Skip to main content

Self-organizing Multiple Models for Imitation: Teaching a Robot to Dance the YMCA

  • Conference paper
New Trends in Applied Artificial Intelligence (IEA/AIE 2007)

Abstract

The traditional approach to implement motor behaviour in a robot required a programmer to carefully decide the joint velocities at each timestep. By using the principle of learning by imitation, the robot can instead be taught simply by showing it what to do. This paper investigates the self-organization of a connectionist modular architecture for motor learning and control that is used to imitate human dancing. We have observed that the internal representation of a motion behaviour tends to be captured by more than one module. This supports the hypothesis that a modular architecture for motor learning is capable of self-organizing the decomposition of a movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schaal, S.: Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences 3(6), 233–242 (1999)

    Article  Google Scholar 

  2. Piaget, J.: Play, dreams and imitation in childhood. W. W. Norton, New York (1962)

    Google Scholar 

  3. Meltzoff, A.N., Moore, M.K.: Explaining facial imitation: A theoretical model. Early Development and Parenting 6, 179–192 (1997)

    Article  Google Scholar 

  4. Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, L.: Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3, 131–141 (1996)

    Article  Google Scholar 

  5. Arbib, M.: The Mirror System, Imitation, and the Evolution of Language. In: Imitation in animals and artifacts, pp. 229–280. MIT Press, Cambridge (2002)

    Google Scholar 

  6. Gallese, V., Goldman, A.: Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences 2(12) (1998)

    Google Scholar 

  7. Demiris, Y., Hayes, G.: Imitation as a dual-route process featuring predictive and learning components: a biologically-plausible computational model. In: Imitation in animals and artifacts, pp. 327–361. MIT Press, Cambridge (2002)

    Google Scholar 

  8. Demiris, Y., Khadhouri, B.: Hierarchical attentive multiple models for execution and recognition of actions. Robotics and Autonomous Systems 54, 361–369 (2006)

    Article  Google Scholar 

  9. Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. Philosophical Transactions: Biological Sciences 358(1431), 593–602 (2003)

    Article  Google Scholar 

  10. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Computation 3, 79–87 (1991)

    Article  Google Scholar 

  11. Wolpert, D.M., Miall, R.C., Kawato, M.: Internal models in the cerebellum. Trends in Cognitive Sciences 2(9) (1998)

    Google Scholar 

  12. Matarić, M.J.: Sensory-Motor Primitives as a Basis for Learning by Imitation: Linking Perception to Action and Biology to Robotics. In: Imitation in animals and artifacts, pp. 392–422. MIT Press, Cambridge (2002)

    Google Scholar 

  13. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11, 1317–1329 (1998)

    Article  Google Scholar 

  14. Jordan, M.I., Rumelhart, D.E.: Forward models: Supervised learning with a distal teacher. Cognitive Science 16, 307–354 (1992)

    Article  Google Scholar 

  15. Ans, B., Rousset, S., French, R.M., Musca, S.: Self-refreshing memory in artificial neural networks: learning temporal structures without catastrophic forgetting. Connection Science 16(2), 71–99 (2004)

    Article  Google Scholar 

  16. Pfeifer, R., Scheier, C.: Understanding Intelligence (Illustrator-Isabelle Follath). MIT Press, Cambridge (2001)

    Google Scholar 

  17. Kawato, M.: Feedback-error-learning neural network for supervised motor learning. In: Eckmiller, R. (ed.) Advanced neural computers, pp. 365–372 (1990)

    Google Scholar 

  18. Nehaniv, C.L., Dautenhahn, K.: The Correspondence Problem. In: Imitation in Animals and Artifacts, pp. 41–63. MIT Press, Cambridge (2002)

    Google Scholar 

  19. Torres, E.B., Zipser, D.: Simultaneous control of hand displacements and rotations in orientation-matching experiments. J Appl Physiol 96(5), 1978–1987 (2004)

    Article  Google Scholar 

  20. Desmurget, M., Prablanc, C.: Postural Control of Three-Dimensional Prehension Movements. J Neurophysiol 77(1), 452–464 (1997)

    Google Scholar 

  21. Ijspeert, A., Nakanishi, J., Schaal, S.: Trajectory formation for imitation with nonlinear dynamical systems. In: Proceedings of the IEEE/RSJ Int. Conference on Intelligent Robots and Systems (IROS2001), pp. 752–757 (2001)

    Google Scholar 

  22. Haruno, M., Wolpert, D.M., Kawato, M.: MOSAIC model for sensorimotor learning and control. Neural Comp. 13(10), 2201–2220 (2001)

    Article  MATH  Google Scholar 

  23. Kuniyoshi, Y., Yorozu, Y., Ohmura, Y., Terada, K., Otani, T., Nagakubo, A., Yamamoto, T.: From humanoid embodiment to theory of mind. In: Pierre, S., Barbeau, M., Kranakis, E. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 202–218. Springer, Heidelberg (2003)

    Google Scholar 

  24. Diedrichsen, J., Hazeltine, E., Kennerley, S., Ivry, R.B.: Moving to directly cued locations abolishes spatial interference during bimanual actions. Psychological Science 12(6), 493–498 (2001)

    Article  Google Scholar 

  25. d’Avella, A., Bizzi, E.: Shared and specific muscle synergies in natural motor behaviors. PNAS 102(8), 3076–3081 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hiroshi G. Okuno Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Tidemann, A., Öztürk, P. (2007). Self-organizing Multiple Models for Imitation: Teaching a Robot to Dance the YMCA. In: Okuno, H.G., Ali, M. (eds) New Trends in Applied Artificial Intelligence. IEA/AIE 2007. Lecture Notes in Computer Science(), vol 4570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73325-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73325-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73322-5

  • Online ISBN: 978-3-540-73325-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics