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Abstract. For years now, most researchers modeling physical and cognitive 
behavior have focused on one area or the other, dividing human performance 
into “neck up” and “neck down.”  But the current state of the art in both areas 
has advanced to the point that researchers should begin considering how the 
two areas interact to produce behaviors.  In light of this, some common terms 
are defined so researchers working in different disciplines and application areas 
can understand each other better.  Second, a crude “roadmap” is presented to 
suggest areas of interaction where researchers developing digital human form 
and other physical performance models might be able to collaborate with 
researchers developing cognitive models of human performance in order to 
advance the “state-of-the-art” in replicating and predicting human performance.   
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“The modeling of cognition and action by individuals and groups is 
possibly the most difficult task humans have yet undertaken.  
Developments in this area are still in their infancy.  Yet, important 
progress has been and will continue to be made.”[1] 

1   Introduction 

Indeed, considerable progress is being made in our ability to model humans and their 
behavior. With the improvements in computing technology over the past three 
decades, we have been fortunate to have researchers able to take advantage of the 
increases in processing speeds, graphics capabilities, and computational power in 
order to generate digital human form models with increasing levels of realism.  The 
same improvements have allowed other researchers to specify computational models 
that predict a human’s physical performance and cognitive function with surprising 
levels of accuracy.     

However, the claim made above that work in this area is still in its infancy may be 
more apt than ever.  Those familiar with child development might observe that our 
digital human form models have less cognitive abilities than an infant and, in large 
part, are still developing the neuromuscular patterns for coordinating and executing 
limb and other body motions.  They might also observe that our cognitive models still 
have difficulty perceiving much of the environment around them and figuring out 
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what to do in response without us helping them out by telling them what’s going on 
around them and what they should do.   Finally, they would likely observe that these 
models typically are developed and used separately from one another.   

They might then argue that, since physical and cognitive development in an infant 
are intertwined, perhaps it would make sense to stop dividing human performance 
into “neck up” and “neck down” (a distinction made by many in human factors and 
ergonomics between cognitive and physical performance) and instead begin 
considering how the two interact to produce behaviors.  However, as many things in 
research and life, this is far easier said than done.  But the argument has strong merit; 
thus, the two main goals of this opinion paper are to (1) define some common terms 
so researchers working in different disciplines and application areas can understand 
each other better and (2) present a crude “roadmap” that suggests areas of interaction 
where researchers developing digital human form and other physical performance 
models and researchers developing cognitive models of human performance might be 
able to collaborate in order to advance the “state-of-the-art” in replicating and 
predicting human performance.   

2   Defining Common Terminology 

For over a century now, researchers have been working to understand the nature of 
the various interactions between man and machine while engineers and designers 
have been attempting to apply this understanding to the design of products and 
systems.  But to do this effectively, the engineers and designers must be able to 
readily access and utilize this information in the earliest stages of the design process.  
Designers already have access to tools that can predict hardware and software 
performance; but to consider human-machine interaction in the conceptual stages of a 
design, they need tools that can predict how the human will perform using task-based 
metrics associated with the speed, actions, timing, and errors that may arise while 
undertaking a task.   

Such tools often are called “human performance models” or HPMs.  HPMs can be 
found throughout a diverse range of disciplines and all attempt to represent or 
describe some aspect of human performance.  Disciplines include psychology, 
cognitive science, engineering, artificial intelligence, computer science, 
biomechanics, physiology, and medicine.  HPMs have been used in the design of 
complex systems ranging from industrial processes and nuclear power plants to 
surface and air transportation systems; they have also been used extensively in the 
field of human-computer interaction.  Types of human performance modeled by these 
approaches include perceptual functions such as signal detection, visual scanning, 
object recognition, and motion estimation as well as models of various cognitive 
functions including problem solving, memory recall, training, skill acquisition, and 
errors.  Other approaches consider a person’s anthropometric and biomechanical 
characteristics while yet other approaches provide insight into the workload - both 
mental and physical - experienced by a person.  Some approaches distinguish between 
individual operators and group operations (e.g., multi-operator systems such as found 
in passenger jet cockpits) while others distinguish between performance on a single 
task and performance in situations where several tasks must be completed at the same 
time.  This diverse range of applications and disciplines makes discussing tools for 
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predicting human performance difficult since the same terminology often has 
different meanings, depending on who is using the tool. 

To avoid confusion, the terms "approach", "framework" (or, "architecture"), and 
"model" should be defined separately since they are often used interchangeably in the 
HPM literature and commonly confused.   

• An approach encompasses the methodology used to specify the task, environment 
(including equipment), and human in a consistent manner and the means by which 
this information is incorporated into the modeling efforts to generate measures of 
performance.  

• The framework is a general structure that contains elements and parameters 
common to any scenario to be modeled (e.g., information processors and their 
default service times).  The task, environment, and human information as specified 
by the approach indicate which elements of the framework are required and which 
parameters must be altered when modeling a specific system scenario.   

• The resulting structural elements and the set of parameters representing a specific 
system scenario are called the model.   

Another area of confusion pertains to the output of human performance 
approaches: these approaches yield engineering models, not psychological models.  In 
the psychological literature, a "human performance model" is narrowly focused, with 
the term often used synonymously with a theory of performance.  Typically, a human 
performance model in the psychological literature is independent of the system or task 
contexts in order to be applicable in a wide range of settings.  A few of these models 
tend to be analytic and limited in scope with an exact solution for a given set of 
parameters (e.g., Fitt’s law) while the majority of others are qualitative models (e.g., 
principles of stimulus-response compatibility).  However, their primary purpose is to 
evaluate and develop the theory underlying the model.  When a model does not agree 
with data obtained or behaviors observed from the real world, the model and theory 
are either discarded or reworked until agreement is reached.  This differs from the 
engineering approaches in which, regardless of the characteristics of a particular 
model, a model has value as an engineering or design tool as long as the model can 
aid decision making by yielding simulated performance data that approximates real 
performance data within acceptable limits. 

Yet another complicating issue is defining what one means by “model”.  For 
example, researchers in one discipline may conceive of models that differ 
dramatically from what researchers in another discipline might call a model.  
However, Baron et al [2] and Elkind et al [3] have proposed useful classifications to 
help bridge that gap.  In particular, they identified eight (8) pairs of characteristics 
that can be used to define the purpose of a given model:  

1. A predictive model is capable of accurate performance predictions without 
requiring extensive validation data.  On the other hand, the parameters of a 
descriptive model must be adjusted in order to fit the model to existing 
performance data.  Obviously, a predictive model is more useful to a decision-
maker and, if accurate, also classifies as a descriptive model. 

2. Primarily focused on system performance, a top-down model starts with a set of 
system goals, which are then decomposed into progressively smaller sub-goals and 
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processes until a level is reached at which the resulting processes are deemed as 
“primitives” (which cannot be broken down any further).  A bottom-up model 
starts with a predefined set of primitives and links various primitives together to 
form an overall system.  This approach concentrates primarily on the process that 
dictates the system’s performance, although the performance itself is also 
considered. 

3. Simulation models imitate human performance and, by manipulating the inputs and 
outputs, allow interactions between the human, the system, and the environment to 
be simulated and analyzed.  Analytic models represent human performance 
mathematically, providing concise descriptions that in some cases may be referred 
to as “laws” of human behavior.  

4. A process model attempts to predict the human output by representing the specific 
human processes used to accomplish the task.  A performance (or, output) model 
attempts to predict performance without any consideration of the human processes 
involved and places no requirements on the structure or validity of the inner 
workings of the model.  In many situations, output models are sufficient for the 
purposes of analysis; but, since process models are applicable to a wider range of 
tasks and conditions, they are the more powerful of the two. 

5. A descriptive model describes the current human behavior, performance, or 
process while a prescriptive model (also known as normative or rational action) 
suggests the human behavior or process that will lead to optimal performance.    

6. A model may have either depth or breadth, depending on the amount of detail 
desired and the level at which behavior is being modeled. 

7. Elkind et al [3] define a model focused on a single task as limited whereas 
comprehensive refers to a model capable of addressing a variety of different tasks.  
However, this definition can be expanded to include the range of human 
performance issues addressed by an HPMA.  By necessity, early attempts at 
formulating HPMAs addressed only limited aspects of human performance (e.g., 
visual scanning or strength capabilities) since modeling multiple aspects was too 
complex and time-consuming to evaluate.  But continued research combined with 
rapid advances in computer technology has rekindled efforts to integrate numerous 
aspects of human behavior into a single, coherent modeling framework.  For 
example, recent comprehensive approaches such as SOAR [4], ACT-R [5], 
MIDAS [6], EPIC [7] and the QN-MHP [8] are capable of predicting certain 
aspects of performance accurately across an increasingly wider range of tasks and 
human behaviors.  

8. While qualitative models based on verbal theories and empirical data can be useful 
in analyzing human performance, they are not especially useful for performance 
prediction.  Some authors refer to certain quantitative models as "formal models", 
defined as those arising from one of two distinctly different types of approach: 
those based on mathematical theories and those based on computational 
techniques.1   

                                                           
1 In March 2001, the Human Factors journal published a call for participation regarding a 

special issue to be titled “Quantitative Formal Models of Human Performance.”  In the call, 
the co-editors (Wayne Gray and Michael Byrne) state “…’Formal models’ are construed to 
include both computational and mathematical models…” 
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Even within these latter two approaches to quantitative models, different 
conceptual frameworks are used to elicit measures of human performance.  For 
example, linear statistical and control theoretic frameworks can be identified 
separately within the mathematical category while information processing, task 
networking and knowledge-based frameworks fall under the computational umbrella 
[9, 10].  This delineation is not absolute as recent advances in many frameworks 
borrow features or techniques from various other frameworks.  This trend towards 
integration undoubtedly will continue as no single approach is likely to provide a 
comprehensive general model capable of describing or predicting human behavior in 
various task settings (see Gluck and Pew [11] for an excellent review of the state-of-
the-art in integrated approaches).  

3   Interactions Between Physical and Cognitive Models 

For this same reason, physical and cognitive models of human performance also need 
to be integrated.  Approaches such as HOS [12] and MIDAS [13] as well as work by 
researchers at Sandia National Laboratories [14] represent initial efforts to integrate 
physical and cognitive models into a single approach by including independent 
“modules” (micromodels containing algorithms based on human experimental 
literature) that can be used as necessary to predict an aspect of performance.  One 
criticism is that performance predicted by these “plug and play” modules actually 
may not be independent; that is, interactions between different aspects of performance 
may produce behaviors and performance that the modular approach would have 
difficulty predicting accurately.    

But is this criticism valid?  The answer is – no one seems to know.  Published 
research on the interactions between various models is scarce, if not nonexistent.   
What interactions need to be studied?  Space does not permit a comprehensive 
discussion of this, but three major types of interaction warrant further attention – 
physical, physiological, and emotional.  But before discussing these, three external 
influences impacting these interactions of cognitive and physical performance should 
be noted: the activities of the person, the equipment available to the person for 
carrying out these activities, and the environment in which the person acts.    

3.1   External Influences Impacting Interactions 

The first external influence is the person’s activities.  This encompasses more than the 
elements of a specific task that a person may be attempting to complete.  Models of 
task performance often fail to capture the full range of activities undertaken by a 
human, primarily because these tasks occur in a broader context which may include 
elements unrelated to the task at hand.  The source of these “other” activities may be 
rooted in the person (e.g., physiological needs requiring some response or prospective 
memory leading to performance of another task), the situational context (e.g., task 
deadlines or other externally defined performance requirements, safety implications, 
local events), or the environment (e.g., workplace layout, climate, ecology).  Further, 
these activities impact the person’s physiological system, having effects that may 
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accumulate over time (both short term and long term) and trigger a physiological 
response that must be addressed by an activity that interrupts the current task.   

The second external influence is the equipment available for use by the person to 
carry out these or other activities.  Once again, not all of the available equipment may 
be used by a person in a given location or time frame to complete the task at hand, but 
may simply be present. However, such equipment has potential to produce 
distractions or interruptions leading to activities unrelated to the immediate task at 
hand.  For example, telephones, e-mail and instant messaging alerts, instrument 
displays, and alarm monitors can produce responses that detract from the performance 
of the task at hand.   Secondly, many activities can be completed satisfactorily using 
different types of available equipment, requiring the person to choose between these 
options and the resulting strategies in order to complete the chosen activity.  For 
example, imagine the various ways in which people can write reminders to 
themselves.  At any given time, the method selected often depends on the type of 
writing surface available (sticky notes, scrap paper, one’s hand), type of writing 
utensils (pens, pencils, markers), computer or phone access (send oneself an e-mail or 
voicemail), available surfaces for attaching notes (e.g., bulletin boards, whiteboards, 
walls), etc.    

The person’s environment acts as the third external influence.   The workplace 
itself may hinder or facilitate activities, depending on housekeeping practices as well 
as the organization and location of equipment and objects that must be seen, heard, or 
manipulated.  Activities taking place in warm, dry conditions may require additional 
steps or entirely different methods if carried out in cold, wet conditions.  As with 
activities, physiological responses to environmental conditions often detract from task 
performance and may lead to interruptions as the person carries out an activity 
unrelated to the task at hand in order to address a basic physiological need.  Other 
environmental conditions such as noise, poor surface conditions, vibration, rain and 
sunlight often produce responses extraneous to those needed to complete a given task 
or lead to errors in the performance of the task.     

These three influences (activity, equipment, and environment) should not be 
surprising to anyone working in the area of either digital human (physical) or 
cognitive modeling.  But what becomes apparent in this discussion is the strong 
bidirectional relationship between the physical and cognitive aspects of human 
performance.   At all times, a person’s actions and physical presence in the 
environment and perceived proximity to nearby objects along with the person’s 
internal physiological responses generates information used by the cognitive system 
to determine what to do next.  Taking this diverse information into account with the 
situational context, the cognitive system attempts to select a strategy likely to be 
feasible, successful, and appropriate for that moment in time.  For example, 
importance of an activity, the available time, the time required to complete an 
activity, and the individual’s appraisal of their ability to complete an activity 
successfully (i.e., self-efficacy) are significant factors impacting which activity or set 
of activities a person chooses to do at any given time [15, 16, 17, 18].  However, once 
a strategy is selected, the cognitive system must also dictate how the physical system 
will respond while accounting for the person’s functional limitations, equipment 
capabilities, and environmental constraints.  Once initiated, this response impacts the 
status of all activities currently underway, alters the environment, and affects the 
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body’s physiology and its position relative to any available equipment.  And the cycle 
repeats.  Notably, this iterative balancing act implies that not all activities carried out 
by an individual will be rational, at least not in the narrow context of achieving a 
single task-oriented goal as assumed in many cognitive modeling approaches.   Thus, 
to improve our ability to model human performance, we need a better understanding 
of how these various sources of information influence the choice of activities, 
strategies and responses – and vice versa.   

3.2   Interactions Between Models 

3.2.1   Physical Interactions 
Performance monitoring. From the digital human modeling standpoint, perhaps the 
most straightforward area of interaction to explore is between a person’s physical and 
perceptual limitations and their response selection.   For example, a number of digital 
human modeling approaches already include tools to identify constraints on 
performance such as range of motion, posture and strength capability assessment.  
When placed in a virtual environment, most digital human form models can be used 
to analyze reach and clearance envelopes as well as determine the field of view at a 
given moment.  Some of these modeling approaches can generate realistic motion 
paths of the limbs and the whole body; many can also detect collisions between the 
person and an object.  However, other than the modeling approaches mentioned at the 
outset of this section (e.g., HOS, MIDAS), the digital human models rarely, if ever, 
utilize any of this information internally to monitor physical safety and alter its 
performance in real-time.  For example, what will most digital human models do if 
they encounter a load exceeding strength capabilities?  Nothing different; the model 
will perform as scripted even if the task requirements exceed physical capabilities.  
Rather, safety and performance issues are identified mostly post-hoc.   

Information Acquisition. On the other side of this interaction is the need of the 
cognitive system to acquire information in support of current activities.   Most 
cognitive models assume that the information needed to complete the task being 
modeled is readily accessible, either directly or using some standard sequence of 
motor actions along with perfect knowledge of the location of the information source.  
But the role of search and eye movements in acquiring information is not a trivial 
issue.  Add any need for physical actions other than eye movements to assist in the 
search process (e.g., postural or position changes, rearrangement of objects in the 
environment, etc.) and the impact is magnified further.  Or, if information sources are 
present, but cannot be reached or inadequate clearance is present for a person to 
access them, the overall task of information acquisition will fail.  In fact, Gray and 
Boehm-Davis [19] argue that a person is capable of selecting between different 
strategies for completing a task step on the basis of differences as small as 150 
milliseconds.  Further, they show that subtle differences in the location of information 
sources can bring about changes in which strategy is selected, resulting in significant 
effects on task performance. By utilizing the ability of the digital human model to 
track body position and posture relative to equipment in the environment as well as  
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the body movements required to access information sources, one can account for the 
interaction between body position and information access.  In many scenarios, this 
would reduce the variation between predicted and actual performance measures. 

Errors. Another area of interaction to explore between digital human and cognitive 
models is the impact of errors.  Given that most digital human models are scripted for 
performance, movements tend to be targeted and executed perfectly.  Yet, as we all 
know, perfect performance rarely occurs in real life.  And when the wrong button is 
pressed or an object is knocked off the desk, etc., we typically have to do something 
to recover from this error.  This interaction between the imprecision of human 
movement and the need for cognitive strategies to recover from any resulting errors 
has a major impact on our ability to predict true human performance accurately.  
From the cognitive side, errors in navigation, decision making and information 
acquisition often add layers of complexity to the physical requirements of a task 
which, among other things, can lead to even more errors, higher likelihoods of failure, 
longer completion times, fatigue, and even injuries. 

3.2.2   Physiological Interactions 
Another major area of interactions is the effect of physiological influences on 
cognitive and physical performance.  Human behavior is rife with apparently 
extraneous movements as itches are scratched, noses are blown, and postures are 
changed to improve comfort in response to physiological triggers.  These 
unintentional behaviors produce variations in body positions and activity sequences 
that impact overall task performance.  Increased heart rate and respiration act as 
indicators for localized and whole body fatigue; but whereas both physical and 
cognitive task performance are known to degrade with fatigue and can be accounted 
for in performance models, shouldn’t models also account for any physical actions 
counter to the cognitive performance goals that become necessary to prevent physical 
harm and aid recovery?  Temperature effects on both physical and cognitive 
performance are well-documented; but once again, physical actions counter to the 
cognitive performance goals may also be necessary.  To complicate this even further, 
what strategies, if any, do people use for deciding when and what physiological 
actions to interject in a task?   

3.2.3   Emotional Interactions 
The most difficult interactions to consider will involve the influence of emotion on 
physical and cognitive performance.  Anecdotally, strong negative emotions such as 
anger, fear and frustration often lead to actions that degrade task performance (e.g., 
performing too quickly, incorrect strategy selection, quitting tasks before completion 
or performing actions unrelated to any task at hand).  Methods such as facial gesture 
recognition and physiological monitoring hold promise for identifying general 
emotions during human task performance (e.g., augmented cognition methods as 
described in Schmorrow [20]), but ethical issues involved in provoking these strong 
negative emotions in a controlled laboratory setting will need to be addressed before 
models accounting for the interaction of these emotions and task performance can be 
developed.   
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4   Conclusion 

Ultimately, we are looking for human models that, among other things, can adapt to 
the environment, get tired, make mistakes and become frustrated or angry - just like 
we do.  Clearly, a lot of work is yet to be done.  The empirical studies and modeling 
efforts required will be time-consuming enterprises and, as noted at the outset, are 
among the most difficult tasks a researcher could choose to undertake.  But, modeling 
human performance - whether the physical form, the cognitive function, or some 
other aspect – is rapidly approaching a point where efforts should not (and perhaps 
cannot) be undertaken without collaborative efforts to put the results in the proper 
human context and to understand the inevitable interactions. Despite these challenges, 
this is a fascinating and gratifying field in which to work and, through all of these 
efforts - collaborative and otherwise - we should be able to watch our current human 
models grow from infancy and perhaps even reach adulthood.   
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