
V.G. Duffy (Ed.): Digital Human Modeling, HCII 2007, LNCS 4561, pp. 1056–1063, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Novel Method for Cloth-Body Collision Detection

Xiaolong Zhu1,2, Shihong Xia1, Yong Yu1,2, and Tianlu Mao1,2

1 Institute of Computing Technology, Chinese Academy of Sciences,
100080 Beijing, China

2 Graduate School of the Chinese Academy of Sciences, 100080 Beijing, China
{zhuxiaolong,xsh,yyu,ltm}@ict.ac.cn

Abstract. This paper presents a novel cloth-body collision detection method by
using the generalized cross-sectional contour technique, which has two main
steps. During preprocessing step, the so-called skin hierarchical structure (Skin-
H) of the body is constructed by using the improved generalized cross-sectional
contour technique, which doesn’t need to be updated in subsequent step. During
runtime step, the cloth vertices are projected onto Skin-H structure efficiently,
and then the exact collision detection can be done by a ray-triangle test
technique at the lowest level of the structure. The simulation result
demonstrates that the proposed method has some advantages in algorithm’s
efficiency, accuracy as well as practicability.

Keywords: Collision Detection, Hierarchical Approaches, Image-Based
Methods, Cloth Simulation, Animation.

1 Introduction

Cloth simulation has been an area of active research in the past 15 years due to its
increasing importance for commercial applications such as virtual try-on [2,3,9,20].
Unfortunately, cloth-body collision detection is the crucial but expensive technology
and proved to be the bottleneck of dynamic cloth simulation. Motivated by this fact,
numerous approaches have been proposed to achieve efficiency and accuracy as well
as practicability. These approaches can be classified into: (1)object-space interference
test[2,3,4,11,12,19], and (2)image-space interference test[1,5,6,7,8,14,20]. Most of
object-space methods use bounding volume hierarchy (BVH) to accelerate
interference computations. For example, An OBB-Hierarchy is used in [19] to
represent polyhedra with triangulated boundaries. The overlaps between OBBs are
determined by performing 15 simple axis projection tests, however, it associates with
high cost of building and updating hierarchy. [11] improved the efficiency of BVH by
proposing adapted techniques for building and traversing hierarchies, and [4]
introduced the Bounded Deformation Tree to perform collision detection for reduced
deformable models at similar costs to standard algorithms for rigid objects. In
addition, with the recent advent of high performance GPU, the GPU-based methods
have opened new avenues for improving the efficiency of collision detection. The
methods are based on projecting the object geometry onto the image plane and
performing the analysis in a dimensionally reduced space with the depth map

 A Novel Method for Cloth-Body Collision Detection 1057

maintained in an image buffer such as the Z-buffer. The first application of these
methods to dynamic cloth simulation has been presented in [20]. In this approach, an
avatar is rendered from a front and a back view to generate the depth information for
collision query. Recently, more and more hybrid methods which combined object-
space methods with GPU-based ones were presented, such as [1, 8, 13]. In [8], it
introduced surface),(−βπ to dynamically generate a hierarchy of cloth bounding
boxes in order to perform object-level culling and GPU-based intersection tests using
conventional graphics hardware support. Another kind of GPU-based methods is
recoding the geometry information into textures and then computing the collision
results in the fragment program [1, 5]. There are many other notable approaches [15,
16] proposed to improve the efficiency and accuracy of collision detections. For
example, a chromatic mesh decomposition is used to develop a linear time detection
algorithm in [15].

By comparison, GPU-based collision detection methods are easy to implement and
most of which involve no preprocessing and therefore can be applied to both rigid and
deformable models. Meanwhile, it has a good potential to exploit the hardware-
assisted rendering features of the current graphics boards. The main problem of GPU-
based methods, however, is that it suffers from limited precision which is due to the
limited viewport resolution and GPU float-point errors [6, 14]. Most object-space
methods work well for rigid objects; nevertheless, they need frequently update the
hierarchy especially for deformable models. In this paper, a novel hierarchy named
skin hierarchical structure (Skin-H) is presented, which is different from the
conventional BVH . It can avoid time consuming hierarchy updating because the new
hierarchical building method considers the special structure of human and cloth.

2 Collision Detection Using Skin-H

In this section, we give an overview of our collision detection algorithm. It includes
the building of Skin-H during precomputing and collision detection in runtime.
Without loss of generality, we assume that the body model is seamless and can be
represented as triangular meshes, which are driven by the corresponding skeleton. We
firstly proposed a so-called skin hierarchical structure (Skin-H), according to the
driving principle of virtual human with seamless model and the fact, that the
displacement of skin is very small related to the innate bone. The Skin-H is invariant
while virtual human moving. It’s needless to update the hierarchy frequently. This is
because each human skin vertex is tied to a certain joint to generate joint block which
can be treat as a rigid object. Although there are skin deformations, they can also be
handled well in this paper. Subsequently each cloth vertex is projected onto Skin-H,
and ray-triangle collision test can be used during runtime.

2.1 Skin Hierarchical Structure (Skin-H)

The design choice of the type of bounding volume (BV) mainly determines the
efficiency of traversing and updating the BVH. People have tried many types of BV
such as OBBs and DOPs attempted to quickly update or refit the BVH after a
deformation has taken place. However, the hierarchy should be updated after each
frame for animation cloth.

1058 X. Zhu et al.

To solve this problem, we design our hierarchy based on the principal of skeleton
driven deformation and the structure of the special human body shape. The skeleton
deformation uses vertex weights which tie the joints and the mesh together. This
could help dividing the human skin triangles into several Blocks according to
different joints influence different skin vertices. For each Block, the local coordinate
system is built and then each block is partitioned further into Segments and Sections.

Block. Block is the top of Skin-H. Two methods (Fig.1) for segmenting the human
skin into blocks have been tried in our experiment. One is to select several main joints
and take them as the boundaries of the blocks which are built according to the
coordinate of each skin vertex. Another method for classifying the vertices is based
on the seamless human model, which is driven by the articulated skeleton, wherein
each skin vertex is affected by the corresponding joints. So we can classify all of the
skin vertices by their effective weights.

 (a) (b)

Fig. 1. Two methods for generating Blocks: (a) take the joints as the boundaries of blocks;(b)
classify vertices based on effective weights

The former method mainly have two shortcomings: 1) it’s difficult to project the
cloth vertex into the corresponding block when the human is in motion because there
are some boundary planes would overlap each other then; 2)it doesn’t consider the
skin deformation which could result in missing collisions near the boundary. This
paper therefore adopts the latter method which classifies the skin vertex based on the
influence weights. Generally, there are tens of joints in a human body skeleton. It is
needless to divide the human skin into so many blocks. The 13 main joints are
selected for efficiency consideration. For each main joint, because its translation and
rotation transformation will affect a number of skin vertices, a weight threshold

weightδ is set in order to determine each vertex belonging to which block. As a result,

the joint block generation algorithm is described as follows.

Algorithm 1. Generating Block

For each main joint joint_i
 For each skin vertex vertex_j affected by joint_i
 If weight(joint_i, vertex_j) >= weightδ

AppendToBlock(joint_i, GeTriangle (vertex_j));

Joint boundary block

 A Novel Method for Cloth-Body Collision Detection 1059

In the algorithm 1, GeTriangle (vertex_j) returns the triangle which contains the vertex
vertex_j and the threshold weightδ is determined keeping to the following two rules:

1) Eliminate the influenced vertices far away from the joint;
2) Generate redundancy in the adjacent blocks against missing collisions during
detection.

Segment. The Skin-H is built by using top-down strategy. The segment is on the
second level of the Skin-H. There are usually hundreds of triangles in a joint block.
For reducing the times of the ray-triangle collision detection, each joint block is
divided further into segments.

The method of generating segments is based on the generalized cross-sectional
contour technique [10,18]. For each block, we choose the joint center as the origin
and set the direction of y-axis along the corresponding bone to build local coordinate
system (Fig. 2). As a result, we can easily get the local coordinate and the polar angle
of the center of each triangle which belongs to this joint block. The local y-coordinate
helps us divide the block into several segments.

Fig. 2. Building local coodinate system for each segment

Section. Sections are in the bottom of the Skin-H and built according to polar angle.
Every segment could be considered as a column so that the triangles in them can be
classified into several sections in term of the polar angles.

In pretreatment, all of the skin triangles are classified into sections. Each level of
the Skin-H stores the indices of the corresponding skin triangles. For avoiding
missing the collisions result from skin deformation, a certain degree of redundancy is
kept within each level. These measures guarantee it’s needless to refit or update the
Skin-H during runtime.

As shown in Fig.3, the Skin-H has three levels (see figure 1): Block, Segment and
Section.

2.2 Project Cloth Vertices on Skin-H

In runtime, our cloth-body collision detection algorithm includes coarsely localizing
the joint blocks and the segments and further the sections which potentially collide
with cloth vertices and at last performing the ray-triangle intersection test.

y

1060 X. Zhu et al.

 (a) Block (b) Segment (c) Section

Fig. 3. The three levels of the Skin-H

There is possibility that each cloth vertex collides or even penetrates the skin
triangles. So we traverse each cloth vertex and search skin triangles which potentially
collide with the vertex. These triangles must be in a certain section, and located via
projecting the vertex to the Skin-H.

The first step of searching the potential colliding skin triangles is that locate the
potential joint blocks (PCB). In our experiment, we choose 13 main joints and classify
the all skin triangles into 13 joint blocks in pretreatment. Meanwhile, the maximal
distance bone_idis from the triangles to the corresponding bone is calculated for each

joint block. During collision detection, the distance)bone_ivertex_i,(dis from cloth

vertex to each main bone is computed and the joint block is added to the PCB if
)bone_ivertex_i,(dis is less than bone_idis . Locate the potentially colliding segments and

sections in Skin-H just need to transform the global coordinate of the cloth vertex to
the local coordinate under the joint block’s coordinate system. The local y-coordinate
and the local polar angle can help to find the potential Segments and Sections. The
whole projection or location method is described as follows.

Algorithm 2. Cloth-vertex Projecting

 For each cloth vertex VCloth
• Computing the distance from cloth vertex to each block
• Traverse the blocks to find blocks satisfying)bone_ivertex_i,(dis < bone_idis and add them

to PCB
For each block PCB∈

• Vcloth_localCoord = GetLocalCoord(VCloth, Block_i)
• segment = GetSegment(Vcloth_localCoord, Block_i)
• section = GetSection(Vcloth_localCoord,segment)

For each triangle Tri_i in section
• RayTriangleCollisionTest(VCloth, Tri_i)

In this algorithm, GetLocalCoord(VCloth, Block_i) calculate the local coordinate

includes polar angle of the cloth vertex, and then, GetSegment(Vcloth_localCoord,
Block_i) and GetSection(Vcloth_localCoord, segment) locate the segment and the section
in Skin-H according to the local y-coordinate and polar angle.

2.3 Ray-Triangle Intersection Detection

For each triangle in the section above, Moller’s method [21] is used for Ray-Triangle
intersection test and computing the penetration depth. The difficulty is that obtain a

 A Novel Method for Cloth-Body Collision Detection 1061

Fig. 4. Ci is defined as the center of the skin triangle, and then the direction from cloth vertex C
to Ci is defined as the ray direction for ray-triangle intersection test

proper direction of the rays which has a significant impact on the accuracy of the
collision detection method. Generally, there are three different methods to generate
ray direction. The first method is set the normal direction of the cloth as the ray
direction. It needs recalculating the normal of every cloth vertex for each frame and
furthermore it can’t deal with the situation that there is a drape in the collision area.
The ray will intersect with a skin triangle in another section so the collision would be
missed in this case. The second method takes the vertical direction from the cloth
vertex to the corresponding bone as the ray direction, which is unsuitable for some
areas such as shoulder block. In this paper, the direction (Fig.4) from the cloth vertex
to the center of each skin triangle in the section is calculated as the ray direction. This
method is easy to implement and has no collisions missed. The ray-triangle
intersection test algorithm is discussed in [21].

3 Performances

Our algorithm has been implemented on a PC running Windows XP with a 2.2 GHz
Pentium Ⅳ CPU, an NVIDIA GeForce 5200 GPU, and 512M of Main Memory. We

Fig. 5. a sequence of cloth animation (Cloth: 8,000 – 10,000 Tir ; Human: 7,500 - 9,000 tri
;Time : 50-100msec)

C

1C 2C

1062 X. Zhu et al.

use it in cloth simulation and a virtual try-on system which will soon be introduced.
We highlight the results on two cloth simulations shown in Fig.5. The number of
triangles in the mesh used to model the body and clothes vary from 8k to 10k. The
time to check for cloth-collisions is in the range of 50-100msec. The performance
depends on the input complexity. During our implementation, the skin triangles are
classified into thirteen joint blocks. Each block is divided into four segments and each
segment is further divided into eight to ten sections. So there are only twenty skin
triangles or so in a section. As a result, our algorithm obtains speedup due to no Skin-
H updating operation and less number of elementary tests between the primitives.

Our approach has demonstrated that simulating dressed virtual human with middle-
range PC is feasible. It can deal with several kinds of clothes such as skirts and suits.
For further accelerate the method, some inactive cloth areas such as the areas near
shoulder and waist can be bound to the corresponding joints in order to reduce the
number of the collision tests. However, no self-collision is calculated in this paper,
therefore, it can’t simulate the wrinkles well.

4 Conclusions

To our knowledge, it’s the first time that the generalized cross-sectional contour
technique[10,18] is used for cloth-body collision detection. The proposed method has
the following advantages.

Efficiency. The method can achieve near-real-time because most of the time-
consuming operation was done during preprocessing step and the hierarchical update
was avoided.

Accuracy. The method belongs to the hierarchical ones. The advantage of accuracy of
the Hierarchical methods is inherited in a natural way.

Practicality. The method is very simple. It is easy to implement and can be applied to
virtual modeling, virtual human animation and other applications.

Acknowledgements

This work is supported in part by NSFC-60403042, NSFC-60573162, NSFC-
60533070, NSFC-60603082, CISTC-2005DFA11060, BNSFC-4051004, BNSFC-
4062032, HTRDPC-2006AA01Z336.

References

1. Benes, B., Villanueva, N.G.: GI-COLLIDE: Collision Detection with Geometry Images.
In: SCCG’05:Proc. of the Sping Conference on Computer Graphics, pp. 291–312 (2005)

2. Cordier, F., Magnenat-Thalmann, N.: Real-time Animation of Dressed Virtual Humans.
Eurographics, Blackwell publishers, 21(3), 327–336 (2002)

3. Cordier, F., Hyewon, S., Magnenat-Thalmann, N.: Made-to-Measure Technologies for an
Online Clothing Store. IEEE CG&A 23, 38–46 (2003)

 A Novel Method for Cloth-Body Collision Detection 1063

4. James, D.L., Pai, D.K.: BD-Tree: Output-Sensitive Collision Detection for Reduced
Deformable Models. ACM Trans. Graphics 23(3) (2004)

5. Fan, Z.W., Wan, H.G., Gao, S.: Streaming Real Time Collision Detection Using
Programmable Graphics Hardware. Journal of Software(in Chinese with English
abstract). 15(10), 1505–1514 (2004)

6. Baciu, G., Wong, W., Sun, H.: RECODE: An Image-based Collision Detection Algorithm.
In: Proceedings of the 6th Pacific Conference on Computer Graphics and Applications,
p.125, October 26-29, 1998 (1998)

7. Baciu, G., Wong, W.: Hardware-Assisted Self-Collision for Deformable Surfaces. In:
Proc. ACM Symp. Virtual Reality Software and Technology, pp. 129–136, November
2002 (2002)

8. Baciu, G., Wong, W.: Image-Based Collision Detection for Deformable Cloth Models.
IEEE Trans.Visualization and Computer Graphics 10(6), 649–663 (2004)

9. Chittaro, L., Corvaglia, D.: 3D Virtual Clothing: from Garment Design to Web3D
Visualization and Simulation. In: Proceedings of Web3D 2003: 8th International
Conference on 3D Web Technology, pp. 73–84. ACM Press, New York (March 2003)

10. Yan, L., Zhaoqi, W., Tianlu, M.: A Method of Virtual Human Skin Deformation based on
Generalized Cross-Sectional Contour. Computer Science(in Chinese with English
abstract) 32(1), 190–193 (1) (2005)

11. Mezger, J.S., Kimmerle, O.: Etzmus. Hierarchical Techniques in Collision Detection for
Cloth Animation. Journal of WSCG, 11(1) (2003)

12. Lin, M., Gottschalk, S.: Collision Detection between Geometric Models: A Survey. In:
Proc. of IMA Conference on Mathematics of Surfaces 1998 (1998)

13. Teschner, M., Kimmerle, S., Zachmann, B., Raghupathi, L., Fuhrmann, A., Cani, M.-P.,
Faure, F., Magnenat-Thalmann, N., Strasser, W., Volino, P.: Collision Detection for
Deformable Objects. Eurographics State-of-the-Art Report, pp. 119–139 (2004)

14. Naga, K., Govindaraju, M.: Lin and Dinesh Manocha. Fast and Reliable Collision
Detection Using Graphics Processors. In: Symposium on Computational Geometry, pp.
384–385 (2005)

15. Naga, K., Govindaraju, D., Knott, N., Jain, I., Kabul, R., Tamstorf, R., Gayle, M.C.:
Interactive Collision Detection between deformable Models Using Chromatic
Decomposition. ACM Trans Graphics 24(3), 991–999 (2005)

16. Volino, P., Magnenat-Thalmann, N.: Resolving Surfaces Collisions through Intersection
Contour Minimization. In: ACM Transactions on Graphics (SIGGRAPH 2006
proceedings), vol. 25(3), pp. 1154–1159. ACM Press, New York (2006)

17. Rodriguez, J., Sainz, M., Susin, A.: Fast Body-Cloth Simulation with Moving Humanoids.
Short presentations EG’05, pp. 85–88 (2005)

18. Jianhua, S., Magnenat-Thalmann, N., Thalmann, D.: Human Skin Deformation from Cross
Sections. In: Proceedings of Computer Graphics International CGI’94 (1994)

19. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A Hierarchical Structure for Rapid
Interference Detection. In: Computer Graphics (SIGGRAPH’96), pp. 171–180, ACM
(August 1996)

20. Vassilev, T., Spanlang, B., Chrysanthou, Y.: Fast Cloth Animation on Walking Avatars.
In: Computer Graphics Forum Proc. Of Eurographics (2001)

21. Moller, T., Trumbore, B.: Fast, Minimum Storage Ray-Triangle Intersection. Journal of
Graphics Tools 2(1), 21–28 (1997)

	Introduction
	Collision Detection Using Skin-H
	Skin Hierarchical Structure (Skin-H)
	Project Cloth Vertices on Skin-H
	Ray-Triangle Intersection Detection

	Performances
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

