
M.J. Smith, G. Salvendy (Eds.): Human Interface, Part II, HCII 2007, LNCS 4558, pp. 457–465, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Efficient Creation of Multi Media eLearning Modules

Hans-Martin Pohl, Patrycja Tulinska, and Jan-Torsten Milde

Fulda University of Applied Science
HCI Research Center

Heinrich-von-Bibra-Platz 3, 36037 Fulda, Germany
hans-martin.pohl@verw.hs-fulda.de, tulinska@aol.com,

jan-torsten.milde@informatik.hs-fulda.de

Abstract. ECampus is a project spanning all departments at the University of
Fulda. It has been started to create a uniform learning environment at the
university. The objective is to research and develop a user-friendly easy-to-use
editor to generate SCORM 2004 conform eLearning modules. This editor is
based on Open Source software and new technologies such as XSL
transformations and the Google web toolkit. Some eLearning modules can be
developed with the system immediately. These modules are now being used
during the lessons with great success.

Keywords: SCORM 2004, XSLT, transformation, creation of content,
eLearning, modules, lesson, user friendly, style sheet, LOM.

1 Introduction

Creating eLearning units in SCORM 2004 (see [8]) format is a complex task.
SCORM, as a technical standard, combines a number of existing eLearning
specifications and formats. A SCORM compliant eLearning unit may consist of
arbitrary files containing the actual content of the unit. In most cases, the unit’s
textual content is stored in (X)HTML files, which can be displayed with a standard
web browser. Multi media files, e.g. images, flash animations, audio and video files,
are stored separately in their proprietary formats.

In addition to the content files, a SCORM 2004 module contains a set of XML files
describing the structure of the unit ([12]). Metadata is added in order to facilitate the
management of the unit within the Learning Management System (LMS). Sequencing
information is also part of these external files, including a difficult to understand
specification of conditional constraints for the sequence progression.

For the average author it is almost impossible to generate such a file structure by
hand. A small number of editors for SCORM files exist (e.g. Reload, http://
www.reload.ac.uk/scormplayer.html). Even with these systems, the user still has to
have a good understanding of the SCORM file structure. This technical barrier is
much too high for most tutors. As a result, standard compliant eLearning content is
not produced.

458 H.-M. Pohl, P. Tulinska, and J.-T. Milde

2 State of the Art

While there are a lot of different Learning Management Systems at present, the use is
limited to but a few in Germany. Hereby ‘moodle’ (see http://www.moodle.org) and
‘Ilias’ (see http://www.ilias.de/ios/) play the greatest role.

In contrast to the LMS there are only a limited number of editors for creating an
eLearning module. HTML editors are widely-used (HyperText Markup Language).
But this doesn’t provide adequate functionality. Furthermore eLearning modules
generated by an editor can mostly only be used within a proprietary LMS.

Additionally a lot of effort is required to learn how to use these editors. Such a
system fails entirely if there is to be consistent development and presentation of tests
and learning success.

The advantage of these systems is the functionality for communication between
users or between tutor and student. In our case this can be neglected because
this functionality is captured by the LMS ‘System2Teach’ (see also http://
www.system2teach.de) which is a proprietary development of the University of
Applied Sciences Fulda. This paper focuses on easy and comfortable development of
eLearning modules based on textual content by using the eCampus framework.

3 The eCampus Project

This research therefore focuses on the development of a user-friendly system for
writing eLearning units, allowing authors to concentrate on the content and the
didactic concept of the unit, instead of worrying about the underlying technology.

It is part of the eCampus project at the University of Applied Sciences Fulda. In
this interdisciplinary project, content is being created for the faculties Nutritional
Sciences, Food and Consumer Sciences, Applied Computer Science, Nursing &
Health Care as well as Food Technology. Within the first year of the project nine
eLearning modules were produced. All modules address prominent introductory

Fig. 1. Scheme of eCampus Framework

 Efficient Creation of Multi Media eLearning Modules 459

courses of the particular program of study. This was only possible by using the
eCampus framework which is described below.

The central target of the project is the implementation of a process that decreases
the complexity of the process of learning module production. The central objectives
of the learning module production are an increase in the interactivity of the course, as
well as an increase in the quality and quantity of self learning.

A secondary target of the project is the development of an LMS that is SCORM
2004 compliant. Here we would like to integrate the ADL reference implementation
into our LMS System2Teach.

4 Overview eCampus Framework

The learning module production takes place in two phases (see Figure 1):

 the structural annotation of the textual content
 the automatic generation of the eLearning unit

In phase one, most of the (textual) content is created in a standard word processor
(Open Office, [10]). Here the text is structurally annotated using a predefined
formatting template. The text is stored and automatically converted into a simple
XML file, which provides the basis for subsequent transformation steps. This
approach works very well for static content and is used in a number of systems (e.g.
eLAIX (see http://www.boldt-media.de/)).

In the second phase, the file prepared in phase one is transformed into a SCORM
2004 compliant eLearning module automatically. For this, the document is unpacked
and analyzed. To get by on cascaded XSL transformations (EXtensible Stylesheet

Fig. 2. Transformation Tree of eCampus Framework

460 H.-M. Pohl, P. Tulinska, and J.-T. Milde

Language) each element is identified and transformed with specific instructions (see
Figure 2). Finally all contents are packed into an eLearning module and multiplexed
with the necessary auxiliary files.

The available metadata is separated and attached to the module in a LOM
(Learning Objects Metadata) compliant form.

The complete process is controlled by the Apache ant build tool and uses saxon8
(see http://saxon.sourceforge.net/) as a transformation engine ([4]).

5 Structure and Hierarchy

ECampus modules consist of sessions that are divided into sections. This hierarchy
roughly corresponds to a course, that is organized as a sequence of lectures, each of
them addressing a set of topics.

At a low level the section is implemented. The section is the least self contained
element within an eLearning module. Sections can be arbitrarily nested. Therefore
theoretically more than three levels are possible. The development of new sessions is
possible by combining different existing sections. New modules arise by combining
different sessions. Thus the hierarchical structure contributes to re-use of learning
objects.

6 Installation of the eCampus Framework

By running the installation file the framework is installed on the machine. Hereby the
necessary programs and styles are copied onto a local disk drive. Furthermore the java
development kit is installed if not yet available. Additionally the environment
variables are adapted and the path variable enhanced. After installation all parts of the
eCampus framework needed are in a user definable folder. Similarly the user guide
and some examples can also be found there.

7 Process of Content Compilation

After starting the writer application from the open source office suite ‚Open Office’,
executing macros must be allowed. The new macros are especially needed for
collecting the metadata.

The process of content compilation begins with the creation of a new document by
using the eCampus template. All content and metadata can now be collected in this
new document.

The menu entry for creating the metadata for the whole module is first chosen.
Then a form mask opens in which the necessary metadata is requested. If a choice is
to be made possible a list box is shown with possible entries. Fixed data is either
superimposed or compiled in the document in the background. This top hierarchy
level entry is allowed only once per module.

After this the first session can be generated by choosing the appropriate menu
entry. After filling in the metadata form it can create the sections. Once the metadata

 Efficient Creation of Multi Media eLearning Modules 461

is acquired the author is able to start writing the content. The author can add further
sections to structure the lesson. For more substantial contexts further sessions are also
possible. The pure content can be written into the document directly or can be
integrated by copy and paste from existing documents.

All common media types can be used for content. Beside text these can be images,
pictures, tables, lists, definitions, links, glossary entries or arbitrary references to
external media files.

The most important task is the subsequent annotation task. Hereby the content is
annotated using predefined style templates. Depending on the specific element the
transformation can identify text, pictures, headlines, etc. There are therefore more
than 20 styles available. These styles are stored and linked to the content, so the
transformation recognizes each specific element and can transform it.

By saving the document the process of content collection is completed. The
document is now ready for transformation.

8 Process of Transformation

The complete process is controlled by the Apache ant build tool and uses saxon8 (see
http://saxon.sourceforge.net/) as a transformation engine ([4]) supported by a
graphical user interface (GUI).

After starting transformation the written Open Office document is unpacked. After
that the file ‘content.xml’ which contains the content is accessible and can now be
transformed (see Figure 3).

The first step of the transformation is to transform this content.xml into a new file
called ‘puretext.xml’. This new file is in an intermediate format. Thereby the
annotated elements are assigned an explicit format template. Furthermore all elements
without annotation are deleted. The result of this transformation is a universal
intermediate format without direct correlation to the producer application.

The transformation is controlled by the XSLT stylesheets‚ content2pure_1.xsl’
and‚ content2pure.xsl’.

The advantage of this intermediate format is that the resulting transformations are
totally independent of the content collecting process or application. As a result a
content collecting process using other applications is also possible in the future, e.g.
Microsoft Word. Only the transformation into the intermediate format has to be
adapted.

This file in intermediate format can be transformed into the output format (here
HTML) by applying the XSLT stylesheets ‚generateHTML.xsl’ and ‚html.xsl’

For this purpose each element from ‚puretext.xml’ is analyzed and the
corresponding transformation instruction is searched. If the correct instruction is
found, it is applied to the specific element. The transformation result is stored into the
HTML file.

To print out the content easily a further version is generated. In contrast to the first
form all learning objects, sessions and sections, are stored within one page. This page
can easily be printed by using the print functionality of the browser.

462 H.-M. Pohl, P. Tulinska, and J.-T. Milde

Fig. 3. Abstract of the unpacked *.odt

An overall glossary is generated by applying the stylesheet‚ glossary.xsl’. Hereby
all elements which are annotated as glossary entries are transformed into a separate
glossary file.

To use the learning module without an LMS there must be extra navigation. In this
case all headlines from sections and sessions are transformed into the file ‘menu.xml’
supported by ‘menu.xsl’

The metadata which is stored within the ‚content.xml’ is read and transformed
into a further intermediate format‚ intermediateMD.xml’. From this the ‚
generateLOMMetadta.xsl’ generates the ‚modulID.xml’ and parenttitle.xml’ which
conforms to the LOM standard. Subsequently the complete content and all metadata
are transformed into XML files.

9 Process of Test Transformation

Creating the static content of the eLearning module has become relatively simple. A
much harder problem is the XML-based generation of dynamic tests. Here online
forms have to be created, JavaScript code is needed for data pre-processing and data
submission to the learning management system. The tests should work offline and
online and the student should not be able to manipulate the results or to cheat by
looking at the source code of the online test. Finally, the tests should run on as many
platforms as possible.

In order to meet these requirements, we chose to use the GWT (Google Web
Toolkit, see [5]), a new free software technology provided by Google for creating
AJAX-based online applications. It centres around a powerful Java to JavaScript cross
compiler. Using this approach the programmer, instead of coding in JavaScript
directly, implements the online application in Java, compiles it and embeds the
dynamic components into XHTML host pages. The GWT automatically generates

 Efficient Creation of Multi Media eLearning Modules 463

JavaScript code for the four most prominent web browsers. The generated code is
obfuscated by the compiler, thus hiding the internal structure of the online
application.

With this technology we have implemented a widget library framework for online
tests. The widgets provided are flexible, configurable and easy to use UI components
for multiple choice tests, fill in forms and free form questionnaires. Special forms
have been designed for tests, where a set of given answers has to be ordered by the
student dynamically. Multimedia elements, e.g. images or video sequences, may be
integrated into all forms. Additional widgets for online help, user authentication and
user guidance have been developed and can be combined with the test forms. The
widgets are placed in XHTML host pages, where anchor elements define their
positions (an example is shown in figure 3). Cascading style sheets are used to specify
the visual appearance and the layout of the widgets. As a result the user interface
design of the online tests is not fixed and can be adapted to user specific
requirements.

In order to create SCORM 2004 compliant online tests, we need to be able to
submit the results to the server. The ADL reference implementation of SCORM 2004
provides a simple JavaScript API for data persistence. When loaded, the eLearning
unit registers itself with the LMS and initializes the API. In our framework, we used
the JavaScript native interface (JSNI) of the GWT to connect to this API. This
interface makes it possible to call arbitrary external JavaScript code from the
generated application. The form data can be serialized into JSON (see [1]) and XML
(see [11]). We also provide functions to encrypt and decrypt the form data.

10 A Preparatory Module in Microbiology

As an example we would like to give a short overview of one of the modules created
using the eCampus approach. Figure 4 shows the module as it is displayed in the ADL
reference implementation of SCORM 2004.

For the faculty of Nutritional Sciences a preparatory module for a biochemical
practical course was developed. Up to now, a two week course had to be taken by the
students introducing them to the biochemical laboratory of the faculty. The course has
now been reduced to a single week. Beforehand the students receive a copy of the
new module. It explains the laboratory setup and the basic working methods in
microbiology. The module’s content is based on an existing written handout. The
handout was annotated with Open Office. Images were taken and integrated into the
text. In addition multi media material was produced. A number of video sequences
show the central steps of the working methods (e.g. how to produce a sterile culture
medium). Students are requested to conduct a number of statistical analyses. Online
simulations have been developed, making it possible, to gain some experience in
virtual experiments. In order to control the students learning progress, a set of 100
questions have been annotated and integrated into the module. These questions are
automatically transformed into online quizzes.

464 H.-M. Pohl, P. Tulinska, and J.-T. Milde

Fig. 4. Example of an eLearning Module within the ADL Reference Server Implementation

11 Advantages and Disadvantages of the eCampus Framework

The advantage of the eCampus framework is the easy production of SCORM 2004
conform eLearning modules.

Most of the learning material is drafted and written with the support of a word
processor. With the eCampus framework there is no need of change the working
environment. Even for beginners producing eLearning modules, using the templates
to annotate the content is simple. All users with experience with the framework
confirm this.

A further advantage is the independent intermediated format. Alternative
applications for collecting content can be used in the future.

In contrast to most other editors the most important advantage is the conformity to
the standard SCORM 2004. Through consequent implementation the eLearning
modules can be used within arbitrary LMS which can administrate SCORM 2004
conform eLearning modules. Therefore a high re-use is possible. Also the
reorganisation or editing with any standard conform editor is feasible. Especially
adding constraints or information about sequencing is possible.

As well as small problems with the robustness of the framework which is due to
the early prototype state of the software, the fundamental problem is the lacking route
back from the module to the editor. The generated modules can not be transform back
to the original document. Necessary editing of the content requires transformation
once again.

 Efficient Creation of Multi Media eLearning Modules 465

Small corrections within a section are not problematic. Changes of the structure of
the module are not possible because the storage of the state and results of tests can not
be kept consistent.

With the eCampus project a new kind of teaching can be offered at Fulda
University. ELearning modules can be created efficiently even by non-experts.

Already existing resources can be integrated into the curriculum and will be used
in online, offline and blended learning situations. The use of SCORM 2004 compliant
eLearning modules allows more complex student to LMS interactions, thus
facilitating the design of electronically supported courses of a higher didactic
complexity ([9], [7]).

References

1. Crockford, D.: RFC 4627. The application/json Media Type for JavaScript Object Notation
(JSON). Online, accessed (17-11-2006) http: //www.json.org/

2. Eisenberg, J.D.: OASIS OpenDocument Essentials. LuLu.com (2004)
3. Hodgins, W., Duval, E., et al.: Draft Standard for Learning Object Metadata. Report,

Learning Technology Standards Committee. IEEE, Washington (2002)
4. Holzner, S.: Ant - The Definitive Guide. O’Reilly Media (2005)
5. Google Inc. GWT: the Google Web Toolkit. Online, accessed (17-11-2006) http://code.

google.com/webtoolkit/
6. Kay, M.: XSLT 2.0 programmer’s reference, Indianapolis, IN. [u.a.] Wiley, Chichester

(2004)
7. Koper, R.: Modeling units of study from a pedagogical perspective (2001) http://

eml.ou.nl/introduction/articles.html
8. Advanced Distributed Learning. SCORM 2004. Online, accessed (17-11-2006)

http://www.adlnet.gov/scorm/index.cfm
9. Schulmeister, R.: Grundlagen hypermedialer Lernsysteme: Theorie - Didaktik - Design.

München [u.a.]: Oldenbourg Verlag (2002)
10. OpenOffice.org team. OpenOffice. Online, accessed (17-11-2006) http://www.openoffice.

org/
11. W3C. XML. Online, accessed (17-11-2006) http://www.w3.org/MarkUp/
12. Wilde, E., Lowe, D.: XPath, XLink,XPointer, and XML. Addison-Wesley Professional,

London (2002)

	Introduction
	State of the Art
	The eCampus Project
	Overview eCampus Framework
	Structure and Hierarchy
	Installation of the eCampus Framework
	Process of Content Compilation
	Process of Transformation
	Process of Test Transformation
	A Preparatory Module in Microbiology
	Advantages and Disadvantages of the eCampus Framework
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

