
M.J. Smith, G. Salvendy (Eds.): Human Interface, Part II, HCII 2007, LNCS 4558, pp. 54–63, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Natural Language Based Heavy Personal Assistant
Architecture for Information Retrieval and Presentation

Algirdas Laukaitis, Olegas Vasilecas, and Vilnius Gediminas

Technical University, Sauletekio al. 11,
LT-10223 Vilnius-40, Lithuania

{algirdas.laukaitis,olegas}@fm.vtu.lt

Abstract. In this paper we present the progress of the natural language usage as
the paradigm for information extraction and presentation in the enterprise
environment. Distributed heavy personal assistant architecture and its
implementation is presented as the solution to overcome difficulties related of
the natural language use in the information systems development. A new
methodology based on connectionist and symbol processing techniques for a
knowledge worker to process his documents and utterance is suggested. Then
we suggest the results from those processes to reuse for new documents
classification and generation of small atomic applications. Finally the
experiment is presented. We compare Microsoft EQ, IBM WebSphere Voice
Server NLU toolbox and our solution for concepts identification accuracy.

Keywords: Information extraction, Natural language understanding, Ontology,
Personal assistant, Enterprise Semantic web.

1 Introduction

Significant part of the artificial intelligent (AI) research has been dedicated for the
natural language formalization. Nevertheless natural language processing (NLP) and
understanding (NLU) paradigms are still struggling to find their way into information
systems (IS) development beyond documents indexing techniques. In that sense, the
history of natural language database interfaces (NLDBI) can be a good example of
NLP use as a programming paradigm in one of the "simplest" case, i.e., when the
program is one structured query language (SQL) sentence (see [1] for the field
review).

There are several projects that have been lunched recently in the effort to use NL as
the programming paradigm but no one have reached the level where the others not
involved in the project can verify achieved results. Actually, except Microsoft English
Query [10], we haven’t found any other products for the investigation. In this paper
we attribute several factors that prevented natural language programming to mature
up to the industrial implementation level:

1. Over-simplicity from the user's point of view and over-complexity from the
implementation point of view. The users of IS are not very much interested with the
systems that supports only one sentence utterance and one sentence program (i.e. SQL

 Natural Language Based Heavy Personal Assistant Architecture 55

sentence). In our system we suggest to build atomic applications with the natural
language and then stack those atomic applications to implement business solution.

2. Distributiveness. When we are dealing with the natural language formalization
we are faced with the overwhelming state space search problem. An idea suggested in
this paper is that users are building their local knowledge bases via communication
with the personal assistant. Then, natural language utterance is projected on the set of
those local knowledge bases.

3. Integration of NPL into the whole life cycle of IS development. About 15 years
ago, Kevin Ryan claimed that NLP is not mature enough to be used in software
engineering [13]. Nevertheless, Internet has boosted NLP research and nowadays the
natural language formalization it is not seen as an unachievable goal. In this paper we
extend the methodology suggested by Laukaitis et. al. [8] to combine connectionist
and symbolic processing techniques for NLP integration into requirements
engineering, conceptual modeling and final reuse in the IS interfaces.

4. Open source and free of charge vs. close and commercial solutions. Presented
solution would be impossible without the support from the open source community.
In early stages of the project we tried the solutions from Microsoft and IBM (both
solutions are compared at the final section of the paper) but they have been discarded
due the problems of integrity with the other modules of the system. Those are the
main modules we reused form academic community: GATE - the framework of the
natural language processing [2], WordNet dictionary [11], self-organizing map SOM
toolbox [15] , Galicia - formal concept analysis software [9], JMining - framework of
the web applications [9]. Economical soundness of the architecture suggested in this
paper can be proved only by use of free software as we suggest to replicate typical
enterprise server architecture to each personal computer of the knowledge worker.

By keeping in mind all those factors we state the following problem: How to create
an environment for developing business applications by use natural language.

The solutions of stated problem organize the rest of the paper as follows. First, we
present the general framework of the model generation system from the IS
documentation and engineers utterance. Then we describe personal assistant for the
creation of local knowledge basis and advocate for NL use in distributed enterprise
computing. Next we introduce JMining framework and language to which natural
language statements are transformed. NLP module is described in details in section 4.
Finally an experiment is presented where we compare several solutions.

2 General Framework of the Solution

Conceptual models offer an abstracted view on certain characteristics of the domain
under consideration. They are used for different purposes, such as a communication
instrument between users and developers, for managing and understanding the
complexity within the application domain, etc. The presence of tools and
methodology that supports coordination of textual documents and local knowledge
bases is crucial for the successful IS development. Even more, we can say that the
essence of modeling is the ability of modeler to classify the textual data and then to
present it by some formal modeling language. Then artificial intelligence technologies
that will attempt to automate IS modeling and development must follow that
cognition process of human modeler.

56 A. Laukaitis, O. Vasilecas, and V. Gediminas

Fig. 1. Loopback of unstructured information flow

An overall process of automatically clustering the concepts and building
knowledge basis is presented in Figure 1. First, the corpus is created form IS
documents and utterance. Then, vector space of the corpus is created using natural
language processing framework, domain ontology and WordNet ontology [11]. The
self-organizing network [7] is build and used for cluster analysis. Next, with
conceptual context and formal concept lattice [3] improvements are made in the
understanding of clusters relationships. After the modeling stage the conceptual
model self-organizing map and concept lattice are reused by natural language
processing and understanding engine. The NLP/NLU engine combines map and
lattice with such traditional NLP processing techniques like finite state traducer and
gazetteer lookup.

Some philosophical arguments for the use of the connectionist paradigm in the
context of information systems development can be found in the paper of Timo
Honkela [5]. By the reference to the works of Von Foerster, he supposed that most
information systems are developed as "trivial machines" to be predictable and
controllable. All results in this paper can be interpreted as an implementation of these
philosophical statements.

2.1 Heavy Personal Assistant

The idea behind heavy personal assistant architecture (HPAA) is to investigate the IS
architecture that resembles society of humans in which natural language plays an
important role. If the Figure 1 presents the general information flow processes in
HPAA then the Figure 2 presents the technological implementation of the framework.
As we can see, the central idea behind technological implementation of the heavy
personal assistant is that traditional enterprise server architecture is replicated for each
corporate personal computer to handle personal information flow and communication
with other personal Web services in the Enterprise Semantic Web environment. We

 Natural Language Based Heavy Personal Assistant Architecture 57

Fig. 2. Heavy personal assistant architecture

assume that all conceptual modules are installed on each personal computer involved
in the information and knowledge management process. The grey shaded blocks
represents the modules that have been originally build in current research project.

The white blocks represent software modules that we reused from open source
community. All of them are free of charge (an important issuer if we are planning to
install them on all working personal computers). The following example is the short
description of the implementation we used in our framework (for more details we
refer to [9]: 1. MySQL has been chosen as the database management systems. We
store all annotated documents and instances of ontology classes in it. 2. We used the
Apache Tomcat 5.5 Servlet/JSP container as the server of Web services. 3. Desktop
search module represents software like Google desktop search. It's primary use in our
architecture is to faster documents search for the agents that implements personal
Web services. 4. For knowledge management we used Protégé application but
problem with it is that it has difficulties for handling large OWL files.

3 JMining

As we mentioned above, our goal is the creation of the information systems
developing environment by natural language. Previous section presented the
framework for classification of the IS documents and utterance. By being able to
identify classes and their semantics (i.e. relationships) we now present the JMining
framework and language for the generation of business applications.

There were numerous attempts to use natural language as the programming
paradigm. The most of them have concentrated on structural query language (SQL),
however, some of them tried to lift a formal language representation complexity up to
such languages like Java [12]. But neither of them have withstood more than few
years. JMining language was created to overcome difficulties stressed by numerous
projects in the field.

58 A. Laukaitis, O. Vasilecas, and V. Gediminas

Fig. 3. Structures of the JMining framework

The central idea of the framework is an atomic application concept. An entire
business solution is presented as a tuple of atomic applications liked by the URL
references and sheared memory pool to store all parameter values entered by user.
Figure 3 depicts the major structure of the atomic application. By its essence it is the
small web application, which contains four components: {database script, HTML
page, data representation script (XML, XSL, etc.) and documentation page}. No
additional constrains are put on those components if they are accessed directly (i.e.
manually corrected through Web Browser). If they are accessed using natural
language interface, then all components must constrain their representation to the
tuple calculus.

Each time the user enters NL sentence the system assumes that it is addressed to
one of the six objects: container of the atomic applications, atomic application itself
or one of the four objects that forms atomic application. Table 1 presents all state
space variables that are used to control the system behavior. There are three futures of
the JMining language that we attribute in the current research project:

1. Expressiveness and complexity. One of the reasons for the failure to lift NLDBI
up to practical use is that most projects concentrated on the generation of one SQL
sentence. However, practice shows that users are not interested in such interfaces and
we solve this problem by addressing more objects than a single SQL sentence.

2. Integrativeness. No information systems development framework or programming
language was developed to support IS development by means of NLP in all IS
development life-cycle stages. In the previous section we introduced the modeling
technique with the use of self-organizing maps. In the JMining language each atomic
application has documentation object: the textual description of the atomic application.
Each atomic application document has vector representation that can be measured by
self-organizing map. Each time when the sentence is presented to the system it matches

 Natural Language Based Heavy Personal Assistant Architecture 59

self-organizing map fired neuron again atomic application vector. The closes match
associates selected atomic application with the sentence.

3. Distributiveness. As we mentioned the state space produced by the natural
language can be too huge to be matched by one ontology or conceptual model. In the
JMining framework, if the personal assistant is not able to find the close match of the
sentence in the local knowledge base then it tries to query other personal assistants. In
the JMining framework remote personal assistant is using the same interface as the
humans i.e. by using the Jakarta Commons HttpClient component it imitates Web
Browser.

Table 1. The state space variables

Variable
name

Example

agenda Each item of the agenda is associated with some number: 0 -
no agenda item selected, 1 - atomic application selected, 2 - get
info from metadata storage, 3 - write script.

app. object 0 - no objects, 1-SQL, 2-HTML, 3-XML, 4-documentation
confidence 1 - if the object has been established, 0 -if not.
value_track Tracks whether the system has obtained a value (no=0, yes=1).
number_of_
times

Tracks the number of times the dialog manager has asked for
an attribute.

Primary the JMining has been developed to attribute IS development using only
Web Browser on the "thin" computational device like mobile phone. And this means
that all created atomic applications can be corrected by manually editing generated
Jmining script using Web Browser.

4 Natural Language Processing

In this section we present NLP techniques because it is a core module in the HPA
architecture. Figure 4 shows the main steps in the NLP processing. The goal of the
engine is to produce vector representations and ontology annotation sets for each
sentence that passes it. The vector space model (VSM) for documents transformation
to the vectors is a well-known representation approach that transforms a document to
a weight vector in automatic text clustering and classification. The method is based on
the bag-of-words approach, which ignores the ordering of words within the sentence
and uses basic occurrence information [14]. The NLP processes are depicted in Figure
4 and the main processes are described in details below.

GATE – general Architecture for Text Engineering - is a well-established
infrastructure for customization and development of NLP components [2]. We briefly
describe modules used in our research for building concepts vector spaces. The
Unicode tokeniser splits the text into simple tokens and is used for the next steps of
the natural language processing. The tagger is a modified version of the Brill tagger,
which produces a part-of-speech tag as an annotation on each word or symbol. We

60 A. Laukaitis, O. Vasilecas, and V. Gediminas

used it to extract nouns and verbs and remove all other words from the dictionary.
The gazetteer further reduces dimensionality of the documents corpus prior to
classification. It uses the lists of named entities and annotates text with class labels
such as cities, organizations, days of the week, etc. We replaced each named entity
with the label of the class. Semantic tagger - provides finite state transduction over
annotations based on regular expressions. It produced additional set of named entities
and we replaced each named entity with the class label. Orthographic Coreference -
the module adds identity relations between named entities found by the semantic
tagger. Reduction of the state space dimensionality is achieved by replacing marked
tokens with named entities class labels found by the semantic tagger. SUPPLE is a
bottom-up parser that constructs syntax trees and logical forms for English sentences.
We used it only to remove tokens not annotated by this module. All modules within
the GATE produced annotations - pairs of nodes pointing to positions inside the
document content, and a set of attribute-values, encoding linguistic information.

Fig. 4. Processes of the natural language processing and natural language understanding

Abstraction. The basic idea of the abstraction process is to replace the terms by more
abstract concepts as defined in a given thesaurus, in order to capture similarities at
various levels of generalization. For this purpose we used WordNet and annotated
GATE corpus as the background knowledge base. WordNet consists of so-called
synsets, together with a hypernym/hyponym hierarchy [4]. To modify the word vector
representations, all nouns have been replaced by WordNet corresponding concept
('synset'). Some words have several semantic classes ('synsets') and in that case we
used a disambiguation method provided by WordNet - the 'most common' meaning
for a word in English was our choice. The words replaced by the GATE named
entities annotation scheme were not included for the WordNet processing.

Vectors space. In our experiments we used vector space of the terms vectors weighted
by tfidf (term frequency inverse document frequency)[14].

 Natural Language Based Heavy Personal Assistant Architecture 61

5 Experiment

In the previous sections we have shown how to build local knowledge bases for
personal assistant and how to share those bases in the distributed enterprise
environment of the personal assistants. In this section we provide description of two
experiments we conducted to provide the answers for the following questions: 1.
What is rate of concept identification accuracy from user's utterance? 2. If the
following hypothesis have any sound meaning? H0: If we measure the number of
correctly answered questions of personal assistant to the questions brought by other
personal assistants and then reword the knowledge worker to the extend of personal
assistant performance, can we expect that the knowledge worker will be more
interested in teaching it personal assistant.

To answer the first question we conducted the following experiment. The
Microsoft English Query [10] and IBM WebSphere Voice Server NLU toolbox V5.1
[6] have been chosen as benchmarks for the comparison with suggested solution in
this paper. Microsoft product has been chosen because it's demo version is freely
available and it comes as the most user friendly product available on the market (it
seems that currently there is no other product left as several authors and companied
declined our request to test their solutions). Comparison between Microsoft and IBM
was interested because Microsoft utilizes rule based approach (symbolic processing)
and IBM utilizes statistical approach (close to the connectionist paradigm). From the
IBM presentation [6] it appear that the system is primarily intended to support
database interfaces in the telecommunication market. It was a challenging task to test
it on the more complex system e.g. a full Enterprise conceptual model for the
financial market.

Table 2. Concept identification comparison between tree approaches and with two conceptual
models

 Northwind
database

CN=9 CN=50 CN=200 CN=400 CN=500

IBM NLU 30.82 36.82 17.26 14.82 11.15 8.22
Microsoft
EQ

80.46 - - - - -

JMining 28.93 36.47 21.49 17.85 14.88 11.41

After the training process the following experiment has been conducted. A group
consisting of 9 students has been instructed about two database models: 1) Northwind
example comes with Microsoft EQ demo and IBM financial services conceptual
model (see[9] for more details). They queried the system with about 20 questions and
tried to identify the "customer" concept. For the Northwind example the second
column in the table 2 shows the percentage rate of correct answers. No surprise that
Microsoft scored the best as the model roles have been accurately written for this
example. On the other hand for the second example where we interactively increased
the set of concepts from 9 up to 500 there was no way to teach Microsoft approach
due to limited resources. To answer the second question we made the following

62 A. Laukaitis, O. Vasilecas, and V. Gediminas

experiment with 3 students group. The 50 $ was the budget distributed proportionally
with the knowledge contributed by the user working environment to the other users'
personal assistants. The students where instructed about the IBM financial service
model. At the first stage nor reword has been mentioned. As the consequence the
personal assistants have shown very weak performance. As the reword has been
introduced we noticed that the performance of the personal assistants increased about
50{\%}. Finally, we admit that the current experiment is not very sound but we
conducted it anyway because question how to reword people for teaching their robots
can be interesting for future research in the field of artificial intelligence.

4 Conclusion

Natural language based IS development can supplement traditional IS development
approaches. In this paper we have shown how connectionist and symbol-processing
paradigms can be combined within one single framework for information systems
development. Distributed personal assistants architecture has been suggested to utilise
this framework and create new working environment for the knowledge based
professions. Provided evidences have shown that high quality documentation can be
reused in all stages of the information systems development and increase company
productivity.

References

1. Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Time, Tense and Aspect in Natural
Language Database Interfaces. Natural Language Engineering 4, 229–276 (1998)

2. Cunningham, H.: GATE, a General Architecture for Text Engineering. Computers and the
Humanities 36, 223–254 (2002)

3. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer,
Berlin-Heidelberg (1999)

4. Hofmann, T.: Probabilistic latent semantic indexing. In: Research and Development in
Information Retrieval, PP. 50–57 (1999)

5. Honkela, T.: Von Foerster meets Kohonen - Approaches to Artificial Intelligence,
Cognitive Science and Information Systems Development. Kybernetes 34(1/2), 40–53
(2005)

6. IBM Voice Toolkit V5.1 for WebSphere Studio. Accessed (January 2007) http://www-
306.ibm.com/software/

7. Kohonen, T.: Self-Organizing Maps. Springer-Verlag, Heidelberg (2001)
8. Laukaitis, A., Vasilecas, O.: Self-organizing map for conceptual modelling. In:

Proceedings of the International Conference on Computer Systems and Technologies
CompSysTech’06, pp. 141–147 (2006)

9. Laukaitis, A., Vasilecas, O., Berniunas, B.: JMining – information delivery web portal
architecture and open source implementation. Information Systems Development.
Advances in Theory, Practice and Education. Springer Science, pp. 199–206 (2005)

10. Microsoft corporation. SQL Server and English Query. Accessed (January 2007),
http://msdn.microsoft.com/

11. Miller, G.A.: WordNet: A Dictionary Browser. In; Proc. 1st Int’l Conf. Information in
Data, pp. 25–28 (1985)

 Natural Language Based Heavy Personal Assistant Architecture 63

12. Price, D., Riloff, E., Zachary, J., Harvey, B.: NaturalJava: A Natural Language Interface
for Programming in Java. In: the Proceedings of the International Conference on
Intelligent User Interfaces (2000)

13. Ryan, K.: The role of natural language in requirements engineering. In: Proceedings of
IEEE International Symposium on Requirements Engineering, pp. 240–242. IEEE
Computer Society Press, Washington (1993)

14. Salton, G.: Automatic Text Processing: The Transformation, Analysis and Retrieval of
Information by Computer. Addison-Wesley, New York (1989)

15. Toolbox, S.O.M. Accessed (January 2007), http://www.cis.hut.fi/projects/somtoolbox/
16. Valtchev, P., Grosser, D., Roume, C., Rouane, H.M.: GALICIA: an open platform for

lattices. In: de Moor, A., Ganter, B. (eds.) Using Conceptual Structures: Contributions to
11th Intl. Conference on Conceptual Structures, pp. 241–254 (2003)

	Introduction
	General Framework of the Solution
	Heavy Personal Assistant

	JMining
	Natural Language Processing
	Experiment
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

