
M.J. Smith, G. Salvendy (Eds.): Human Interface, Part II, HCII 2007, LNCS 4558, pp. 490–499, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Game Player Modeling Using D-FSMs

Tae Bok Yoon, Dong Moon Kim, Kyo Hyeon Park, Jee Hyong Lee*,
and Kwan-Ho You

School of Information & Communication Engineering
Sungkyunkwan University, Suwon, Korea

{tbyoon, skyscrape, megagame}@skku.edu,
{jhlee, khyou}@ece.skku.ac.kr

Abstract. Recently, various ways are being explored for enhancing the fun of
computer games and lengthening the life cycle of them. Some games, add real-
istic graphic effect and excellent acoustic effect, and make the tendencies of
game players reflected. This paper suggests the method to collect and analyze
the action patterns of game players. The game players’ patterns are modeled us-
ing FSM (Finite State Machine). The result obtained by analyzing the data on
game players is used for creating NPCs (Non-Player Characters) which show
new action patterns by altering the FSM defined previously. This characters are
adaptable NPCs which is learnable the action patterns of game players. The
proposal method can be applied to create characters which play the role of part-
ners with game players or the role of enemies against game players.

1 Introduction

User Modeling is the user cognitive process in which the data on users occurred under
a specific system environment are collected and analyzed to achieve the objective of
the system more effectively [1]. User modeling technique is being exploited diversely
to analyze the profile information of users in the many fields such as games, educa-
tions, ubiquitous technologies and web mining [2].

Particularly in the game environment, the services based on analyzing gaming data
of players, collected in the process of game activity, and utilizing the user modeling
technique is being researched actively. In the game 'Black & White by Peter Moly-
neux', a partner NPC named Creature, has a different appearance in accordance with
the game operation of the game player, and in the game Sims, an NPC also has a
different appearance according to the player’s game operation[3]. However, until
now, in the field of games, user modeling techniques which have been used in console
games and package games, rely on specific features of individual games.

This paper suggests D-FSM (Dynamic Finite State Machine) method which can
create new NPCs behavior patterns to which the game players` tendencies are re-
flected. This method alters the FSMs for NPCs which were set with static action pat-
terns in the initial phase of games, by adding information on the initial FSMs based
on the data on game players which are collected while of gaming. In this paper, for

* Corresponding author.

 Game Player Modeling Using D-FSMs 491

analysis of the collected data, decision tree method which is a kind of machine learn-
ing methods is used; the initial FSMs are altered with the analysis result. Along with
this, script languages which set action patterns are defined so that D-FSM can be used
flexibly for games in various categories D-FSM suggested in this paper can be used
for following cases:

First, the suggested D-FSM can be used as a tool for designing NPCs in the initial
phase of game production. Ordinarily game developers spend a lot of time and ef-
forts to create NPCs in the initial phase of game production, in creating NPCs` behav-
ior patterns. In designing computer games, if real game players` information is used,
it will be much easier to create NPCs and thus the developing time and effort will be
reduced. Moreover, it is possible to create more realistic NPCs of which behaviors are
similar to human players.

Second, the suggested D-FSM can be used for creating partner NPCs in games.
There are cases where NPCs share the same objectives with game players and cooper-
ate with them. Since the D-FSM can build NPCs from human players’ play record,
NPCs which has abilities similar to game players and play games can easily be
created.

Third, the suggested D-FSM can be used for creating hostile NPCs in games.
Since the action patterns of monster NPCs in most games are also static, human play-
ers easily penetrate the patterns. This fact can be a factor which dwindles the life
cycle of the games. The model dynamically generated from human players’ play
record can be used for creating hostile NPCs. Then, the NPCs will have a similar the
abilities and action patterns adaptive to game players.

In Section 2, the related research is introduced and in Section 3, the player model-
ing using D-FSM and its application to NPCs is described. The experiment result is
examined in Section 4. Finally, Section 5 concludes this paper and suggests future
works.

2 NPC(Non-player Characters) and FSM(Finite State Machine)

2.1 Decision Tree in Games

Decision tree method, which is a technique widely used for data classification in data
mining illustrates the patterns in the data in a tree structure by analyzing the given
data. The reason why it is frequently used is that its’ output is in a simple formal and
can be easily understood by users. It has been applied to 'Black & White' and has a
big favor from users. In the game, the player can give positive or negative feedbacks
by caressing or beating the creature. A decision tree is generated from the feedbacks.
Sometimes a creature checks if given objects will release hunger using the decision
tree and sets the degree of aggressiveness. For example, if the player treats a creature
with violence rather than praise more often, the creature gets violent more and
more.2.1 FSMs for NPCs

492 T.B. Yoon et al.

2.2 FSM (Finite State Machine)

The state machine or finite state machine, which is one of widely used software de-
signing patterns, is a machine which has finite numbered states [4]. An FSM is de-
fined with the finite collection of states and transitions, between states. In applica-
tions, each state of an FSM may be attached with a specific action. NPCs conduct the
actions attached to the present event state as their tasks. When a certain occurs, a state
transits into another state will follow. FSMs are most widely used technique in games
as it has a simple structure. FSMs are sometimes used mixed with other artificial
intelligence techniques. Figure 1 illustrates an FSM.

IdleIdle

ChargeCharge

FightFight

EscapeEscape
SearchSearch

getget

ItemItem

Fig. 1. 6 states and transition relation

Here it has 6 states and each state can be transited to the other states. For example,
if the NPC in a state of “Idle” is attacked by the player, its’ state will change into a
state of “Fight” and if the NPC is injured, its’ state will change into a state of “Es-
cape”.

2.3 Elementary NPCs and Improved NPCs

NPCs are agents that respond to game players using various elements. They can be
merchants in stores, guides showing ways, teammates with game players, monsters,
environmental elements such as the climate and geographic varieties and the tool
items which game players use. The behavior patterns of these NPCs are directly set in
source code or script, so never change during game playing. NPCs created by an im-
proved method, usually show various responses according to the users` tendencies.

Table 1 and 2 illustrate the functions of NPCs in usual games and the examples of
games to which elementary and improved NPCs are applied.

For elementary NPCs, the action patterns are defined in source codes directly in
most cases. This causes the disadvantage that improving NPCs is difficult and that
NPCs have static action patterns. Adaptable NPCs adjust their ability and play with

 Game Player Modeling Using D-FSMs 493

Table 1. Elementary NPCs

Table 2. Improved NPCs

Ability-Adaptable NPCs Behavior-Adaptable NPCs

Description

 NPCs` abilities vary accord
ing to game players' abilitie
s. (hitting accuracy rate, sp
eed, energy and the like)
 NPCs control the level of g
ame difficulty dynamically.

 NPCs` action patterns vary accor
ding to the tendencies and abilitie
s of game players.
 NPCs are dynamically developed
in games.
 NPCs contribute to enhancing fun
 by raising the realistic feeling of
games.

Applied Ex
amples

FIFA, Call of Duty, Meda
l of Honor and the like

Black & White, The Sims and t
he like

the new ability in the next games. Ability-adaptable NPCs change only numeric pa-
rameters, such as the level of difficult, hit ratio, power, etc. and do not change the
behavior patterns. On the contrary, behavior-adaptable NPCs show dynamic response
to the game players by analyzing the game player’s gaming data. Behavior-adaptable
NPCs change behavior patterns or even take the creative and more developed actions
which were not designed in the initial phase of game production. The D-FSM sug-
gested in this paper can be utilized as a fundamental technique for providing behav-
ior- adaptable NPCs through adjusting the initially defined FSM of NPCs using the
gaming data of game players.

3 Dynamic-FSM Method Using Player’s Gaming Data

This paper proposes the D-FSM which is the method to alter transition rules of FSMs
defined in the initial phase using the gaming data of players collected in games. To
create NPCs which can adapt to game players, the gaming data of players should be
collected first. The modeling on game players are conducted by analyzing the col-
lected data. The model of game players will be created in a form of FSMs. The FSMs
will be applied to NPCs to change the behavior patterns of NPCs. The diagram in
Figure 2 illustrates the D-FSM process.

Description Game players` abilities are not reflected to by NPCs.
 NPCs show the same response to the same situation.
 NPCs` game patterns can be grasped.
 NPCs show the same static action patterns according to
situations.

Applied Examples Space Invaders, Pac-Man , Donkey Kong and the like

494 T.B. Yoon et al.

FSMs for

NPCs define

Game Start

Player Data

Collection

Player Models

in FSMs

FSMs for NPCs

Update

NPCs Behavior

Defined in Script

Game Play

Player Log-file on

Game Environment

Data analysis using

Decision Tree

Replacing FSMs for NPCs

with the Player model

Updated

FSM

Game World

Game Design

Fig. 2. Work-flow for D-FSM

3.1 FSMs for NPCs

Figure 1 shows the state transition of NPCs which is generally used in FPS (First
Person Shooter) or MMORPG (Massively Multi-player Online Role Playing Game).

Table 3. State transition rules

Sfrom PH NH HD D SD PD Sto
Search H H 0 O 1 1 Search
Search M H 0 I -1 0 Charge
Search M M 1 I 1 -1 Idle
Search H L 1 I 0 0 Escape
Charge H H 1 I 0 -1 Charge
Charge H M 1 I 1 -1 Idle
Charge L L 1 I 1 -1 Fight
Charge L M 0 O 1 0 Search

getItem M M 0 O 0 0 Idle
getItem M H 0 O 1 1 Search

NPCs take the actions defined in its’ current state. The transitions between states
are usually defined with situation variables.

The representative situation variables are the body strength of PC (Player Charac-
ter) and NPC, and the difference of body strength, attack power, moving speed and
distance between PC and NPC. As additional variables, the items which characters
own can be considered. Various other abilities of characters and the existence of com-
rade characters in the vicinity also may be counted.

After the states for NPCs are defined and the variables which are used for
state transitions are identified, the state transition rules as shown in Table 4 should be
generated.

 Game Player Modeling Using D-FSMs 495

Table 4. Variables used for defining transitions and their description

Variable Attribute
values

Description on
Attribute values

PC Health
 Point (PH)

Low(L), Mid(M),
High(H)

0~40=L, 41~70=M,
71~100=H

NPC Health
 Point (NH)

Low(L), Mid(M),
High(H)

0~40=L, 41~70=M,
71~100=H

Health Difference
of PC and NPC (HD)

0 ,1 PH < NH = 0,
PH > NH = 1,

Distance
of PS and NPC (D)

Near(N), Inside(I),
Outside(O)

N : attack possible distance.
I : inside of view sight.
O : outside of view sight.

Speed Difference
of PC and NPC (SD)

-1,0,1 If PC is faster than NPC, 1.
If NPC is faster than NPC, -1.
If the speed is the same, 0.

Power Difference
of PC and NPC (PD)

-1,0,1 If PC is stronger than NPC, 1.
If NPC is stronger than NPC, -1.
If the power is the same, 0.

The transitions in Table 3 are defined using the values of 6 variables shown in Ta-
ble 4. For example if the NPC is currently in the state of “Search”, the health of PC
and NPC are 80 and 39 respective, PC is in the view sight and the moving speed and
the attack power of PC and NPC are the same, the next state of NPC will be “Escape”,
which is what the fourth rule says. Defining state transitions by scripts is one of most
frequently used techniques because it is easy in the maintenance and expansion of
NPCs.

3.2 Modeling Players with FSMs

This section will describe how to model players' palying patterns with FSMs which
will be applied to NPCs. Players' playing data can be modeled in various ways. The
reason for modeling with FSMs is to make the model easily adapted for updating
NPCs' FSMs. If players' models are applied to NPCs, an NPC will play intelligently
or in a way similar to how players' play in the game.

In order to model players' playing patterns with FSM, it is assumed that players
also have a hidden FSM and choose actions based on the FSM. However, it is not
easy to infer what states the player has it is also assume that the player's FSM has the
same states as NPCs'. The current state of the player is inferred from observations and
some heuristics.

NPCs in FPS games usually have six states shown as in Figure 1. The description
of states and heuristics for inferring the player's current state are as follows:

Idle – In this state is that the game player takes no action. He may wait for the
comrade or the enemy, or takes a rest on a specific location. If situation variables do
not change for a certain time interval (5~10 sec.), the player is regarded as in “Idle”
state.

Charge - This is the state to approach toward the enemies. If the player is in en-
emy’s view and approaching to the enemy, the player is regarded as in “Charge” state.

496 T.B. Yoon et al.

Fight - This is the state to combat with enemies which are in attackable distance. If
an enemy is within attackable distance and attack keys are inputted, the player is re-
garded as in “Fight” state.

Escape - This is the state to retreat from enemies when game players feel disad-
vantageous in combat or when game players were in low body strength condition. If
the player is in enemy’s view and the distance between them is increasing, the player
is regarded as in “Escape” state.

getItem - This is the state where game players search tool items near from him to
recover the body strength. If the player gets near to items and the player’s current
state is “Escape”. The player is regarded as in “getItem” state.

Search - This is the state to move around to search enemies. So, if the player is out
of enemy’s sight and moves around, the player is regarded as in “Search” state.

When a game player’s action and the values of situation variables are consistent
with the heuristic condition of a state, the game player is regarded as in that state. For
example, if the enemy is out of the player's sight and the player is moving around, it is
concluded that the player is currently "Search" state. If the enemy gets into the
player's sight and the player gets closer to the enemy, the player is regarded charging
the enemy, i.e., in "Charge" state.

The next step is acquiring the player's transition rules between states. For acquiring
transition rules, the values of situation variables are recorded whenever the player's
state changes. That is, the values is collected in a form of (Sfrom, PH, NH, HD, D, DS,
PD, Sto). The collected data is pre-processed to remove duplications and decision tree
method is applied to find out transition rules in the data.

The result of decision tree learning is expressed in a tree structure which can be de-
scribed in a table format like tables. The rules newly created will replace the NPC’s
transition rules. That is, it is used to make NPCs intelligent or human-like. The newly
created NPC rules are not static rules. These rules can be created from the game
player’s gaming data whenever new rules need.

4 Experiments

The experiment was conducted using the Half-Life by Valve Software[7] game and
Jeffrey’s HPB Bot[8], where a PC and NPC combat were used under the method
suggested in this paper. This game initially sets the states and transition rules of the
NPC by reading the scripts and collects the player’s gaming data while the game is
going on. The player can move forward, backward, left and right, and attacks the
NPC.

The PC and the NPC initially have the same moving speed and power. The power
given to the PC and the NPC in the initial phase is 100. If the values of situation vari-
ables do not change for more than 5 seconds, it is defined that the player is in “Idle”.

During game play the values of the body strength of the PC and the NPC, the dif-
ference of the body strengths, the distance between the PC and the NPC, and the dif-
ference of the moving speeds and the attack powers are collected, whenever the state
of the game player changes.

 Game Player Modeling Using D-FSMs 497

Fig. 3. DeathMatch Class Game in MOD of Half-life and Game Screenshot

The game recognizes the state of the PC on the basis of the heuristics previously
described. After one round of the game, the NPC learns the collected data using deci-
sion tree method and updates its’ transition rules. Figure 4 illustrates the initial transi-
tion rules in Table 3. Those are represented in a tree format. Figure 5 represents the
newly learned transition rules from the player’s gaming data. It is noted that the newly
learned transition rules are quite different from the initial one. It has more complex
rules for “Charge” than the original but simpler ones for “Search”. The NPC takes
actions more intelligently than with the initial ones.

D [O]

HD [0] SD [1]

PH [M]

NH [H] Search Get Item

PH [H]

PD [-1]

PH [H]

PH [L] PH [H]

NH [H]
Idle

D [I]

Search Idle

Fight Idle D [I] Escape

Get Item Escape

Charge Escape Charge PH [M]

Charge Fight

yes no

yes no

yes

no

yes no yes no

yes no

yes no

yes no

yes no yes no

yes no yes no

yes no

yes no

Variable [Attribute value]
* Learning method : Decision Tree (ID3).
* Training data : Initial transition rule in Table 4.

* Meaning of Node :

Fig. 4. Initial transition rules in a tree format

In experiment, 15 players play the game with the initial rules for NPC’s, and then
play again the game with the new rules learned from his previous game play data. We
measure how long each player play the game and many times each player die during
play. We also ask a few questions to the players: the degree of difficulty and the de-
gree of enjoyment. Table 5 shows the result. The players answer that the game with
learned rules are more interesting and difficult to win. The average playing time is
increased from 217.3 to 251.0.

498 T.B. Yoon et al.

D [O]
yes no

yes no yes no

PH [H] D [N]

Search PH [L] PH [L]

Fight

yes

Search Idle

yes no no

SD [1]

yes

NH [M] NH [H]

no

Idle

yes no

PH [H]

Escape

Charge

yes

PH [H]

no

Get Item Escape

yes no

PH [H]Charge

yes no

yes

Escape PD [0]

yes

Escape

no

Charge

no

Variable [Attribute value]
* Learning method : Decision Tree (ID3).
* Training data : Player`s gaming data .

* Meaning of Node :

Fig. 5. A newly learned transition rules from the player’s data

Table 5. Experiment result using D-FSM

* Mission of this game is killing NPCs 10 times.
* Game progress time: It is cost time to kill NPCs 10 times.
* Death number of times: It is number of times that player dies during mission achievement.
* Degree of difficulty: If it is near to 0, easy. If it is near to 100, difficulty.
* Degree of enjoyment: If it is near to 0, boring. If it is near to 100, interesting.

5 Concluding Remarks

NPCs provided in games are usually have static action patterns. These static actions
of NPCs are one of factors which degrades the fun of games and makes the life-cycle
of games short. This study is on an approach which can provide creative and diversi-
fied NPCs by updating FSMs through collecting and analyzing the gaming data of
players. This method can be used in other the process of game development, such as

 Game Player Modeling Using D-FSMs 499

designing initial FSMs for NPCs, creating partner NPCs of players which cooperate
with players and creating hostile NPCs in games. To generate a more compact rule set
pruning method which reduces the number of rules will be applied as a future work.

References

[1] Brajnik, G., Guida, G., Tasso, C.: User modeling in expert man-machine interfaces: a case
study in intelligent information retrieval. IEEE Trans. SMC 20(1), 166–185 (1990)

[2] Cha, H.J., Kim, Y.S., Lee, J.H., Yoon, T.B.: An Adaptive Learning System with Learning
Style Diagnosis based on Interface Behaviors. In: International Conference on E-learning
and Games, Edutainment (2006)

[3] Rabin, S.: AI Game Programming Wisdom 2, Charles River Media (2002)
[4] Loura, M.D.: Game Programming Gems, Charles River Media (2000)
[5] Laird, J.E.: Using a Computer Game to Develop Advanced AI. Computer IEEE Jour-

nal 34(7), 70–75 (2001)
[6] Spronck, P., Kuyper, I.S., Postma, E.: Online Adaptation of Game Opponent AI in Simula-

tion and in Practice. In: Proceedings of the 4th international Conference on Intelligent
Games and Simulation, GAME-ON, pp. 93–100 (2003)

[7] Half-Life Game site: http://www.half-life.com
[8] PHB Bot site for Half-Life game: http://hpb-bot.bots-united.com

	Introduction
	NPC(Non-player Characters) and FSM(Finite State Machine)
	Decision Tree in Games
	FSM (Finite State Machine)
	Elementary NPCs and Improved NPCs

	Dynamic-FSM Method Using Player’s Gaming Data
	FSMs for NPCs
	Modeling Players with FSMs

	Experiments
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

