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Abstract. Human beings are fascinating creatures. Their behavior and
appearance cannot be compared with any other living organism in the
world. They have two distinct features with compared to any other liv-
ing being; unique physical nature and emotions / feelings. Anybody who
studies on humans or trying to construct human like machines should
consider these two vital facts. When robots are interacting with humans
and other objects, they certainly have a safe distance between them and
the object. But how can this distance be optimized when interacting
with humans; will there be any advantages over achieving this; will it
help to improve the condition of robots; can it be a mere constant dis-
tance; how will the humans react, are some questions arosed. In order to
“humanize” robots, they (robots) should also have certain understating
of such emotions that we, humans have. In this research project, authors
are trying to “teach” one such human understanding, commonly known
as “personal space” to autonomous mobile robots.

1 Introduction

As Simmons et al. [1] describe, recent research in mobile robot navigation has
utilized autonomous mobile robots in service fields. To operate them in an en-
vironment with people, it requires more than just localization and navigation.
The robots should recognize and act according to human social behavior to share
the resources without conflict [2]. Sometimes, even when humans interact with
each other, it leads to resource conflict. At such times humans use social rules
to maintain order [3].

The comfort level of the humans for which the robot is working will be very
important if the robot is to do its job effectively. Extensive research is being per-
formed in the area of robotics to improve the conditions of the robots, advancing
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the abilities to do specific tasks, motion planning, etc. But very little work has
been performed in trying to understand how people would interact with a robot,
how to make them comfortable, factors that make uncomfortable or threatening,
methods or ways for robots to indicate their feelings, etc. to analyze the aesthetic
qualities of the robots behavior patterns [2].

1.1 Distance from the Robot to the Vicinity

As in the very beginning of the mobile robotic systems, there had been some kind
of distance or space between the robots to any other object in the vicinity. This
was just a mere distance for safety for easy maneuvering and for collapse avoid-
ance. As Stentz [4] and many others had mentioned, this was just a constant of
space. This mechanism was quite acceptable for the systems such as transporting,
surveillance and monitoring, etc. In other words, such kind of safe distance was
good for non-human interacting purposes. Can the same be applied for human in-
teraction? Although it will give some results, it will not enhance or optimize the
real requirement in need, i.e. to build up harmonious relationship with humans.

1.2 Nakauchi Model

When Nakauchi and Simmons [2] studied about personal space and applied it to
moving robots, it was some improvement over the “blind” safe distant. In their
mechanism, Nakauchi and Simmons had experimented using human subjects for
“correct distance” or “personal space” in order to have pleasant feeling towards
the two interacting parties.

This experimentally derived average personal space had an approximate shape
of an oval that is larger towards the front. Though those results were approx-
imate, it had been aligned with the values that were reported in the cognitive
science literature [5].

1.3 Walters Experiments

Another set of experiments were conducted by Walters et al. [6] using adults
and children with a robot of mechanistic appearance called PeopleBotR to find
the personal space zones, initial distances between robot and humans, etc. the
context of the encounters and the human’s perception of the robot as a social
being. They had found out that the children showed a dominant response to
prefer the “social zone” comparable to distances people adopt when talking
to other humans. From the adult studies, they found that, a small number of
people preferred the “personal zone” though significant minorities deviate from
this pattern.

2 Variation of Personal Space

Although it is possible to find a personal space for a specific instance of en-
vironment, it is highly volatile depending on the two interaction parties and
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not definitely a constant. As Walters et al. [6] suggested, different robot social
models, perhaps with very different initial personalities, may be more accept-
able to different users (e.g. a discreet servant or even a silent servant, with no
obvious initiative or autonomy). They further stated that it probably cannot
be assumed that people automatically treat robots socially, apart from simple
elements of anthropomorphism as described by Reeves and Nass [7]. A user-
friendly robot should automatically refine and adapt its social model (personal-
ity) over a longer period of time, depending on information about and feedback
from users and the robots own autonomous learning system. For example, ad-
justments of social distances according to a user’s personality trait will be a
promising direction (as proposed in [8]) is a promising direction towards a true
robot companion that needs to be individualized, personalized and adapt itself
to the user [9].

ANFISANFIS

Appearance (A)Appearance (A)

Familiarity (F)Familiarity (F)

Height (A)Height (A)

Personal

Space (PS)

Personal

Space (PS)

Fig. 1. APS ANFIS block diagram

According to Sack [3] and Malmberg [5], it is reported that the actual size
of the personal space at any given instance varies depending on cultural norms
and on the task being performed. For a simplified scenario for experimentally
analysis; appearance (mainly of the robot), previous acquaintance or familiarity
of the either parties, gender, age, height of the bodies, (specially interaction in the
standing position), emission of any sound, emotions on the face, carrying objects,
etc. were considered to be important. From the list of above, first three: height,
appearance and familiarity were considered (as the initial stage for simplicity)
to generate an active personal space (APS) determination system and the block
diagram is shown in Figure 1.

3 ANFIS for Personal Space Determination

Adaptive Neural Fuzzy Inference System or simply ANFIS can be used as a basis
for constructing a set of fuzzy if-then rules with appropriate membership func-
tions to generate the desired input-output combination [10]. It is especially useful
when needed to apply a fuzzy inference to already collected input-output data
pairs for model building, model following, etc. where there are no predetermined
model structures based on characteristics of variables in the system.



Kansei Analysis for Robotic Motions in Ubiquitous Environments 807

3.1 Gathering Data

Considering the procedure as Nakauchi and Simmons [2] or the Walters et al.
[6] to obtain a sense of personal space for robot / human interaction, a similar
experimental condition was constructed. Here a robot (or a model) is kept at
the end of a scaled line in a room and a human is asked to move closer to it.

3.2 Experimental Procedure

As the experiment proceeds, one human subject is instructed to move towards
the robots as if he needs to talk with it. The human subject is asked to be along
the scaled line and look at the robot face and move closer to it until he feels
safe enough to make conversation with it. In the mean time the robotic model
was positioned so as to make its face towards the human subject. During the
whole time of the experiment, the robot did not do anything and the human
subject did all the active tasks of walking, thinking, etc. The robot and the
human subject, one person at a time, were supposed to interact at one specific
duration of time and it ended once the human subject stops in front of the robot.
Then the distance between the two parties was obtained by using a camera or by
direct human observer (who reached the two parties once they got stabilized).
The human subject had no previous experience with the robot and the authors
wanted the human subjects to be curious as well as cautioned about the robot
that they are going to meet. In other wards human subjects had no idea what
kind of robotic system that they are going to face with or any capabilities that
it possesses until they meet the robot.

The robots and the robotic models used in these experiments are ‘KooruKun’
(PA10 robotic manipulator), ‘BoxChyan’ (robotic model), and ‘BasinKun’ (pre-
viously known as ‘CHRCarry Hospital Robot’ re-used with several modifica-
tions). The first one was a stationary robot with 200 cm in height and 20 cm
average diameter, next was a movable robot model with 100 cm height, 50 cm
diameter and around 3 Kg, and the last is also a movable robot with 170 cm
height, generalized circular diameter of 60 cm and weight of about 25 Kg. The
data gathered are grouped for training, checking and testing for the ANFIS and
are described in later.

4 Inputs and Parameters

Out of the three variable parameters considered, height (of the human) and
familiarity were two straight-forward measurements while appearance was taken
as a collective decision.

4.1 Input Variable ‘height (H)’

The height of the human subject is considered in this input variable. The universe
of disclose of the input variable ‘height (H)’ was considered to be 50cm to 200cm,
having three membership functions ‘big (B)’, ‘medium (M)’, and ‘small (S)’. Bell
Shape was considered.
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4.2 Input Variable ‘familiarity (F)’

Previous interactions with the same robot / human pair are considered in this
input variable. Keeping in mind that more interactions means more familiar with
each other, this variable is set. For the first time of interaction having the value
of 1 and 5 times or more having the value of 5 for the input assessment. The
universe of disclose of the input variable ‘familiarity (F)’ was considered as 1
to 5 (without any units), having three membership functions ‘big (B)’, ‘medium
(M)’, and ‘small (S)’. Bell Shape was considered.

4.3 Input Variable ‘appearance (A)’

The robots’ outer appearance to that of a human is considered in this input
variable. Humans are more like to reach one of their own looking rather than
to that of very peculiar shaped objects. Human like robot get the more closer
feeling with respect to the other crude or rather machine looking robot. The
universe of disclose of the input variable ‘appearance (A)’ was considered to be
1 to 5 (without any units), having three membership functions ‘big (B)’, ‘medium
(M)’, and ‘small (S)’. Bell Shape was considered. Here the appearance value for
the ‘KooruKun’ robot was given as 1, for the ‘BoxChyan’ as 2, and ‘BasinKun’
as 5. Although more human like robots were required to get the records, at the
time of the experiment, such robots were not available in the laboratory. (Hence
the universe of disclose was 1 to 5).

4.4 Output Variable ‘personal space (PS)’

Considering the above three inputs that will generate 27 rules in total and each
having unity weight for each rule, the output of the ANFIS is obtained using
the weighted average defuzzification.

5 ANFIS Architecture

The architecture of the APS determination network is illustrated in Figure 2.
Layer (I) to Layer (III) represent the antecedent part of the fuzzy neural network,
whereas Layer (V) and Layer (VI) represent the consequence part [11].

As shown in Figure 2, the domain of discourse of height (H) is described
by fuzzy variable H with p number of linguistic values (p = 3), the domain of
discourse of appearance (A) is described by fuzzy variable A with q number of
linguistic values (q = 3), and the domain of discourse of familiarity (F) is de-
scribed by fuzzy variable F with r number of linguistic values (r = 3). Hence
each input variable is unique in the sense of domain of discourse. It is assumed
that each node of the same layer has a similar function, as described below. Here
we denote the output of the ith node in layer (X) as O(X),i.
Layer (I)
Layer (I) consists of three types of nodes; height (H), appearance (A) and fa-
miliarity (F). The current value of height (H), i.e. the crisp input to the height
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Fig. 2. APS ANFIS architecture

node is Hi, appearance node is Aj and familiarity node is Fk. No computation
is carried out at this layer.
Layer (II)
This layer acts as the fuzzification layer of the fuzzy neural network. At this
layer, the output of a node connected to the current value of variable input ac-
quires the fuzzy membership value of the universe of discourse. Every node i,
where i = 1, · · · , p (or q or r), in this layer is an adaptive node with a node
function

OII, i = μXi (x) (1)

where x is the input to node i, and Xi is the linguistic label (big, medium, small,
etc.) associated with this node function. In other words, OII,i is the membership
function of Xi and it specifies the degree to which the given x satisfied the
quantifier Xi. Hence the output from the 2nd layer will be:

OII, p = μHi (Hi) (2)

OII, q = μAq (Aj) (3)

OII, r = μFr (Fk) (4)

for height, appearance and familiarity respectively.
Layer (III)
In this layer, the nodes labeled as Π compute the T-norm of the antecedent part.
Thus the rule evaluates the conditions of the inputs and they are continued to
the layer (V) for normalization. The output of any node t, where t = 1, · · · , N ,
where N = p ∗ q ∗ r, in this layer is described by the following equation:

OIII, t = ht = μHi (Hi) ∗ μAq (Aj) ∗ μFr (Fk) (5)
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where ht represents the firing strength of the tth rule and there are N such rules
as total.
Layer (IV)
The first node of layer (IV) at fuzzy neural network, which has symbols

∑
and

g, generates the output through the following function:

g(x) =
1
x

(6)

with a linear summed input. Then the output of the first node of layer IV is
given by

OIV, 1 =
1

N∑

t=1

ht

. (7)

Other nodes just carry forward the outputs of previous nodes to the next layer.

Layer (V)
This layer normalizes the fired rule values. Each node labeled as Π in this layer
multiplies the value carried forward by previous node with the output of the first
node at Layer (IV). Then the output of any mth node of this layer can be given
by the following equation:

OV, m =
hm

N∑

t=1

ht

(8)

Layer (VI)
Layer (VI) is the defuzzification layer of the fuzzy neural network. The node
labeled as

∑
in this layer calculates the overall output as the summation of all

incoming signals. Then the personal distance value for certain input variables is
given by:

OV I = Personal Diatance =

N∑

m=1

wmhm

N∑

n=1

hn

(9)

where wm denotes a constant value in the consequence part of the mth rule. The
overall output is the weighted mean of wm with respect to the weight hm.

The connection weights are trained by applying the hybrid algorithm. The
error tolerance was set to zero.

The error is calculated by comparing the output of the expert knowledge with
that of fuzzy neural network for the same input data, x. The adaptation of the
mth weight, wm , at the lth time step is given by the following equation:



Kansei Analysis for Robotic Motions in Ubiquitous Environments 811

wm (l + 1) = wm (l) + γ [yd − ya]
hm

N∑

n=1

hn

(10)

where γ represents a small positive learning rate, and yd and ya represent the de-
sired output and actual output respectively for the personal space value selected
for the training.

6 Training, Checking and Testing Data Sets

From the collected data from the experiments, data were rearranged in to 3
groups for training, checking and testing purposes of the APS ANFIS.

6.1 Train Data Set

Train data set was obtained by grouping the input variable ‘height (H)’. First,
the height was categorized in to 5 groups as:

– 161 cm to 165 cm
– 166 cm to 170 cm
– 171 cm to 175 cm
– 176 cm to 180 cm
– 181 cm to 185 cm

Then under each column, average is taken. The results thus obtained were
used as the train data set.

6.2 Check Data Set

In order to optimize the ANFIS and to make a slighter change in the trained data
set, following equation was considered when obtaining the check data set. I.e.
considering a particular column, average value is subtracted from the maximum
value from the gathered data. Then half of that value is added to the minimum
value of the gathered data in the same column.

ChkDataV alue = [
Max.Data − Ave.Data

2
] + Min.Data (11)

6.3 Test Data Set

Considering the original data from the experiments, very close to the training
and checking data sets, one data entry is selected for each category. By this
selection, another set of data is obtained for testing purpose of the ANFIS.

The trained ANFIS output with train data and check data are shown in
Figures 3 and 4.



812 J.C. Balasuriya et al.

0 10 20 30 40 50 60 70 80
40

60

80

100

120

140

160

Data set index

P
er

so
na

l s
pa

ce
 (

cm
)

Trained ANFIS data

Train data

Fig. 3. Trained FIS with train data
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Fig. 4. Trained FIS with check data

7 Summary

In this research project, a determination system of an active personal space has
been analyzed. This can be considered as the first step for constructing an active
personal space system for any robot in any environment. But for a target as such,
many experiments in vast environmental situations should have to be involved.
It is a must to obtain similar data with the so-called humanoids to make this
experiment complete. Further, more sophisticated supportive equipment such
as high speed processing units for human recognition, memory acquisition and
manipulation, image processing, etc. should be coupled. This system gave en-
couraging results in an offline mode with limited facilities. Authors are planning
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to make the current system more realistic and get the functioning in a real time
mode, and are continuously working on it.
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