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Abstract. This paper highlights some of the current problems in CVE
development. These problems are mainly due to a lack of a good interaction
model guiding the behaviour of the environments. This paper introduces the
definition of a model based on the idea of the interaction views. The key
concepts for understanding inferaction views are also given during the
explanation of the model. The paper also describes a reference architecture
based on this model which can be found useful for the design of modelling
tools, and a prototype application that helps understanding both the architecture
and the model.
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1 Introduction

Collaborative Virtual Environments (CVEs) have been a topic under intensive study
in the last few years. The current status of the technology, which allows computers
with a good graphical performance and VR devices at lower prices, has boosted this
research. Many techniques and ideas have arisen, and researches have shown many of
the best properties of CVEs, such as presence and object manipulation. Furthermore,
many technologies and tools have emerged around these kinds of systems: techniques
for managing groups, frameworks for building distributed environments and
interconnecting them. All these tools together with the tools typical for VEs
(OpenGL, VRML/X3D, etc.) should provide enough support to implement useful
environments as this is the current interest of developers. In the last years, developers
are no longer looking for environments which look and feel like real, but
environments that offer the user an efficient way to achieve a goal.

However, when looking at the systems described in the literature [1,2,3,4,5,10],
most of them can be categorized in two main families: commercial and experimental
environments. The first family of these systems allows a high scalability but its
members doesn’t benefit from the best properties of CVEs. The second family of
systems refers to the experimental systems used by researchers. They benefit quite
well from the features found in CVEs, but focusing on just one feature that is,

R. Shumaker (Ed.): Virtual Reality, HCII 2007, LNCS 4563, pp. 3108319, 2007.
© Springer-Verlag Berlin Heidelberg 2007



Towards an Interaction Model in Collaborative Virtual Environments 311

somehow, evaluated. In both cases, collaboration is faced exclusively from the point
of view of information sharing. The more common techniques used are:

— Collaboration Buses: Many systems, like MOVE [7] or like MPEG’s back
channels [1,6], use an event dispatcher connecting all the clients in the CVE and
that, in addition, can be used to build a higher level of abstraction through the
definition of communication protocols between objects.

— Shared Scene Graph: This solution is more appropriate for VR applications, and
it is used in other platforms such as DIVE[3,4] or MASSIVE[1]. All the users
share the same definition of the position and status of each object in the
environment. The shared information is all contained in the scene and clients do
not communicate with each other directly, but trough modifications in the Scene
Graph. This technique encapsulates all the details which allow users to share a
common world.

These techniques allow different users to communicate, but they do not deliver
messages according to other factors like the identity of the user or their interests. Even
in those projects that actually try to build generic environments —as the ones cited
before- little effort has been done in defining ways to process and map interactions.
This fact makes the development of CVEs a difficult task [7,11]. In this paper, we
explain an interaction model for CVEs, which is based on one of the implicit
properties of VEs: the physical representation and the definition of interactive areas.

In order to illustrate this model, a reference architecture is also given, and a
prototype application is described. The prototype is called CVRPrismaker, which
defines a virtual room where several users can collaborate playing with a block-based
construction game named Prismaker, similar to the more popular LEGO but this time
any face of the box-shaped blocks can be connected to any other block. The design of
CVRPrismaker includes the key aspects of the approach presented here. Besides, to
carry out its development in a systematic way, the TRES-D methodology has been
used [9]. The relevant aspects of CVRPrismaker will be detailed during the
explanation of the model: both highlighting the points that established the basis for
this model, and also showing the deficiencies in its design. Possible improvements are
also shown during that explanation. However, event though CVRPrismaker perfectly
serves as a testbed for many of the key elements in CVEs, it is just a prototype
implementation, and a new system based on a mature implementation of this model is
currently under development. Flexibility is the main objective for this
implementation. The system will allow the easy definition of a high set of object’s
behaviours and will be easy to integrate with many other business models.

2 The Proposed Model

As pointed out in the previous section, the collaborative interaction model for CVEs
described in this paper is based on the physical representation. Given the nature of
interactions in VEs, a physical representation must be given for every object that
allows interaction (even data and other “logical” elements). The user will have to deal
with these physical representations to produce its interactions to the system.
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Usually, these features are translated in CVEs with the usage of a scene-graph,
which holds the information about each object’s position and status, enriched which
some other “semantic” features (material, weight...). To guide interaction, the system
applies some “general” rules to every object.

Instead of using this approach, this model is based on the definition of several
geometric views of the same object: one or more appearance views, and one or more
interaction views. The appearance views can be exchanged based on the object state
or the LOD required. The interaction views establish the conditions to determine
whether a user action may change the state of objects of the world.

To help understand the behaviour of the model, some key concepts are explained:

— Action: Any user input, a contact in a data glove, a key press... is considered as
an Action. Actions are no more than messages, and thus, they need something to
process that message. The interaction views in the objects will be those filters, and
they will tell if this Action ends up changing the state of the world or not.

— Interaction: If the appropriate Action is performed over the appropriate object, the
target object will produce an Interaction. Interactions are responses of the system
to a user action through a given object that may change the state of the world.
Given that every change in the world will be due to an Interaction, it is important
that all the clients who have the target object in their scene graphs perform the
Interactions. Also, given the distributed nature of the virtual environment, the
execution of the Interactions must be synchronized with the other clients granting
exclusive access to the necessary objects. A tight control over Interactions
becomes necessary to achieve consistency.

2.1 The Geometrical Actions

The interaction management done in the system is based on the concepts above and
on one main idea: given that everything in a Virtual Reality application will have a
physical representation, it is considered easier to give user Actions a representation
too, and so it is done in this model. As it has been said when Actions were defined,
they represent users inputs in the form of a message. That message is of a symbolic
type, that is, a tagged value. But, in addition to that, the model associates a
geometrical representation to each message. This representation is the part of the
space where this message is propagated.

This geometrical representation is usually not as complex as the rendered geometry
and, in fact, it is currently implemented by using simpler geometries, more precisely
sets of spheres. The system will process each of the user Actions propagating the
resulting messages to the different objects accessible in his scene graph.

2.2 The Interaction Tree: A Layered Scene Graph

The proposed model, as most VE applications, uses a kind of Scene Graph, but of a
completely different kind. As every Scene Graph, it contains the definition of the
position and status of every object in the VE. But the information available for each
object is different. Each object is defined as a set of different views. Some of the
views define the appearance of the object, while others define the kind of action that
will trigger an interaction over the object.
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The Appearance view. Every object in the scene will have one or more appearance
views. This view or set of views defines the “visual” aspect of the object and contains
information usually complex and useless for its use in interaction decisions. The
union of all the appearance views of the objects of one environment would correspond
to the classical definition of Scene Graph given in the literature. To manage this
information, standardized Scene Graphs such as OpenSceneGraph or OGRE could be
used.

The model defines a restrictive interface to the actual “appearance Scene Graph”
used, which only allows it to define the positions of the objects, its appearance and the
definition of one objects position relative to another object. This restricted interface is
one of the key concepts that allow the model to keep its independency from the actual
Scene Graph used in the implementation. Only the appearance views will be Scene
Graph-dependant.

The Interaction views. Apart from the “visual” view available for every object, if the
object allows any interaction to the user, it will contain (al least) one interaction view.

An interaction view determines the geometrical place where a user can perform his
or her Actions to trigger an Interaction over the target object. Also, every interaction
view contains the conditions the user Action has to fulfil to trigger the Interaction.
These conditions may vary from one object to another and they are based on the
geometries of both the interaction view and the user Action itself, and in the status of
the objects involved in the Inferaction.

For this purpose, the interaction views are defined basically as set of very simple
geometries, for instance spheres as in the implementation of CVRPrismaker. This
technique was inspired in our prototype implementation. The approach followed for
this implementation distinguished two views, a graphical view and a ‘logical’ view.
The logical definition described the volumes in every object where interactions could
be performed (see figure 1).

Fig. 1. Logical Views used for CVRPrismaker

The idea underneath is that users are not interested on the whole object, but only on
those regions where he or she can perform any interactions; i.e. the selves only could
contain nine objects, so nine interactive areas were defined. Boxes did the same, they
defined the spaces were users would interact to pick/release objects.

Even though these areas are used in these two objects to model receivers to the
user actions, the definition given for pieces and figures gave them a different
meaning. These reduced geometries could also be used to define the constraints that
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determined whether two figures could be joined or not. This use is explained more in
depth in point 2.3.

After some study on these ideas, some other concepts raised. When studying the
interactive regions of an object, it is often easy to identify relations between these
regions. These relations would allow their division into different views according to
some predefined features:

e Object’s functionality: Each interaction view would contain the regions with an
associated functionality.

e User identity: The interaction view will contain the interactive regions accessible
for each kind of user in the system.

¢ User message: The object will contain a view for each kind of message the object
can process, i.e. if we implement a system where a user can produce ‘pick’ and
‘drop’ messages using his gloves, each object would define two interaction views,
the first for the ‘pick’ and the second one for the ‘drop’ messages.

The interaction views available for a user define his capabilities over each object.
These objects are complete objects, that is, full functionality can be accessed.
Furthermore, they process all the Inferactions produced in the system, even if they
come from other users with different interaction views. The limitation is for the local
user: he can only trigger the Interactions available though his Interaction views.

Overall, interaction views might be considered like filters. Those filters are placed
in the Scene Graph associated to an object and they process the messages propagated
to the object. Actions will be detected by those filters according to the message
propagated into the Action and to the geometries of both the Action (message) and the
interaction view (receiver).

2.3 The Handheld Objects as Action Modifiers

All along this paper it has been said that each of the user’s Actions would have an
associated geometry, but the origin and shape of those Actions has not been specified.
This avoidance had the purpose of keeping a broad conception about the available
geometries for user Actions.

Initially, user Actions will be modelled with a sphere in a virtual position, and the
message within will be the gesture performed by the user. This definition is enough to
allow the user to interact with objects directly, but some other behaviours would need
more complex Actions. For interactions in which the user must use a tool to operate a
third party object, the schema used is a bit different. It is not the user’s hand but the
handheld object position the one which is interacting. In CVRPrismaker, the logical
geometry of the object was used to test whether the interaction could be performed.
Under this focus, CVRPrismaker’s handheld figures transformed the received single-
sphere Actions into Actions with a different message and the geometry of the
handheld figure. This way, every object held by the user would transform the Actions
received, modifying both its geometry and its content according to its own rules.

This behaviour can be used in general modelling tools to manage de
assemble/disassemble operations. The object to assemble, i.e. a girder, would
transform the spherical ‘drop’ user message as follows: Its content would be
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transformed into a ‘join’ message, and the geometry used would be the interactive
areas placed in the points where the girder can be assembled to a structure.

Also, a bigger concept of transitivity can be used, allowing the successive
concatenation of filters/modification of the user Actions.

2.4 Interaction Views as Action Receivers

This usage of the interaction views is one of its simpler uses, but defines an efficient
and flexible way to manage interaction. As seen in most VR systems, it is possible to
identify a reduced set of messages: due to user inputs (drop, pick, point, etc), or to the
used tools (cut, lift, etc). If an interaction view for each of these possible Actions is
defined, the definition of the world is faced from a very flexible way: if all the
interaction views available for a given message (i.e. pick) are put together the result
will be the Scene Graph of the virtual regions where that action may have an effect
(the regions where the user can perform the ‘pick’ operation).

For each message, a different geometry with the relevant elements to process that
message will be used. This geometry may not be a part of the own object, as a result
of the own meaning of the message studied. Also, this separation allows us to
differentiate which data/geometry will be used to represent the object when
processing a given message.

Fig. 2. Views needed for a correct design of CVRPrismaker

In CVRPrismaker, only one interaction view was defined for every object. When
facing the definition of the pieces, the interaction view was well suited to manage
‘pick’ messages, but not so well suited to the ‘join’ user’s messages. CVRPrismaker
should have used the interaction views shown in the figure 2: one to process ‘pick’
messages and a different one for ‘drop’ messages.

For modelling tools, the interaction data needed to ‘join’ pieces is about the regions
where new pieces can be added (16 for each of the Prismaker pieces). These areas
will be spaces around the places where elements may be connected. This can be faced
as defining the correct places where pieces or connectors may fit, building the
interaction view joining these places.

3 A Reference Architecture

At this point, an example implementation of this model is given. The design is simple
but faces the challenges of CVEs. Like the model, this architecture uses a distributed
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Scene Graph that keeps the same status in every client. The key to achieve
consistence is that Committed Interactions are shared by all the clients. All the
clients execute the same Interactions in the same order and with the same operands
(objects and discrete data). This feature will be transparently managed by the system.
Even though this feature would be enough to assure system’s consistency, the
periodical retransmission of the object’s status would avoid completely any possible

loss of consistency.
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Fig. 3. Purposed architecture overview

This design of the system uses a generic Scene Graph and a Network library. These
elements could be taken from the commercial products available. The current
implementation of the model is considering OGRE and Raknet as a suitable solution

for this purpose, but other tools could be used.

3.1 User Subsystem

It controls one user’s view of the world. It contains a copy of the Scene Graph where
the appropriate interaction views will be loaded. The Session Manager is responsible
for feeding the Scene Graph with the Actions produced. To achieve this purpose, it is

responsible of two main tasks:

— Controlling user actions: This system will send the Action messages produced by
the user to the appropriate objects, and will ask for the necessary permission to
perform an Interaction when this situation occurred.

— Receiving confirmed interactions: It will receive all the change messages from
the connected clients. These messages will be delivered to the appropriate
interaction view in the Scene Graph, that executes the Interaction appropriately.
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3.2 Communication Layer

This layer represents the communication between the user subsystem and the rest of
the virtual environment. Through this layer user actions will be declared, checked
and, in the appropriate cases, shared to all the other clients. It is implemented as a set
of four mailboxes:

— Actions Mailbox: All the Actions messages produced in the subsystem are sent to
this mailbox. The actions are produced by any of the elements in the first sublayer
of the User subsystem. These are the Active Objects in the Scene Graph and may
represent anything able to produce an Action. This would include both users and
other intelligent behaviours like Agents.

— Pending Interactions Mailbox: When an Action has fulfilled the conditions of an
interaction view, it is inserted in this mailbox. The Collaboration Layer will
determine if the Interaction will be executed or not. This decision is made
according to the mutual exclusion conditions available over the involved objects.

— Confirmed Interactions Mailbox: When the Collaboration Layer finds a Pending
Interaction that can be executed, a message is sent through the Network library to
all the clients in the system (including the producer’s client). Once the messages
are received, they are inserted in each on the Confirmed Interactions Mailbox. This
is a ‘synchronized’ mailbox.

— Operations Mailbox: Once a client is notified to perform a given Interaction over
one object, the appropriate actions are taken. Many of these actions will depend on
the logic under our interface layer but many others will have to modify this
interface itself, modifying the interaction Scene Graph also. This is not a problem
itself but, as many systems do, it is common that the drawing of the world is done
together with the calculation of the state for the next frame (interaction processing).
As this model does not use Scene Graph replication for drawing, those actions that
may change the position, appearance and status of the objects in the scene graph
are stored here until the drawing is completed.

3.3 Collaboration Layer

This layer is responsible for making all the clients in the system share the same status
of the Scene Graph. To control this, the Collaboration Layer will have to send to all
the connected users every operation changing the state of the Scene Graph. As the
only element which can change the state of the Scene Graph are interactions, this
layer will be responsible for making sure that all the Interactions on the system are
sent to the rest of the clients. Also, the Collaboration Layer is responsible for telling
whether a user Inferaction can be performed over a given object, or whether the
object is being modified by other client and the Interaction must be ignored.

4 More Complex Behaviours

The usage of the interaction views shown in this paper is very simple. It just uses the
interaction views to distinguish between the available messages propagated over the
system. This view is very restricted, and more complex definitions might be given if
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the differentiation of the interaction views of the objects in a Scene Graph is done
according to other concepts.

If we identify the different views according to the identity of the user, we would be
working on a hierarchical environment, where every user would only access the
allowed interaction views. The interaction views could be aware of the internal
structures of the organization and provide interaction views only for members of a
given group or even only for a given user (personal objects).

Also, patterns could be identified so that the users in the system are classified
under a given set of roles. This way, it would be the user’s role, and not its own
identity the one which would determine the interaction views to load in the local
copies of the Scene Graph.

If the differentiation of the views is done according to the user’s knowledge of the
object, we come up with a different philosophy. If the interactive regions of the object
are differentiated according to the experience needed to understand and use the
objects correctly, then an adaptive environment could be defined, with simplified
views for novel users and other more complicated for experts.

Also, this model differentiates object’s appearance from their functionality. This
way it would be possible for two users to have different appearance views of the same
object. This could be permitted to allow a higher adaptation of the environment.
These users would be able to collaborate using their common interaction views.

Also, the appearance views available could be dependant of the interaction views
available, allowing one user to see one representation of one object (i.e. a mailbox)
while another user, i.e. the owner, can have a completely different perception of that
same object (i.e. a ‘new staff’ folder in his desk).

All in all, interaction views are a very new concept and more study over its
applicability is still necessary.

5 Conclusions and Future Work

This paper has given an introduction to the interaction views. These views allow a
new way of defining the objects in the environments; these objects will have a
‘layered’ definition where they will define both its external appearance, and the
relevant geometry for each kind of the available interactions over the object.

Using this concept, an interaction model has been proposed, and a simple
execution workflow, assuring the more important properties of the environment,
explained. Following this model, and with the purpose of benefiting from our
experience in modelling tools, a reference architecture for a CVE has been proposed.

This definition, however, makes a very limited usage of the potentialities of the
interaction views concept. As a future work, we will keep studying this concept, and a
more elaborated proposal will rise.

The final goal is the definition of an application that could work as a skeleton for
CVEs. This skeleton would define a clear set of rules that would dictate the way
objects are managed in the VE and the logical way through which user actions are
filtered and how those actions would be mapped into interactions. Thus, users of this
system would only need to define the objects in its VE and, if any kind of new object
is needed, define the behaviour of these objects.
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