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Abstract. This paper discusses machine learning methods and their application
to Brain-Computer Interfacing. A particular focus is placed on linear classifica-
tion methods which can be applied in the BCI context. Finally, we provide an
overview on the Berlin-Brain Computer Interface (BBCI).

1 Introduction

Brain-Computer Interfacing is an interesting, active and highly interdisciplinary re-
search topic ([2,3,4,5]) at the interface between medicine, psychology, neurology,
rehabilitation engineering, man-machine interaction, machine learning and signal pro-
cessing. A BCI could, e.g., allow a paralyzed patient to convey her/his intentions to a
computer application. From the perspective of man-machine interaction research, the
communication channel from a healthy human’s brain to a computer has not yet been
subject to intensive exploration, however it has potential, e.g., to speed up reaction
times, cf. [6] or to supply a better understanding of a human operator’s mental states.

Classical BCI technology has been mainly relying on the adaptability of the human
brain to biofeedback, i.e., a subject learns the mental states required to be understood
by the machines, an endeavour that can take months until it reliably works [7,8].

The Berlin Brain-Computer Interface (BBCI) pursues another objective in this re-
spect, i.e., to impose the main load of the learning task on the ’learning machine’,
which also holds the potential of adapting to specific tasks and changing environments
given that suitable machine learning (e.g. [9]) and adaptive signal processing (e.g. [10])
algorithms are used. Short training times, however, imply the challenge that only few
data samples are available for learning to characterize the individual brain states to be
distinguished. In particular when dealing with few samples of data (trials of the train-
ing session) in a high-dimensional feature space (multi-channel EEG, typically several
features per channel), overfitting needs to be avoided. It is in this high dimensional –
small sample statistics scenario where modern machine learning can prove its strength.
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The present paper introduces basic concepts of linear classification (for a discussion
of nonlinear methods in the context of BCI, see [11,9,12,13,14]). Finally, we briefly
describe our BBCI activities where some of the discussed machine learning ideas come
to an application and conclude.

2 Linear Methods for Classification

In BCI research it is very common to use linear classifiers, but although linear clas-
sification already uses a very simple model, things can still go terribly wrong if the
underlying assumptions do not hold, e.g. in the presence of outliers or strong noise
which are situations very typically encountered in BCI data analysis. We will discuss
these pitfalls and point out ways around them.

Let us first fix the notation and introduce the linear hyperplane classification model
upon which we will rely mostly in the following (cf. Fig. 1, see e.g. [15]). In a BCI
set-up we measure k = 1 . . .K samples xk, where x are some appropriate feature vectors
in n dimensional space. In the training data we have a class label, e.g. yk ∈ {−1,+1}
for each sample point xk. To obtain a linear hyperplane classifier

y = sign
(

w�x + b
)

(1)

we need to estimate the normal vector of the hyperplane w and a threshold b from
the training data by some optimization technique [15]. On unseen data x, i.e. in a BCI
feedback session we compute the projection of the new data sample onto the direction
of the normal w via Eq.(1), thus determining what class label y should be given to x
according to our linear model.

w

Fig. 1. Linear classifier and margins: A linear classifier is defined by a hyperplane’s normal vector
w and an offset b, i.e. the decision boundary is {x | w�x + b = 0} (thick line). Each of the two
halfspaces defined by this hyperplane corresponds to one class, i.e. f (x) = sign(w�x + b). The
margin of a linear classifier is the minimal distance of any training point to the hyperplane. In
this case it is the distance between the dotted lines and the thick line. From [9].

2.1 Optimal Linear Classification: Large Margins Versus Fisher’s Discriminant

Linear methods assume a linear separability of the data. We will see in the following
that the optimal separating hyperplane from last section maximizes the minimal margin
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(minmax). In contrast, Fisher’s discriminant maximizes the average margin, i.e., the
margin between the class means.

Large Margin Classification. For linearly separable data there is a vast number of
possibilities to determine (w,b), that all classify correctly on the training set, however
that vary in quality on the unseen data (test set). An advantage of the simple hyperplane
classifier (in canonical form cf. [16]) is that literature (see e.g. [15,16]) tells us how
to select the optimal classifier w for unseen data: it is the classifier with the largest
margin ρ = 1/‖w‖2

2, i.e. of minimal (euclidean) norm ‖w‖2 [16] (see also Fig. 1).
Linear Support Vector Machines (SVMs) realize the large margin by determining the
normal vector w according to

min
w,b,ξ

1/2 ||w||22 + C/K ||ξ ||1 subject to (2)

yk(w�xk + b) � 1 − ξk and

ξk � 0 for k = 1, . . . ,K,

where ||·||1 denotes the �1-norm: ||ξ ||1 = ∑ |ξk|. Here the elements of vector ξ are slack
variables and parameter C controls the size of the margin vs. the complexity of the
separation. While the user has not to care about the slack variables, it is essential to
select an approppriate value for the free parameter C for each specific data set. The
process of choosing C is called model selection, see e.g. [9]. One particular strength of
SVMs is that they can be turned in nonlinear classifiers in an elegant and effective way
(see e.g. [16,9,12]).

Fisher’s Discriminant. Fisher’s discriminant computes the projection w differently.
Under the restrictive assumption that the class distributions are (identically distributed)
Gaussians of equal covariance, it can be shown to be Bayes optimal. The separabil-
ity of the data is measured by two quantities: How far are the projected class means
apart (should be large) and how big is the variance of the data in this direction (should
be small). This can be achieved by maximizing the so-called Rayleigh coefficient of
between and within class variance with respect to w [17,18]. The slightly stronger as-
sumptions have been fulfilled in several of our BCI experiments e.g. in [13,14]. When
the optimization to obtain (regularized) Fisher’s discriminant is formulated as a mathe-
matical programm, cf. [19,9,20], it resembles the SVM:

min
w,b,ξ

1/2 ||w||22 + C/K ||ξ ||22 subject to

yk(w�xk + b) = 1 − ξ k for k = 1, . . . ,K.

2.2 Some Remarks About Regularization and Non-robust Classifiers

Linear classifiers are generally more robust than their nonlinear counterparts, since they
have only limited flexibility (less free parameters to tune) and are thus less prone to
overfitting. Note however that in the presence of strong noise and outliers even linear
systems can fail. In the cartoon of Fig.2 one can clearly observe that one outlier or
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strong noise event can change the decision surface drastically, if the influence of single
data points on learning is not limited. Although this effect can yield strongly decreased
classification results for linear learning machines, it can be even more devastating for
nonlinear methods. A more formal way to control one’s mistrust in the available train-
ing data, is to use regularization (e.g. [21,22,15]). Regularization helps to limit (a) the
influence of outliers or strong noise (e.g. to avoid Fig.2 middle), (b) the complexity of
the classifier (e.g. to avoid Fig.2 right) and (c) the raggedness of the decision surface
(e.g. to avoid Fig.2 right). No matter whether linear or nonlinear methods are used, one
should always regularize, – in particular for BCI data!

Fig. 2. The problem of finding a maximum margin “hyper-plane” on reliable data (left), data
with an outlier (middle) and with a mislabeled pattern (right). The solid line shows the resulting
decision line, whereas the dashed line marks the margin area. In the middle and on the right
the original decision line is plotted with dots. Illustrated is the noise sensitivity: only one strong
noise/outlier pattern can spoil the whole estimation of the decision line. From [23].

3 The Berlin Brain-Computer Interface

The Berlin Brain-Computer Interface is driven by the idea to shift the main burden
of the learning task from the human subject to the computer under the motto ’let the
machines learn’. To this end, the machine learning methods presented in the previous
sections are applied to EEG data from selected BBCI paradigms: selfpaced [13,14] and
imagined [24,25,26] experiments.

3.1 Bereitschaftspotential Experiments

In preparation of motor tasks, a negative readiness potential precedes the actual execu-
tion. Using multi-channel EEG recordings it has been demonstrated that several brain
areas contribute to this negative shift (cf. [27,28]). In unilateral finger or hand move-
ments the negative shift is mainly focussed on the frontal lobe in the area of the corre-
sponding motor cortex, i.e., contralateral to the performing hand. Based on the laterality
of the pre-movement potentials it is possible to discriminate multi-channel EEG record-
ings of upcoming left from right hand movements. Fig. 3 shows the lateralized readiness
potential during a ‘self-paced’ experiment, as it can be revealed here by averaging over
260 trials in one subject.
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Fig. 3. The scalp plots show the topography of the electrical potentials prior to keypress with the
left resp. right index finger. The plot in the middle depicts the event-related potential (ERP) for
left (thin line) vs. right (thick line) index finger in the time interval -1000 to -500 ms relative to
keypress at electrode position CCP3, which is marked by a bigger cross in the scalp plots. The
contralateral negativation (lateralized readiness potential, LRP) is clearly observable. Approx.
260 trials per class have been averaged.

In the ‘self-paced’ experiments, subjects were sitting in a normal chair with fingers
resting in the typing position at the computer keyboard. In a deliberate order and on
their own free will (but instructed to keep a pace of approximately 2 seconds), they
were pressing keys with their index and little fingers.

EEG data was recorded with 27 up to 120 electrodes, arranged in the positions of the
extended 10-20 system, referenced to nasion and sampled at 1000 Hz. The data were
downsampled to 100 Hz for further offline analyses. Surface EMG at both forearms
was recorded to determine EMG onset. In addition, horizontal and vertical electroocu-
lograms (EOG) were recorded to check for correlated eye movements.

In [6], it has been demonstrated that when analyzing LRP data offline with the meth-
ods detailed in the previous sections, classification accuracies of more than 90% can be
reached at 110 ms before the keypress, i.e. a point in time where classification on EMG
is still at chance level. These findings suggest that it is possible to use a BCI in time
critical applications for an early classification and a rapid response.

Table 1 shows the classification results for one subject when comparing different ma-
chine learning methods. Clearly regularization and careful model selection are manda-
tory which can, e.g., be seen by comparing LDA and RLDA. Of course, regularization is
of more importance the higher the dimensionality of features is. The reason of the very

Table 1. Test set error (± std) for classification at 110 ms before keystroke; ›mc‹ refers to the
56 channels over (sensori) motor cortex, ›all‹ refers to all 105 channels. The algorithms in
question are Linear Discriminant Analysis (LDA), Regularized Linear Discriminant Analysis
(RLDA), Linear Programming Machine (LPM), Support Vector Machine with Gaussian RBF
Kernel (SVMrbf) and k-Nearest Neighbor (k-NN).

channels LDA RLDA LPM SVMrbf k-NN

all 16.9±1.3 8.4±0.6 7.7±0.6 8.6±0.6 28.4±0.9

mc 9.3±0.6 6.3±0.5 7.4±0.7 6.7±0.7 22.0±0.9
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bad performance of k-NN is that the underlying Euclidean metric is not appropriate for
the bad signal-to-noise ratio found in EEG trials. For further details refer to [13,14].
Note that the accuracy of 90% can be maintained in recent realtime feedback experi-
ments [29]. Here, as no trigger information is available beforehand, the classification
decision is split into one classifier that decides whether a movement is being prepared
and a second classifier that decides between left and right movement to come.

A similar method of classification can be applied for the discrimination of finger and
arm movements, as described in [30]. This is presented in Figure 4, where a subject is
sitting in front of a computer screen that shows the movement of a virtual arm which
is controlled by a BCI classifier output. The classification is based entirely on pre-
movement activity of the EEG, while the subject presses keys with the right index finger
or lifts the arm. Scenarios like this can be used for intuitive interaction with a virtual
environment.

Fig. 4. The virtual arm in the X-Rooms™virtual reality framework is an example for the applica-
bility of slow cortical potentials in BCI scenarios. See text for details.

3.2 Motor Imagery Experiments

During imagination of a movement, a lateralized attenuation of the μ- and/or central
β -rhythm can be observed localized in the corresponding motor and somatosensory
cortex. Besides a usual spectral analysis, this effect can be visualized by plotting event-
related desynchronization (ERD) curves [31] which show the temporal evolution of the
band-power in a specified frequency band. A typical averaged ERD is shown in Fig. 5.

We performed experiments with 6 healthy subjects performing motor imagery. The
subjects were sitting comfortably in a chair with their arms in a relaxed position on an
arm rest. Two different sessions of data collection were provided: In both a target “L”,
“R” and “F” (for left, right hand and foot movement) is presented for the duration of
3.5 seconds to the subject on a computer screen. In the first session type this is done by
visualizing the letter on the middle of the screen. In the second session the left, right
or lower triangle of a moving gray rhomb is colored red. For the whole length of this
period, the subjects were instructed to imagine a sensorimotor sensation/movement in
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Fig. 5. This scalp plots show the topography of the band power in the frequency band 8–14 Hz
relative to a reference period. The plot in the middle shows ERD curves (temporal evolution of
band power) at channel CCP5 (mark by a bigger cross in the scalp plots) for left (thin line) and
right (thick line) hand motor imagery. The contralateral attenuation of the μ-rhythm during motor
imagery is clearly observable. For details on ERD, see [31].

Fig. 6. This screenshot presents an application of the above mentioned 1-D cursor movement. By
selecting of one of the targets on the sides of the screen, it is possible to select groups of letters
of the alphabet. After the first selection, the choice of letters can be further narrowed by repeated
selections, until a single letter remains. This process can then be used as a text input device which
is only driven by the BCI.

left hand, right hand resp. one foot. After stimulus presentation, the screen was blank
for 1.5 to 2 seconds. In this manner, 35 trials per class per session were recorded. After
25 trials, there was a short break for relaxation. Four sessions (two of each training
type) were performed. EEG data was recorded with 128 electrodes together with EMG
from both arms and the involved foot, and EOG as described above.

An offline machine learning analysis of the “imagined”-experiments yields again
high classification rates (up to 98.9% with the feature combination algorithm PROB
[25,24]), which predicts the feasibility of this paradigm for online feedback situations
(see also [26]). In fact, our recent online experiments have confirmed this prediction
by showing high bitrates for several subjects. These subjects were untrained and had
to play video games like ’brain pong’, ’basket’ and ’controlled 1-D cursor movement’
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[32]. Depending on the ’game’ scenario the best subjects could achieve information
transfer rates of up to 37 Bits/min. With an accuracy of this magnitude, subjects are also
able to operate text input software as presented in Figure 6. Details on this application
can be found in [33].

4 Conclusion

After a brief review of general linear machine learning techniques, this paper demon-
strated their application in the context of real BCI-experiments. Using these techniques,
it can be seen that the paradigm shift away from subject training to individualization
and adaptation (’let the machines learn’) of the signal processing and classification al-
gorithm to the specific brain ’under study’ holds the key to the success of the BBCI.
Being able to use (B)BCI for untrained subjects dramatically enhances and broadens
the spectrum of practical applications in human-computer interfacing.

Acknowledgments. We thank our co-authors from previous publications for letting us
use the figures and joint results [12,9,11,14,23].
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