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Abstract. Realism is a key goal of most VR applications. As graphics comput-
ing power increases, new techniques are being developed to simulate important 
aspects of the human visual system, increasing the sense of ‘immersion’ of a 
participant in a virtual environment. One aspect of the human visual system, 
depth cueing, requires accurate scene depth information in order to simulate. 
Yet many of the techniques for producing these effects require a trade-off be-
tween accuracy and performance, often resulting in specialized implementations 
that do not consider the need to integrate with other techniques or existing visu-
alization systems. Our objective is to develop a new technique for generating 
depth based effects in real time as a post processing step performed on the 
GPU, and to provide a generic solution for integrating multiple depth dependent 
effects to enhance realism of the synthesized scenes. Using layered fog as an 
example, our new technique performs per pixel scene depth reconstruction ac-
curately for the evaluation of fog integrals along line-of-sight. Requiring only 
the depth buffer from the rendering processing as input, our technique makes it 
easy to integrate into existing applications and uses the full power of the GPU 
to achieve real time frame rates. 

1   Introduction 

For the past three decades, dramatic advances in computer graphics hardware and re-
search have made it possible for computers and rendering systems to closely approxi-
mate the physical behavior of the real world. During this time, the graphics subsystem 
of the standard personal computer has risen in status from a simple peripheral device 
capable of nothing more than monochrome text displays, to a major computational 
component with a dedicated communication pathway to the CPU, capable of rendering 
hundreds of millions of lit, textured polygons per second. The current generation of 
graphics hardware, consisting of multiple processing units and containing more transis-
tors than the motherboard CPU, is now capable of enormous computational power with 
a high level of parallelism. The addition of programmable logic to the graphics pipe-
line has endowed these devices with almost cinematic quality capabilities.  

At the same time, it has been recognized that improved accuracy in physical simu-
lations and light transport modeling has not yielded the same level of improvements 
in human perception of computer generated images [5]. Recently, increasing aware-
ness of the human visual system has lead to an improved understanding of perception. 
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This in turn started to influence the way to generate 3D graphics. We need to consider 
the human visual system in generating visually realistic images in order to improve 
immersion of the human participants in virtual environments (VE). 

The effectiveness of sensory-immersion in virtual environments largely relies on 
the ability of synthesized scenes to match the user’s sensory channel. In virtual envi-
ronments, including augmented reality, simulators and games, perception enhance-
ment through graphics generation process is a major area. Therefore, generating spe-
cial effects to improve realism is an active research area. 

Although we live in a 3 dimensional world, the scenes captured by human eye are 
2 dimensional; similarly, everyday visual perception is based on interacting with a 3 
dimensional world, but computer generated scenes are typically showed on a 2 di-
mensional display. Humans have learned to use additional information (depth cues) 
about the 3 dimensional world to process the 2 dimensional retinal images to perceive 
space and distance, through individual experiences. Accurate perception of distance 
from computer graphics is particularly important in immersive interfaces that aim to 
give a person the sensation of actually being in a virtual world that in fact only exists 
as a computer model. Adding depth cues into computer generated scenes helps depth 
perception in computer graphics match the capabilities of human visual system in 
understanding their real environment.  

Effects such as depth of field and fog rely on accurate per pixel scene depth for 
quality results, yet existing scan-line techniques devote little effort towards generating 
accurate scene depth information, resulting in artifacts in the generated scenes. Alter-
natives, such as using special render targets, impose limitations and make system in-
tegration difficult. 

In developing new techniques for generate depth based effects using rasterization, 
we developed a new post-processing based scene depth reconstruction technique that 
can be implemented entirely on the GPU.  This technique decouples scene rendering 
from effects generation in the post-processing step, and allows easy integration of the 
technique into existing applications. In this paper, we present this new hardware ori-
ented method and use layered fog as an example to demonstrate how this technique 
achieves high quality results in real time.  

This paper is organized as follows: section 2 describes our new technique to recon-
struct scene depth and 3D fragment position; section 3 presents how our new tech-
nique is used for generating layered fog, as well as the implementation details and 
integration of the technique to the existing rendering application; Section 4 shows the 
results; Section 5 concludes with future work.  

2   Techniques 

2.1   Scene Depth Reconstruction 

There are currently two main approaches to generating scene depth information for 
depth based special effects, both of which lay down linear depth information to an 
alternate render target. The first is to use customized rendering shaders that can output 
linear scene depth values at the same time as rasterizing the scene in the frame buffer.  
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The second approach is a separate rendering pass to generate the depth information. 
The problem with the first approach is that the custom shaders can be difficult to inte-
grate into existing rendering pipelines, while the second approach requires signifi-
cantly more vertex and fragment processing power. In our new method, we recon-
struct scene depth values directly from the depth buffer - a by-product of the normal 
rendering process that is usually discarded. While this solves many of the problems of 
other approaches, it presents some new ones. The contents of the depth buffer are 
non-linear, having been transformed by the modelview and projection matrices. In 
order to reconstruct the original scene depth information, we must transform these 
values back to linear values. A naive approach to this is to use an inverted model-
view/projection matrix, along with normalized x and y values, to compute the full 3D 
fragment position relative to the camera. The inverse camera modelview matrix is 
then used to map this into a real world position. However, this is too computationally 
expensive, so we developed a more efficient method that allows us to reconstruct the 
fragment scene depth. 

Given a point p in world coordinates, the mapping to canonical viewing volume 
coordinates p0, is done by the projection matrix P. 

pPp ⋅=0  (1) 

Perspective projection is characterized by the camera properties as follows: 
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Where l; r; t and b are the left, right, top and bottom edges of the view volume, and n 
and f are the near and far clipping planes respectively. 

With Equation (1) and (2), we can deduce  
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In our new method, we use the normal rendering pipeline of the application to con-
struct the scene in the frame buffer. We then capture the depth buffer before rendering 
a single, screen aligned polygon using vertex and fragment shaders, with the depth 
buffer as a texture. Our optimized algorithms in the shaders are used to reconstruct the 
scene depth values on a per-fragment basis from the nonlinear values in the depth 
texture. By taking full advantage of the GPU capabilities, we have reduced the com-
putation to one addition and one division per pixel. As an additional benefit, by taking 
advantage of the vector capabilities of the GPU, this technique allows the scene depth 
values of up to four pixels to be computed in parallel if needed. Some special effects, 
such as depth-of-field can be implemented at this point since they require no further 
information [10]. However, for layered fog, we need the full 3D spatial position of the 
fragment.  

D Fragment Position Reconstruction. With the scene depth of each fragment 
available, we can recover the fragment position easily by setting up a normalized eye-
to-fragment vector. Given the four corner points of the screen aligned polygon and the 
camera position as input, the GPU hardware can be used to automatically interpolate 
the eye-to-fragment vector for use in the fragment shader. The fragment shader can 
then compute the fragment position relative to the camera given the eye-to-fragment 
vector and the depth value.  

In the next section, we use layered fog as an example to demonstrate our new scene 
depth and fragment reconstruction technique in generating high quality depth based 
effects in real time with easy integration. 

3   Layered Fog  

Fog is formed by a suspension of water droplets in the atmosphere. It causes scatter-
ing of light amongst the water droplets, and therefore reduces the contrast of the 
scene. In computer graphics, the simplest fog model is homogeneous fog, which has a 
uniform density in all three dimensions. Layered fog, or height dependent fog, intro-
duces a variation into the fog density dependent upon height. 

3.1   Problems 

In OpenGL, homogeneous fog functions are provided that allow the blending of the 
fragment color and a fog color based on the distance between the view point and the 
fragment. Unfortunately, these functions use the fragment depth as an approximation 
of distance, rather than the true Euclidean distance. This causes a problem when the 
viewpoint rotates, since the Z depth of an object can change while the Euclidean dis-
tance does not. The result of this is that objects can appear out of the fog, or disappear  
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into the fog, simply as a result of rotating the viewpoint. Fig. 1. shows how these arti-
facts occur in OpenGL models. The grey gradient box represents the fog distribution. 
Although the Euclidean distance between viewpoint O and object point P does not 
change after the viewing plane rotates (viewing direction changes), the depth to P, 

however, is changed from z  to αz . As a result, the intensity of fogged fragment at 

point P will change. 

 

 

Fig. 1. Undesirable Artifacts of the Standard Fog Model 

OpenGL provides a fog extension that allows per vertex specification of depth val-
ues for fog computation, enabling generation of effects such as height dependent fog. 
While it can be used to produce reasonable results, it also presents its own set of prob-
lems. Firstly, it can affect performance, since the additional per-vertex data required 
in this fog extension can potentially become a system bottleneck, in particular, de-
manding more CPU cycles and bus bandwidth. Secondly, since the depth value is 
provided once per vertex, it must be interpolated across the polygon. Large polygons 
can therefore make it very difficult to vary the fog density over small scales. The only 
way to improve this situation is to reduce the size of the polygons, which can cause 
further performance issues. 

A great deal of effort has been devoted to generating atmospheric effects including 
fog using global illumination models[2]. While many can produce high quality re-
sults, they generally come with a price of  high computational cost, and are not yet 
real time frame rates, particularly when integrated with generic visualization systems. 
An alternative is to generate visually pleasing fog effect without global illumination 
consideration. Perlin[6] documented a simple way of producing layered mist by inte-
grating a vertical ray and then enlarging it along line-of-sight. A few techniques have 
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been implemented using this idea, including texture table lookup [4], or pixel texture 
[3][1]. However, they are not fast enough.  

In this paper, we accurately recover 3D fragment position based on scene depth re-
construction, and apply it when evaluating fog integral along line-of-sight to produce-
realistic layered fog. Our new method performs fog computation entirely on the GPU 
at a post-processing step, achieving real time rendering and permitting easy integra-
tion into existing visualization applications.  

3.2   Computation 

We adopt the similar computation proposed by Perlin[6]. It is known[3] that the at-
tenuation of the fog medium is exponentially distributed, suppose 

Fef −=  (6) 

where F is the integral along the camera-fragment vector for a given fog density func-
tion, then  
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where δ is the fog density function, t is the space point. For layered fog, δ is only 
dependent on y, then the above equation can be simplified as 
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where l is the Euclidean distance between the camera and the fragment. The blending 
result of the fog color and the fragment is computed by 

fogfrag CfCfC ⋅−+⋅= )1(  (9) 

where f is defined in Equation (6), fragC is the fragment color, fogC is the fog color. 

Once the fragment position is computed based on scene depth reconstruction (de-
tails in section 2.1), the fog is computed by evaluating the fog density function along 
the line of sight, from the camera to the fragment (Equation (8)). This is done explic-
itly in the case of analytical functions (as in our example), or may use pre-computed 
integrals stored as a texture and provided to the fragment shader. Once the fog density 
has been evaluated for the fragment, the shader outputs the fog color and alpha value 
for blending with the scene fragment in the frame buffer. 

3.3   Implementation 

Our implementation is based upon a custom hierarchical scene management and 
OpenGL based rendering engine developed by the authors, although any OpenGL 
based rendering engine should be suitable. Written in C++, our application provides 
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'hooks' into various parts of the rendering pipeline, allowing us to easily insert our 
post processing algorithms. The rendering engine itself required no modification. 

The first step is to render the scene into the frame buffer, which is done by the ap-
plication as before. Once the scene rendering is complete, the scene post processing is 
triggered just prior to the frame buffer swap. At this point, the depth buffer is captured 
using the OpenGL copy-to-texture functionality. Next, the depth conversion parame-
ters are computed based on the camera properties. The post processing is then initi-
ated by drawing a screen-aligned polygon using the fog color, textured with the depth 
texture, and using custom vertex and fragment shaders written in the OpenGL Shad-
ing Language. The vertex shader is used to set up the eye-to-fragment unit vector, 
defined in real world coordinates. This is interpolated by the hardware pipeline, and 
delivered to the fragment shader for use in computing the fragment position. The 
depth conversion parameters needed for converting the depth buffer values are passed 
to the fragment shader as uniform variables. The fog computation is performed in the 
fragment shader based on Equation (8).  

Update Scene

Render Scene

Swap Buffers

Capture Depth Buffer 
and F ame Buffe

Initialize Shade

Render Pol on

 

Fig. 2. Application Integration of The Post-processing 

To blend the fog color with the fragment color, we take advantage of the standard 
OpenGL blending functionality and simply compute an alpha value in the fragment 
shader. The output from the fragment shader is a fragment color consisting of the 
RGB fog color, and the computed alpha (fog) value. The rendering pipeline takes care 
of the rest of the work by blending the fog color with the existing fragment in the 
framebuffer.  

Fig. 1 shows the steps in our post processing implementation, and how it integrates 
into the rendering application.  
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4   Results  

The algorithms in this paper have been implemented on a 2.8GHz Pentium IV plat-
form, with 1GB RAM and an nVIDIA 6800 graphics card, running Linux. 

 

 

 

Fig. 3. Layered fog in a city scene 

A number of test scenes were chosen using different fog functions at differing 
screen resolutions, from 512 x 512 up to 1024 x 1024. Figures 3, 4, and 5 shows a 
selection of images generated using the technique. Figure 3 uses a simple exponential 
fog function, decreasing with increasing height, to simulate a typical city fog. Figure 
4 uses a sinusoidal fog function to create a band of fog just above the surface of  
the water. Figure 5 uses a simple ramp function to simulate a dry-ice type fog in an 
indoor scene. 
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Fig. 4. Low level Sea Mist 

 

Fig. 5. The Cloisters 
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Performance measurements showed that the technique takes from 0.4 up to a 
maximum of 2.1 milliseconds, depending upon the screen resolution and the type of 
fog implemented. 

5   Conclusion and Future Work 

The layered fog example demonstrates the effectiveness of our new GPU-based scene 
depth reconstruction technique. This technique has proved efficient and accurate 
when applied to generate other depth effects such as depth of field [10], and should 
prove effective for other depth cueing effects such as shadowing and motion blur. 

Our GPU based integration framework presents easy integration of single effects 
into existing rendering applications, as well as combination of multiple effects 
through component level shader algorithms in the post-processing step. We are cur-
rently working on generating multiple depth effects using this integration framework 
in real time, with minimal impact of the existing rendering applications. The long 
term goal for this work is to improve realism and human immersion in the virtual  
environment, and in particular, to improve human subjects experience in perceiving 
distance and space in virtual environments.  
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