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Abstract. This paper presents a novel cloth-body collision detection method by 
using the generalized cross-sectional contour technique, which has two main 
steps. During preprocessing step, the so-called skin hierarchical structure (Skin-
H) of the body is constructed by using the improved generalized cross-sectional 
contour technique, which doesn’t need to be updated in subsequent step. During 
runtime step, the cloth vertices are projected onto Skin-H structure efficiently, 
and then the exact collision detection can be done by a ray-triangle test 
technique at the lowest level of the structure. The simulation result 
demonstrates that the proposed method has some advantages in algorithm’s 
efficiency, accuracy as well as practicability. 
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1   Introduction 

Cloth simulation has been an area of active research in the past 15 years due to its 
increasing importance for commercial applications such as virtual try-on [2,3,9,20]. 
Unfortunately, cloth-body collision detection is the crucial but expensive technology 
and proved to be the bottleneck of dynamic cloth simulation. Motivated by this fact, 
numerous approaches have been proposed to achieve efficiency and accuracy as well 
as practicability. These approaches can be classified into: (1)object-space interference 
test[2,3,4,11,12,19], and (2)image-space interference test[1,5,6,7,8,14,20]. Most of 
object-space methods use bounding volume hierarchy (BVH) to accelerate 
interference computations. For example, An OBB-Hierarchy is used in [19] to 
represent polyhedra with triangulated boundaries. The overlaps between OBBs are 
determined by performing 15 simple axis projection tests, however, it associates with 
high cost of building and updating hierarchy. [11] improved the efficiency of BVH by 
proposing adapted techniques for building and traversing hierarchies, and [4] 
introduced the Bounded Deformation Tree to perform collision detection for reduced 
deformable models at similar costs to standard algorithms for rigid objects. In 
addition, with the recent advent of high performance GPU, the GPU-based methods 
have opened new avenues for improving the efficiency of collision detection. The 
methods are based on projecting the object geometry onto the image plane and 
performing the analysis in a dimensionally reduced space with the depth map 
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maintained in an image buffer such as the Z-buffer. The first application of these 
methods to dynamic cloth simulation has been presented in [20].  In this approach, an 
avatar is rendered from a front and a back view to generate the depth information for 
collision query. Recently, more and more hybrid methods which combined object-
space methods with GPU-based ones were presented, such as [1, 8, 13]. In [8], it 
introduced surface),( −βπ to dynamically generate a hierarchy of cloth bounding 
boxes in order to perform object-level culling and GPU-based intersection tests using 
conventional graphics hardware support. Another kind of GPU-based methods is 
recoding the geometry information into textures and then computing the collision 
results in the fragment program [1, 5]. There are many other notable approaches [15, 
16] proposed to improve the efficiency and accuracy of collision detections. For 
example, a chromatic mesh decomposition is used to develop a linear time detection 
algorithm in [15].  

By comparison, GPU-based collision detection methods are easy to implement and 
most of which involve no preprocessing and therefore can be applied to both rigid and 
deformable models. Meanwhile, it has a good potential to exploit the hardware-
assisted rendering features of the current graphics boards. The main problem of GPU-
based methods, however, is that it suffers from limited precision which is due to the 
limited viewport resolution and GPU float-point errors [6, 14]. Most object-space 
methods work well for rigid objects; nevertheless, they need frequently update the 
hierarchy especially for deformable models. In this paper, a novel hierarchy named 
skin hierarchical structure (Skin-H) is presented, which is different from the 
conventional BVH . It can avoid time consuming hierarchy updating because the new 
hierarchical building method considers the special structure of human and cloth. 

2   Collision Detection Using Skin-H 

In this section, we give an overview of our collision detection algorithm. It includes 
the building of Skin-H during precomputing and collision detection in runtime. 
Without loss of generality, we assume that the body model is seamless and can be 
represented as triangular meshes, which are driven by the corresponding skeleton. We 
firstly proposed a so-called skin hierarchical structure (Skin-H), according to the 
driving principle of virtual human with seamless model and the fact, that the 
displacement of skin is very small related to the innate bone. The Skin-H is invariant 
while virtual human moving. It’s needless to update the hierarchy frequently. This is 
because each human skin vertex is tied to a certain joint to generate joint block which 
can be treat as a rigid object. Although there are skin deformations, they can also be 
handled well in this paper. Subsequently each cloth vertex is projected onto Skin-H, 
and ray-triangle collision test can be used during runtime. 

2.1   Skin Hierarchical Structure (Skin-H) 

The design choice of the type of bounding volume (BV) mainly determines the 
efficiency of traversing and updating the BVH. People have tried many types of BV 
such as OBBs and DOPs attempted to quickly update or refit the BVH after a 
deformation has taken place. However, the hierarchy should be updated after each 
frame for animation cloth.  
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To solve this problem, we design our hierarchy based on the principal of skeleton 
driven deformation and the structure of the special human body shape. The skeleton 
deformation uses vertex weights which tie the joints and the mesh together. This 
could help dividing the human skin triangles into several Blocks according to 
different joints influence different skin vertices. For each Block, the local coordinate 
system is built and then each block is partitioned further into Segments and Sections.   

Block. Block is the top of Skin-H. Two methods (Fig.1) for segmenting the human 
skin into blocks have been tried in our experiment. One is to select several main joints 
and take them as the boundaries of the blocks which are built according to the 
coordinate of each skin vertex. Another method for classifying the vertices is based 
on the seamless human model, which is driven by the articulated skeleton, wherein 
each skin vertex is affected by the corresponding joints. So we can classify all of the 
skin vertices by their effective weights.  

 

 
                    (a)                                                                (b) 

Fig. 1. Two methods for generating Blocks: (a) take the joints as the boundaries of blocks;(b) 
classify vertices based on effective weights 

The former method mainly have two shortcomings: 1) it’s difficult to project the 
cloth vertex into the corresponding block when the human is in motion because there 
are some boundary planes would overlap each other then; 2)it doesn’t consider the 
skin deformation which could result in missing collisions near the boundary.  This 
paper therefore adopts the latter method which classifies the skin vertex based on the 
influence weights. Generally, there are tens of joints in a human body skeleton. It is 
needless to divide the human skin into so many blocks. The 13 main joints are 
selected for efficiency consideration.  For each main joint, because its translation and 
rotation transformation will affect a number of skin vertices, a weight threshold 

weightδ is set in order to determine each vertex belonging to which block. As a result, 

the joint block generation algorithm is described as follows. 

Algorithm 1.  Generating Block 

For each main joint joint_i 
   For each skin vertex vertex_j affected by joint_i 
          If  weight(joint_i, vertex_j ) >= weightδ  

AppendToBlock( joint_i,  GeTriangle (vertex_j ) );     

Joint boundary block 
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In the algorithm 1, GeTriangle (vertex_j ) returns the triangle which contains the vertex 
vertex_j and the threshold  weightδ  is determined keeping to the following two rules: 

1)  Eliminate the influenced vertices far away from the joint; 
2) Generate redundancy in the adjacent blocks against missing collisions during 
detection. 

Segment. The Skin-H is built by using top-down strategy. The segment is on the 
second level of the Skin-H. There are usually hundreds of triangles in a joint block. 
For reducing the times of the ray-triangle collision detection, each joint block is 
divided further into segments.  

The method of generating segments is based on the generalized cross-sectional 
contour technique [10,18]. For each block, we choose the joint center as the origin 
and set the direction of y-axis along the corresponding bone to build local coordinate 
system (Fig. 2). As a result, we can easily get the local coordinate and the polar angle 
of the center of each triangle which belongs to this joint block. The local y-coordinate 
helps us divide the block into several segments. 

 

 

Fig. 2. Building local coodinate system for each segment 

Section. Sections are in the bottom of the Skin-H and built according to polar angle. 
Every segment could be considered as a column so that the triangles in them can be 
classified into several sections in term of the polar angles. 

In pretreatment, all of the skin triangles are classified into sections. Each level of 
the Skin-H stores the indices of the corresponding skin triangles. For avoiding 
missing the collisions result from skin deformation, a certain degree of redundancy is 
kept within each level. These measures guarantee it’s needless to refit or update the 
Skin-H during runtime. 

As shown in Fig.3, the Skin-H has three levels (see figure 1): Block, Segment and 
Section.  

2.2   Project Cloth Vertices on Skin-H    

In runtime, our cloth-body collision detection algorithm includes coarsely localizing 
the joint blocks and the segments and further the sections which potentially collide 
with cloth vertices and at last performing the ray-triangle intersection test.   

 

y
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  (a) Block                                        (b) Segment                                  (c) Section 

Fig. 3. The three levels of the Skin-H 

There is possibility that each cloth vertex collides or even penetrates the skin 
triangles. So we traverse each cloth vertex and search skin triangles which potentially 
collide with the vertex. These triangles must be in a certain section, and located via 
projecting the vertex to the Skin-H. 

The first step of searching the potential colliding skin triangles is that locate the 
potential joint blocks (PCB). In our experiment, we choose 13 main joints and classify 
the all skin triangles into 13 joint blocks in pretreatment. Meanwhile, the maximal 
distance bone_idis from the triangles to the corresponding bone is calculated for each 

joint block. During collision detection, the distance )bone_ivertex_i,(dis  from cloth 

vertex to each main bone is computed and the joint block is added to the PCB if 
)bone_ivertex_i,(dis  is less than bone_idis . Locate the potentially colliding segments and 

sections in Skin-H just need to transform the global coordinate of the cloth vertex to 
the local coordinate under the joint block’s coordinate system. The local y-coordinate 
and the local polar angle can help to find the potential Segments and Sections. The 
whole projection or location method is described as follows.  

Algorithm 2. Cloth-vertex Projecting 

 For each cloth vertex VCloth  
• Computing the distance from cloth vertex to each block 
• Traverse the blocks to find blocks satisfying )bone_ivertex_i,(dis < bone_idis  and add them 

to PCB 
For each block PCB∈  

• Vcloth_localCoord = GetLocalCoord( VCloth, Block_i ) 
• segment = GetSegment( Vcloth_localCoord, Block_i ) 
• section = GetSection( Vcloth_localCoord,segment ) 

For each triangle Tri_i in section  
• RayTriangleCollisionTest( VCloth, Tri_i )  

 
In this algorithm, GetLocalCoord( VCloth, Block_i ) calculate the local coordinate 

includes polar angle of the cloth vertex, and then, GetSegment(Vcloth_localCoord, 
Block_i ) and GetSection( Vcloth_localCoord, segment ) locate the segment and the section 
in Skin-H according to the local y-coordinate and polar angle. 

2.3   Ray-Triangle Intersection Detection 

For each triangle in the section above, Moller’s method [21] is used for Ray-Triangle 
intersection test and computing the penetration depth. The difficulty is that obtain a 
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Fig. 4. Ci  is defined as the center of the skin triangle, and then the direction from cloth vertex C 
to Ci  is defined as the ray direction for ray-triangle intersection test 

proper direction of the rays which has a significant impact on the accuracy of the 
collision detection method. Generally, there are three different methods to generate 
ray direction. The first method is set the normal direction of the cloth as the ray 
direction. It needs recalculating the normal of every cloth vertex for each frame and 
furthermore it can’t deal with the situation that there is a drape in the collision area. 
The ray will intersect with a skin triangle in another section so the collision would be 
missed in this case. The second method takes the vertical direction from the cloth 
vertex to the corresponding bone as the ray direction, which is unsuitable for some 
areas such as shoulder block. In this paper, the direction (Fig.4) from the cloth vertex 
to the center of each skin triangle in the section is calculated as the ray direction. This 
method is easy to implement and has no collisions missed. The ray-triangle 
intersection test algorithm is discussed in [21]. 

3   Performances  

Our algorithm has been implemented on a PC running Windows XP with a 2.2 GHz 
Pentium Ⅳ CPU, an NVIDIA GeForce 5200 GPU, and 512M of Main Memory. We 
 

 

Fig. 5. a sequence of  cloth animation ( Cloth: 8,000 – 10,000 Tir ; Human: 7,500 - 9,000 tri 
;Time : 50-100msec)  

C

1C 2C



1062 X. Zhu et al. 

use it in cloth simulation and a virtual try-on system which will soon be introduced. 
We highlight the results on two cloth simulations shown in Fig.5. The number of 
triangles in the mesh used to model the body and clothes vary from 8k to 10k. The 
time to check for cloth-collisions is in the range of 50-100msec. The performance 
depends on the input complexity. During our implementation, the skin triangles are 
classified into thirteen joint blocks. Each block is divided into four segments and each 
segment is further divided into eight to ten sections. So there are only twenty skin 
triangles or so in a section. As a result, our algorithm obtains speedup due to no Skin-
H updating operation and less number of elementary tests between the primitives. 

Our approach has demonstrated that simulating dressed virtual human with middle-
range PC is feasible. It can deal with several kinds of clothes such as skirts and suits. 
For further accelerate the method, some inactive cloth areas such as the areas near 
shoulder and waist can be bound to the corresponding joints in order to reduce the 
number of the collision tests. However, no self-collision is calculated in this paper, 
therefore, it can’t simulate the wrinkles well.   

4   Conclusions   

To our knowledge, it’s the first time that the generalized cross-sectional contour 
technique[10,18] is used for cloth-body collision detection. The proposed method has 
the following advantages. 

Efficiency. The method can achieve near-real-time because most of the time-
consuming operation was done during preprocessing step and the hierarchical update 
was avoided. 

Accuracy. The method belongs to the hierarchical ones. The advantage of accuracy of 
the Hierarchical methods is inherited in a natural way. 

Practicality. The method is very simple. It is easy to implement and can be applied to 
virtual modeling, virtual human animation and other applications. 
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