschalk. Lin, and Manocha [4]. The efficiency of this method is 
due in part to an algorithm for determining whether two oriented bounding boxes 
overlap. Another of the fastest approaches publicly available for performing collision 
detection among arbitrary polygonal models is the QuickCD, which is based on BV-
trees, developed by [2]. 

Distance-based techniques - There has been a collection of innovative work which 
utilizes Voronoi diagrams [5, 6] to keep track of the closest features between pairs of 
objects and calculate the distance between them. If the distance between a pair of 
objects goes below the predefined threshold, a collision is then declared [6]. One 
popular system, I-COLLIDE [5], uses spatial and temporal coherence in addition to a 
"sweep-and-prune" technique to reduce the pairs of objects that need to be considered 
for collision. This software works well for many simultaneously moving convex 
objects.   

1.2   Collision Detection for CSG-Represented Objects 

There have been very few approaches dealing with collision detection for CSG-
represented objects. Zeiller [7] proposed a three-stage method for detecting collisions 
among CSG objects using S-bounds [8] and space subdivision. The shortcomings of 
this method are that at each time step in dynamic simulation, the system needs to 
recompute new S-bounds for the transformed objects and to perform the spatial 
subdivision for CSG objects to create an Octree-like data structure that is very time-
consuming. 

In summary, most of the proposed methods aim for reducing the computation time 
for some special cases. Most proposed collision detection algorithms are either not 
fast enough for practical applications or restricted to a class of specific model. In fact, 
a general analysis of the performance of collision detection algorithms is extremely 
difficult because performance is situation specific. The motivation of this work is to 
satisfy the real-time interaction and high precision requirements of a VE for 
applications such as virtual design, virtual assembly, virtual training for 
manufacturing operations and maintenance. 

In this paper, an efficient and precise collision detection algorithm for rigid objects 
is proposed. The main idea of our approach is that firstly all Brep objects are 
converted into CSG representation to take full advantages of CSG’s tree structure by 
using BCSG-1.0 [9]. A localization procedure to detect the potential regions of 
collision is then performed by testing the interference of several 3-D bounding objects 
with some non-leaf nodes of two objects' CSG trees. Subsequently, a finer search for 
true collision is performed within that region using simple and convex bounding 
representation's face information. CSG's "divide-and-conquer" paradigm, decision 
rules for sub-tree freezing and result evaluating, distance-aided collision detection for 
BVs using I-COLLIDE package [5] and adaptive BV selection strategy are used in the 
localization procedure. 
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2   Pre-processing 

2.1   Brep to CSG and CSG to Brep Conversion 

To take full advantages of CSG structure in generating efficient algorithm for the 
collision detection of virtual objects, all Brep objects are converted into CSG 
representation in the pre-processing stage using BCSG-1.0 [9]. The procedure induces a 
set of primitives from a given boundary representation that are used to partition the 
space into Boolean atoms (cells) that classify either in or out with respect to the solid. 
The union of those atoms that classify in is optimized using geometric and Boolean 
algebra techniques to obtain efficient (often minimal) CSG representation of the solid. 
An example of Brep to CSG conversion performed by BCSG-1.0 is shown in Figure 1. 

2.2   Hybrid CSG/Brep Object Model Generation 

To fully utilize the strength of both CSG and Brep models for the task of collision 
detection, a hybrid CSG/Brep object model is constructed in the pre-processing stage. 
In the construction of a hybrid object model, the input CSG represented object is 
firstly converted into a Brep model and the links between each object face and its 
corresponding primitive in the CSG-tree are also established during the conversion. 
Figure 2 illustrates the procedure of the hybrid CSG/Brep object model generation 
and Figure 3 depicts the structure of the Hybrid CSG/Brep object model. 

2.3   BV Candidates Generation 

3-D bounding boxes or spheres are used unambiguously for extremely fast but rough 
detection of object collision because of their simplicity in intersection computation.  
To achieve not only fast but also accurate localization for the potential collision 
region, the BV adopted should be as small as possible and as simple as possible. It is 
desirable to reduce the unnecessary interference checking among CSG tree nodes by 
using bounding objects. 

One effective way is to minimize the parts of overlapping between the BVs of the 
target solids. A smaller bounding object implies less interference checking while 
simpler BV simplifies the required computations such as the minimum distance 
between objects. Therefore, a list of BVs is generated for each branch node in the 
CSG tree in the preprocessing stage rather than one fixed type of BV. In the detection 
stage, the smallest BV for a particular detection case is adaptively selected from the 
list. In the pre-processing stage of the proposed method, the BVs for each non-
primitive CSG node object are selected from the following candidates: sphere, cube, 
wedge, cylinder, cone, and convex hull. These candidates can be generated by using 
the covariant analysis based principal axis computation [10] and Qhull package [11]. 
Figure 4(a), (b), (c), and (d) are the examples of the object-aligned bounding box, 
bounding sphere, bounding wedge and bounding cylinder of the object respectively. 
Figure 4(e) illustrates the bounding box of one of the intermediate nodes in the CSG 
tree of the object. 
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Fig. 1. An example of Brep to CSG conversion by BCSG-1.0 

 

Fig. 2. The procedure of generating the hybrid CSG/Brep object model 

 

Fig. 3. The Hybrid CSG/Brep object model structure 

2.4   BV List Attached to a CSG Tree 

Once BV candidates are generated, they are attached to the non-primitive objects in a 
CSG tree in a list structure called "BV list". The nodes of the BV list are linked in 
ascending order according to the degree of fitness. Each node in a BV list has  
four fields: 

1. BV type field: ob — object-aligned bounding box: co — bounding cone; cy — 
bounding cylinder; we — bounding wedge; sp — bounding sphere; ch — convex hull. 
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Fig. 4. (a) an example of the basic axis of the object: (B, v l ,  v2 , v3 ); (b) An example of the 
object-aligned bounding box of the object A; (c) the bounding sphere of the object A: (d) the 
bounding wedge of the object A; (e) the bounding cylinder of the object B; (f) the bounding box 
of one of the intermediate nodes in the CSG tree of the object A. 

2. Parameters field: For each type of BV, the corresponding parameters are listed: 
(ob, L, W, H; x, y, z; e1, e2, e3): where, L, W, H are the length, width, and height 

of the bounding box respectively, the point OB(x, y, z) is the central point of the 
object-aligned bounding box ob, and vectors e1, e2, e3 are the direction vectors of the 
BV in the local reference system (B, v1, v2, v3); 

(co, R, H; x, y, z; e1, e2, e3): where, R, H are the radius, height of the bounding 
cone: the point OC(x, y, z) is the central point of base circle of the bounding cone co, 
and vectors e1, e2, e3 are the direction vectors of the BV in (B, v1, v2, v3); 

(cy, R, H; x, y, z; e1, e2, e3): where, R, H are the radius, height of the bounding 
cylinder; the point OY(x, y, z) is the central point of base circle of the bounding 
cylinder cy, and vectors e1, e2, e3 are the direction vectors of the BV in (B, v1, v2, 
v3); 

(we, L, W, H; x, y, z; e1, e2, e3): where, L, W, H are the length, width, and height 
of the bounding wedge respectively, the point OW(x, y, z) is the central point of the 
object-aligned bounding wedge we, and vectors e1, e2, e3, are the direction vectors of 
the BV in (B, v1, v2, v3); 
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Fig. 5. The data structure of a BV list 

(sp, R, x, y, z): where, R is the radius of the bounding sphere sp; the point OS(x, y, 
z) is the central point of the bounding sphere in (B, v1, v2, v3); 

For the convex hull of an object, the parameters are a set of vertices, edges, and 
facets for the convex hull ch of the object in (B, v1, v2, v3). 
3. Fitness degree field: (for simplicity, the volume of BV is stored), and 
4. Link field: the pointer linked to next BV node. Figure 5 depicts the data structure 

of a BV list. 

3   Collision Detection Algorithm 

After the completion of the pre-processing stage, with the pre-constructed hybrid 
CSG/Brep object model, a "divide-and-conquer" method can be used to localize the 
region of interest hierarchically. At each branch node-checking step, it is determined 
whether there is an intersection between each pair of objects roughly by selecting a 
most suitable BV from each BV list attached. If no intersection occurs, stop. 
Otherwise, the CSG operators determine whether further collision checking is needed 
between children of the current checked node against the current checked node of 
another object. We devise a set of decision rules for the determination. In this section, 
adaptive BV selection strategy and decision rules to use the sub-tree freezing 
approach are presented. 

Distance-Based Interference Test for Bounding Objects 
Intuitively, if the minimum distance between two solid objects is greater than zero, 
there is no collision between these two objects. Otherwise, they are touching each 
other. In this section, we use the distance-based method to detect if two BVs are 
interfering with each other or not. The suitable BVs of each object are selected from 
BV lists of each testing object in a CSG tree. In our approach, we have selected 
sphere, box, cylinder, cone, wedge, and convex hull as BV candidates. 

Cohen et al. implemented a package I-COLLIDE for Finding the closest points 
between two convex polyhedra [5]. It runs almost always in constant time if the 
previous closest features have been provided and are (on average) linear in the total 
number of vertices if no special initialization is done. In the membership test process, 
the running time is proportional to the number of feature pairs traveled. This method 
was adopted to get the approximate distance between two primitives using the 
polyhedral representation of each primitive. 

If a bounding sphere is selected as a BV from the BV list, a simple and fast method 
for calculating exactly the distance of a pair of primitives has been derived. A set of 
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closed form equations for precise distance computation by using their relative 
positions and geometric features were derived.   

Adaptive BV Selection 
For all possible pairs of BVs, a term c (0 < c ≤ 1) is defined to express the relative 
degree of complexity in computing the distance between two objects in a pair. For 
example, sphere-sphere pair has the lowest c value because checking the distance 
between two centers and the sum of two radii can easily test the pair's intersection. 
The cone-cone intersection test may be a relatively complex one to perform. This pair 
has the higher c value. The BV selection is based on the criterion of minimizing S 
which is defined as the product of the degree of complexity c and the degree of fitness 
of two BVs, f1 and f2, of each non-leaf in each CSG tree. That is, 

 
Min. S = c x f1 x f2 

Subject to 1 , 1,2.
i

o
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b

v
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Where 
i

ov  and 
i

bv  (i = l, 2) represent the volumes of non-leaf object i and the 
attached BV i respectively. Before the collision test for two target objects is 
performed, a bounding volume is adaptively selected for each target object based on 
this selection criterion. The intersection test between BVs of two branch nodes is then 
checked. 

Decision Rules for Sub-tree Freezing and Detection Result Evaluating 
To improve the collision checking for BVs in each CSG tree, sub-tree freezing 
technique is used to suspend detection of sub-trees (branches). Freezing means that no 
further actions should be carried out with the "frozen" sub-tree for the object currently 
being detected at this time step. One branch may be "frozen" or "not frozen" 
according to the set operation in the node and the detection result of BVs. Detection 
result of the upper level of node checked can be evaluated. Therefore, decision rules 
for sub-tree freezing and detection result evaluating are constructed. 

Given two objects (or CSG branch nodes) a and b, at the beginning of the 
procedure of finding collision detection, it can be determined whether there is an 
intersection between each pair of objects roughly by selecting each BV from each BV 
list attached to the root of the objects. If no intersection occurs, stop. Otherwise, 
according to the operator in node a, check first the current level node on the second 
CSG tree b against the next lower level node(s) on the first CSG tree a. The left child 
and the right child of node a are denoted as L.a and R.a. 

If the operator is UNION, collision between b and L.a is tested. If no collision 
occurs, checks further the collision between b and R.a. If no collision occurs, stop. If 
the operator is INTERSECTION, collision between b and L.a is detected first. If no 
collision occurs, stop; otherwise, check the collision between b and R.a. Table 1 
shows the decision rules for union and intersection operation. If the operator is 
DIFFERENCE, a rough detection between b and R.a is done with BVs. If no collision 
occurs, check the collision between b and L.a. Otherwise, it is very possible that b is 
colliding with the complement region of node a. In this time, a polygon intersection 
test should be executed between the local complement region, b and R.a. If no 
collision occurs, the result depends on whether there is any collision between b and 
L.a. Table 2 shows the decision rules for difference operation. 
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Table 1. Decision rules for union and intersection operators 

( ). , .UNION L a R a  ( ). , .INTERSECTION L a R a  

( ). ,L a b  ( ). ,R a b  ( ),a b  ( ). ,L a b  ( ). ,R a b  ( ),a b  

Yes Yes Yes Yes Yes Yes 
Yes No Yes Yes No No 
No Yes Yes No Yes No 
No No No No No No 

Table 2. Decision rules for difference operator 

( ). , .DIFFERENCE L a R a  

( ). ,L a b  ( ). ,R a b  ( ),a b  

Yes Yes Yes 
No Yes Yes 
Yes No Yes 
No No No 

Table 3. Computation time required for each processing cycle of collision detection between 
two objects with different complexity 

Object one
(O1) 

Hand Hand Hand Panel Workpiece Probe Probe 

O1 
triangles 

86 86 86 524 164 1268 3268 

Object two
(O2) 

Fixture Probe Tool Hand Probe Hand Tool 

O2 
triangles 

1120 3268 11294
i 

86 1268 186 11294 

# of Steps 1000 1000 1000 1000 1000 1000 1000 

# of contacts 323 360 320 186 162 356 279 

Average time 
(in msec.) 

0.05 0.35 0.21 0.025 0.22 0.25 0.31 

 
Recursive Algorithm for Collision Detection 
With the pre-constructed hybrid CSG/Brep object model, a "divide-and-conquer" 
method, adaptive BV selection strategy and decision rules are used to enable fast and 
accurate localization of the potential collision regions of each object. We can see that 
the above procedure is recursive. After several branch node-checking steps, the leaf 
nodes are checked. For two positive leaf nodes generating union or intersection 
operations, the distance-aided collision detection approach is used to perform the 
intersection test. For the complemented part(s) generated by subtraction, all of 
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corresponding faces in Brep model are found first to quickly rule out unnecessary 
polygon-based collision checking, and then polygon-based intersection test is used for 
the remaining faces. 
 
Implementation 
The algorithm proposed in this paper was implemented in C on a 200 MHz R4400 
CPU SGI Onyx Reality Engine. The Qhull package [11] for computing convex hulls 
was used to construct convex hulls of the branch nodes and the I-COLLIDE package 
was incorporated in the scheme. As a general assessment for the algorithm, the 
average processing time required for detecting collision between two objects in a 
typical Virtual CNC Training setting is depicted in table 3. 

4   Conclusion 

We presented an efficient and precise collision detection algorithm for CSG-
represented objects in a VE. The objects are assumed to be rigid solids and would not 
be deformed during and after collisions. In summary, this method has following 
advantages: 

1. Using natural hierarchical CSG tree structure and adaptive selection strategy for 
bounding volumes, it realizes an effective and efficient intersection or contact 
region localization. An intersection or contact can be localized into two leaf 
nodes of each object after limited steps of simple bounding volume intersection 
test. 

2. The hybrid CSG/Brep representation facilitates the combination of the 
advantages of the faster, less accurate BVs with accurate distance-assisted 
collision detection and precise polygon-based intersection test. 

3. Our methods have been implemented. Effectiveness and correctness have been 
proven by experiments with various object pairs with different geometrical 
complexity. For complex object pairs, our method is significantly more 
effective. 
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