
Automation Everywhere: Autonomics and Data

Management

Norman W. Paton

School of Computer Science, University of Manchester
Oxford Road, Manchester M13 9PL, UK

npaton@manchester.ac.uk

Abstract. Traditionally, database management systems (DBMSs) have
been associated with high-cost, high-quality functionalities. That is, pow-
erful capabilities are provided, but only in response to careful design,
procurement, deployment and administration. This has been very suc-
cessful in many contexts, but in an environment in which data is available
in increasing quantities under the management of a growing collection
of applications, and where effective use of available data often provides
a competitive edge, there is a requirement for various of the benefits of
a comprehensive data management infrastructure to be made available
with rather fewer of the costs. If this requirement is to be met, automa-
tion will need to be deployed much more widely and systematically in
data management platforms. This paper reviews recent results on au-
tonomic data management, makes a case that current practice presents
significant opportunities for further development, and argues that com-
prehensive support for automation should be central to future data man-
agement infrastructures.

1 Introduction

Database management systems provide an impressive list of capabilities; they
can answer complex declarative questions over large data sets, exhibit well de-
fined behaviours over mixed workloads of queries and updates, present a con-
sistent interface in the context of many changes to how or where data is being
stored, etc. However, the development, deployment and maintenance of database
applications remains a lengthy and complicated process. As a result, there are
ongoing activities, in particular within the database vendors, to improve sup-
port for, or even to automate, tasks that have traditionally been carried out by
skilled database administrators (e.g. [1, 10, 36]). In addition, as query processors
are increasingly used in less controlled environments, there has been a growing
interest in adaptive query processing, whereby queries can be revised during
their evaluation to compensate for inappropriate assumptions about the data
(e.g. [3, 26]) or to react to changes in the environment (e.g. [28]).

Several of these activities can be related to a broader activity in autonomic

computing, which seeks to reduce the total cost of ownership of complex com-
puting systems. Autonomic systems are often characterised by whether or not



2

they support self-configuration, self-optimization, self-healing or self-protection

[20]. However, although several techniques recur in autonomic computing (e.g.
[16, 34]), and there are even preliminary proposals for toolkits that can be ap-
plied to multiple problems (e.g. [17]), it cannot yet be said that there are well
established methodologies for the development of autonomic systems. Relating
this work to the state-of-the-art in databases, several basic techniques have been
adopted in both areas, such as the use of control theory where it is applicable
[35], but many proposals for autonomic behaviours seem to be developed largely
in isolation, and to address specific problems rather than to make automation a
central design goal in the development of complex infrastructures.

This is somewhat in contrast with the software architectures that underpin
high-profile internet applications, such as Google or Yahoo. In such contexts,
highly scaleable architectures have been designed that are less often associated
with challenging systems management issues. Such scaleability is often achieved
through the provision of judiciously selected functionalities, but raises the ques-
tion as to whether there are interesting middle grounds between current data
management and information retrieval systems that provide some of the benefits
of both without incurring the design and management costs of classical database
applications. This paper reviews current work on autonomic data management
in Section 2, where it will be shown that there are a wide range of proposals,
but that these can rarely be felt to integrate seamlessly to provide intrinsically
adaptive data management infrastructures. Section 3 highlights several recurring
limitations of current activities in autonomic data management, and makes some
suggestions as to how they might be addressed. More speculatively, Section 4
suggests that automation should be a central tenant in the design of data man-
agement infrastructures, and that where this is the case, new areas may open
up for the application of database technologies.

2 Examples: Automation in Data Management

Autonomic computing is motivated by the observation that computing systems
are increasingly capable, pervasive and distributed, and that the cost of manag-
ing systems cannot be allowed to grow in line with their number and complexity.
The same motivation underlies the desire to increase the role of automation in
data intensive infrastructures, both to reduce management costs and to make
performance more dependable in uncertain environments.

Much work in autonomic computing involves a control loop, in which feedback
obtained by monitoring a system or the environment in which it is deployed leads
to focused changes in the behaviour of the system. Such a model can be applied in
general terms to a wide range of data management activities, and many aspects
of data management are associated with some measure of autonomic behaviour.
The following are examples of work to date:

Database Administration: The responsibilities of a database administrator
include the classical self-management goals of autonomic computing men-



3

tioned in Section 1, namely configuration, optimization, healing and protec-
tion [11]. For self-configuration, a system may determine dynamically where
to construct indexes, how to allocate memory to different functions, or which
views to materialize (e.g. [36]). For self-optimization, a system may dynam-
ically update the parameters used by cost functions, or automatically re-
organise indexes to reduce fragmentation (e.g. [23, 25]). For self-protection,
a system may dynamically limit the resources provided to a long-running
query to reduce the impact of any one request on others. Overall, there is
a substantial body of work on automating administrative tasks in database
systems, and the major commercial products all provide tools to support
and to automate various aspects of database administration.

Query Evaluation: Classically, query processing involves two distinct phases,
namely optimization and evaluation. In optimization, alternative query plans
are explored using a range of equivalence rules, and ranked on the basis of
a cost model so that a preferred plan can be identified. In evaluation, the
preferred plan is executed to yield the results of the query. However, this
two-phase approach may yield significantly sub-optimal plans, for example
if the cost model is based on partial or out-of-date statistics, or if the data is
skewed in a way that is not taken into account by the optimizer. In adaptive
query processing, decisions made by the query optimizer at compile time
may be revised in the light of feedback obtained at query runtime [2, 13]. For
example, specific proposals have been made that reoptimize queries, reusing
at least some of the results produced to date, when selectivity estimates are
shown to be inaccurate (e.g. [18, 33, 3]), or to rebalance load in parallel query
evaluation (e.g. [14, 30, 31]). Overall, there is a substantial body of work on
adaptive query processing, but at present few of the techniques have been
incorporated into commercial database systems.

Data Integration: Most emphasis within the database community on data in-
tegration has sought to support the description of precise mappings between
independently developed databases. Such mappings may be represented in
many different ways (e.g. [8, 27, 32]), but are typically constructed and main-
tained manually. Both activities have proved challenging in practice, and at
least partly as a result, database centred data integration products are not as
ubiquitous as might have been anticipated. Various researchers have sought
to develop schemes that automate the identification of mappings between
models (e.g. [29]) or for change detection (e.g. [22]), in part accepting that
the resulting mappings may be associated with different levels of confidence,
in turn opening up the possibility that database integration technologies are
used to provide lower cost and lower quality data integration, as in the vi-
sion for dataspaces [15]. However, there is wider interest in and benefit to be
gained from inferring metadata in a distributed setting – for example, ser-
vice descriptions are inferred from workflows in [5] – and higher-level data
services such as discovery and integration often lean heavily on metadata,
for which some measure of automatic creation and maintenance could signif-
icantly increase uptake. However, while there is now a growing body of work



4

0 1 2 3 4 5 6
0

5

10

15

20

25

30

Level of Constant Imbalance

T
im

e 
(s

)

No Adpt
Adapt−1
Adapt−2
Adapt−3
Adapt−4
Adapt−5

(a)

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

Level of Periodic Imbalance

T
im

e 
(s

)

No Adpt
Adapt−1
Adapt−2
Adapt−3
Adapt−4
Adapt−5

(b)

Fig. 1. Comparisons of the response times of several adaptive load balancing strategies
for the same query in environments with different characteristics. (a) The query is
running on three nodes, one of which has a high load for the duration of the run of
the query, the level of which is varied in the experiment. (b) The query is running on
three nodes, one of is subject to load spikes of duration 1s every 2s, the level of which
is varied in the experiment. Most of the adaptive strategies improve significantly on
the static strategy (No Adapt) in (a), but struggle to respond successfully to the much
less stable environment in (b).

on automatic metadata capture, there has been less emphasis on incremental
maintenance and refinement, as required by truly autonomic infrastructures.

3 Limitations

Although, as argued in the previous section, work on automation in data manage-
ment is widespread, for the most part this work is quite fragmented. As a result,
automation per se is not a major theme in the database community (the call
for papers for VLDB in 2007 contains no mention of autonomic topics, although
both SIGMOD and ICDE mention database tuning as an area of interest). A
consequence is that there is little emphasis within the community on recurring
pitfalls or potentially generic solutions. This section identifies some limitations
in the state-of-the-art in the use of autonomic techniques in the database com-
munity.

Predictability: Autonomic behaviours involve intervention in the progress of
an activity. As such interventions commonly incur some cost, may block on-
going activities while changes are made, and may discard partially completed
tasks when changing the state of a system, there is certainly the potential for
more harm to be done than good. For example, [3] describes circumstances
in which an adaptive query processor may thrash by repeatedly identifying
alternative strategies during the evaluation of a query, sometimes resorting
to a previously discarded plan. An earlier proposal contains a threshold on



5

the number of adaptations it may carry out with a view to limiting the con-
sequences of repeated adaptations in an uncertain setting [26]. Both [3] and
[26] make particularly well motivated decisions as to when to adapt, and
thus may be felt to be less prone to unproductive adaptations than many
proposals. A comparison of several adaptive load balancing strategies [28]
revealed circumstances in which all of the adaptive strategies did more harm
than good, as illustrated in Figure 1, although all the techniques compared
sometimes improved on static oprimization. Overall, however, the design,
control and evaluation of adaptive techniques often seems to be as much
an art as a science; we note, for example, that the developers of several of
the proposals compared in [28] did not have a good understanding of the
circumstances in which their techniques would perform better or worse than
others or the non-adaptive case.

Methodology: Mature development activities tend to apply well defined method-
ologies that deliver predictable results. In autonomic systems development,
a range of generic techniques have been explored, although their applica-
tion in data management has been patchy; it is not always obvious which
kinds of problem are most readily addressed by which techniques. Auto-
nomic problems can often be characterised by a functional decomposition
in which monitoring, analysis, planning and execution steps are identified,
and proposals exist for toolkits that implement such components [17]. Such
a framework, however, leaves open how the different components may be
implemented, and in particular how decisions are made as to what changes
are made and when. Applications of control theory to software systems are
increasingly widespread [16], in which a model is developed of the behaviour
of a system in response to changes in specific parameters. The resulting
feedback control loops have been widely deployed for database tuning [35],
but the changes made to an executing query in adaptive query processing
are typically more radical than can be represented by changes to parame-
ter values (e.g. many adaptive query processing strategies reoptimize queries
at runtime, and thus the relationship between the state of the system be-
fore and after an adaptation is complex). Competitive algorithms [19], in
contrast with control loops, focus principally on when to adapt, by trading
off the risks of premature adaptation with the consequences of maintain-
ing the status quo. However, although analyses have been developed that
guarantee worst case performance of some adaptive algorithms relative to
their static counterparts (this is where the word “competitive” comes from
in “competitive algorithm”), it is not yet clear that they can be applied to
typical adaptations proposed in data management. As such, significant work
remains to be done to understand how best techniques developed in other
domains can be applied to support adaptive data management systems.

Composability: Proposals for adaptive techniques in databases tend to ad-
dress individual problems. For example, when automating database admin-
istration, techniques have been developed that determine which indexes to
create or which views to materialise. However, such decisions tend to be
made in isolation, even though the overall performance of a system depends



6

on complex interplays between these individual decisions. For the examples
described, the need for views to be materialised may be affected by the pres-
ence of indexes, and vice versa. However, as such decisions tend to be made
on the basis of mathematical models of system behaviour, and the design of
the associated utility functions is problematic when multiple criteria must
be taken into account [21], it remains an unsolved problem how to combine
multiple autonomous components in a way that yields the desired overall be-
haviour [35]. Similarly, in adaptive query processing there may be ordering
dependencies between adaptations. For example, in a parallel database that
supports both partitioned and pipelined parallelism there may be adaptive
techniques that remove imbalance in partitioned parallelism and bottlenecks
in pipelined parallelism. However, a bottleneck may be able to be fixed by re-
moving imbalance, and there may be no point removing an imbalance if there
is a bottleneck elsewhere in the plan. As a result, the decision as to which
adaptation should be applied in a specific context is not one that can always
be made locally, even where specific problems with an evaluating query have
been identified. Much of the state-of-the-art in adaptive databases involves
the use of individual techniques in isolation, and few proposals have explored
decision making for multiple strategies.

Semantics: Adaptive techniques change the behaviour of executing systems. As
the executing systems are complex, and the changes made to their behaviour
may be non-trivial, it may be desirable to have certain guarantees as to
the behaviour of a technique. Such guarantees could, for example, place
bounds on the worst case performance that adaptation could lead to [19], or
demonstrate that the outcome of a request is sure to be unchanged by an
adaptation [12]. However, rather few proposals for adaptive techniques are
accompanied by formal characterisations of their semantics or behavioural
guarantees, and generic techniques for specifying and reasoning about such
systems seem not to be well established [4].

4 Opportunities

The limitations of adaptivity in database systems identified in Section 3 present
certain challenges to the research community. In terms of predictability, a better
understanding of benchmarking for adaptive systems and more comprehensive
comparative studies may identify requirements that can inform the development
of more effective development methods. In terms of methodology, the more sys-
tematic application of generic techniques, such as control loops or utility func-
tions, may lead to a clearer understanding as to which kinds of problems can be
supported by established and well founded techniques, and which stand to ben-
efit from novel adaptive infrastructures. In terms of composability, foundational
work is required to understand how to plan effectively in the context of multiple
adaptive strategies, which in turn might hope to benefit from more systematic
description of the semantics of adaptive behaviours. Such activities may in turn
may be able to be applied to improve existing database systems or to support
the development of new kinds of data management infrastructure:



7

Increasing the Manageability of Database Technologies: It is widely ac-
cepted that database technologies are labour intensive to administer, and
that a significant portion of the cost of ownership of a database system
is spent on administrators [23]. As discussed in Section 2, various aspects
of database administration are now able to be automated, or at least sup-
ported by tools that monitor the use being made of a database installation.
Some researchers have argued, however, that current commercial database
systems are too complex, and that there is merit in developing data man-
agement platforms from collections of components, which themselves may
be self-tuning [9]. Such components could include trimmed-down query pro-
cessing capabilities, or storage managers specialised for specific kinds of
data (e.g. video streaming). This proposal seems unlikely to be retrofitted
to existing large-scale database platforms, but seems consistent with the
recognised need for light-weight database systems, such as Apache Derby
(http://db.apache.org/derby/), particularly for embedded use, or in support
of distributed applications. To date, there has been little work on ensuring
that lighter-weight database platforms are self-tuning; identifying the key
features for which self-tuning is of benefit for such platforms, along with
the provision of tools to support integration of self-tuning techniques across
those features, seems like an important but viable activity.

Extending the Reach of Database Technologies: Although database tech-
nologies are dominant in many business sectors, web platforms that support
data with different levels of structure largely ignore database models for de-
scription or languages for querying. Examples of structured data in the web
include data behind web pages in the deep web, annotations in resources such
as Flickr (http://www.flickr.com/), and online storage platforms such as
Google Base (http://base.google.com/). The vision of dataspaces [15] seeks
to bring database style querying to diverse data resources, whether or not
they are managed using database management systems. Subsequent early
proposals vary significantly in their context and emphasis, from integrating
structured and unstructured data on a web scale [24], through the provi-
sion of enterprise level data access [6], to the management of an individual’s
data [7]. However, all such proposals share the need for automation in all
the areas identified in Section 2, to enable low-cost data resource adminis-
tration, efficient querying in unpredictable settings, and integration of data
from potentially numerous sources. Typically, dataspaces are proposed for
use in settings where certain sacrifices can be accommodated in the quality
of query answers, as long as the cost of maintaining the data management
infrastructure that provides those answers remains low.

5 Conclusions

Database management systems provide comprehensive facilities for creating, us-
ing and evolving potentially huge collections of structured data. As new require-
ments have been reflected in database systems over many years, the principal



8

database management systems have become increasingly complex, and thus ex-
pensive to manage effectively. As a result, the requirement for greater use of
automation to support data management tasks has become increasingly evident.
In the main, automation has been seen as something of an afterthought in most
database systems, but the need to reduce the cost of deploying and maintaining
data management infrastructures for data that is everywhere will necessitate a
more central role for automation in future.

This paper has reviewed current practice in autonomic data management;
the situation is that there has been widespread but largely uncoordinated ex-
ploration of the use of adaptive techniques for database administration, query
evaluation, and data integration. Although individual proposals have been shown
to be effective in specific contexts, the development of many adaptive techniques
seems somewhat ad hoc; few proposals provide guarantees as to their worst case
behaviour, and composition of different techniques into a comprehensively adap-
tive infrastructure remains largely unexplored. These characteristics reflect the
fact that autonomic data management is rarely seen as a discipline in its own
right, and to date much less attention has been given to the development of
effective methodologies or to the understanding of good practice than to the de-
velopment of solutions to specific problems. However, future data management
platforms are likely to need to provide ever more robust behaviour in increas-
ingly unpredictable settings, and thus automation is likely to be more central to
their design than in current platforms. If database technologies are to be able
to contribute effectively to the management and querying of ubiquitous data,
automation will need to be ubiquitous too.
Acknowledgement: Research on autonomic data management at Manchester is
supported by the Engineering and Physical Sciences Research Council, whose
support we are pleased to acknowledge.

References

1. S. Agrawal, N. Bruno, S. Chaudhuri, and V. R. Narasayya. Autoadmin: Self-tuning
database systems technology. IEEE Data Eng. Bull., 29(3):7–15, 2006.

2. S. Babu and P. Bizarro. Adaptive query processing in the looking glass. In CIDR,
pages 238–249, 2005.

3. S. Babu, P. Bizarro, and D. DeWitt. Proactive Re-Optimization. In Proc. ACM
SIGMOD, pages 107–118, 2005.

4. H. Barringer and D. E. Rydeheard. Modelling evolvable systems: A temporal logic
view. In We Will Show Them! (1), pages 195–228. College Publications, 2005.

5. K. Belhajjame, S. M. Embury, N. W. Paton, R. Stevens, and C. A. Goble. Auto-
matic annotation of web services based on workflow definitions. In International
Semantic Web Conference, pages 116–129, 2006.

6. B. Bhattacharjee, J. S. Glider, R. A. Golding, G. M. Lohman, V. Markl, H. Pira-
hesh, J. Rao, R. Rees, and G. Swart. Impliance: A next generation information
management appliance. In CIDR, pages 351–362, 2007.

7. L. Blunschi, J.-Peter Dittrich, O. R. Girard, S. Kirakos Karakashian, and M. A. Vaz
Salles. A dataspace odyssey: The imemex personal dataspace management system.
In CIDR, pages 114–119, 2007.



9

8. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Information
integration: Conceptual modeling and reasoning support. In Proc. of the 6th Int.
Conf. on Cooperative Information Systems (CoopIS’98), pages 280–291, 1998.

9. S. Chaudhuri and G. Weikum. Rethinking database system architecture: Towards
a self-tuning risc-style database system. In VLDB, pages 1–10, 2000.

10. B. Dageville and K. Dias. Oracle’s self-tuning architecture and solutions. IEEE
Data Eng. Bull., 29(3), 2006.

11. S. Elnaffar, W. Powley, D. Benoit, and P. Martin. Today’s dbmss: Dow autonomic
are they? In Proc. 14th DEXA Workshop, pages 651–655. IEEE Press, 2003.

12. K. Eurviriyanukul, A. A. A. Fernandes, and N. W. Paton. A foundation for the
replacement of pipelined physical join operators in adaptive query processing. In
EDBT Workshops, pages 589–600, 2006.

13. A. Gounaris, N. W. Paton, A. A. A. Fernandes, and R. Sakellariou. Adaptive query
processing: A survey. In Proc 19th BNCOD, pages 11–25. Springer, 2002.

14. A. Gounaris, J. Smith, N. W. Paton, R. Sakellariou, and A. A. A. Fernandes.
Adapting to Changing Resources in Grid Query Processing. In Proc. 1st Inter-
national Workshop on Data Management in Grids, pages 30–44. Springer-Verlag,
2005.

15. A. Y. Halevy, M. J. Franklin, and D. Maier. Principles of dataspace systems. In
PODS, pages 1–9, 2006.

16. J.L. Hellerstein, D.M. Tilbury, Y. Diao, and S. Parekh. Feedback Control of Com-
puting Systems. Wiley, 2004.

17. B. Jacob, R. Lanyon-Hogg, D. K. Nadgir, and A. F. Yassin. A Practical Guide to
the IBM Autonomic Computing Toolkit. IBM Redbooks, 2004.

18. N. Kabra and D. J. DeWitt. Efficient mid-query re-optimization of sub-optimal
query execution plans. In SIGMOD Conference, pages 106–117, 1998.

19. A. R. Karlin. On the performance of competitive algorithms in practice. In Online
Algorithms, pages 373–384. Springer, 1996.

20. J.O. Kephart and D.M. Chess. The Vision of Autonomic Computing. IEEE Com-
puter, 36(1):41–50, 2003.

21. J.O. Kephart and R. Das. Achieving self-management via utility functions. IEEE
Internet Computing, 11(1):40–48, 2007.

22. E. Leonardi and S. S. Bhowmick. Xandy: A scalable change detection technique for
ordered xml documents using relational databases. Data Knowl. Eng., 59(2):476–
507, 2006.

23. S. Lightstone, G.M. Lohman, and D.C. Zilio. Toward autonomic computing with
db2 universal database. SIGMOD Record, 31(3):55–61, 2002.

24. J. Madhavan, S. Cohen, X. Luna Dong, A. Y. Halevy, S. R. Jeffery, D. Ko, and
C. Yu. Web-scale data integration: You can afford to pay as you go. In CIDR,
pages 342–350, 2007.

25. V. Markl, G.M. Lohman, and V. Raman. Leo: An autonomic query optimizer for
db2. IBM Systems Journal, 42(1), 2003.

26. V. Markl, V. Raman, D.E. Simmen, G.M. Lohman, and H. Pirahesh. Robust query
processing through progressive optimization. In Proc. ACM SIGMOD, pages 659–
670, 2004.

27. P. McBrien and A. Poulovassilis. Data integration by bi-directional schema trans-
formation rules. In Proc. ICDE, pages 227–238, 2003.

28. N.W Paton, V. Raman, G. Swart, and I. Narang. Autonomic Query Parallelization
using Non-dedicated Computers: An Evaluation of Adaptivity Options. In Proc.
3rd Intl. Conference on Autonomic Computing, pages 221–230. IEEE Press, 2006.



10

29. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB J., 10(4):334–350, 2001.

30. V. Raman, W. Han, and I Narang. Parallel querying with non-dedicated computers.
In Proc. VLDB, pages 61–72, 2005.

31. M.A. Shah, J.M. Hellerstein, S.Chandrasekaran, and M.J. Franklin. Flux: An
adaptive partitioning operator for continuous query systems. In Proc. ICDE, pages
353–364. IEEE Press, 2003.

32. J. D. Ullman. Information integration using logical views. In Proc. of the 6th
International Conference on Database theory (ICDT’97), volume 1186, pages 19–
40. Springer-Verlag, 1997.

33. T. Urhan, M. J. Franklin, and L. Amsaleg. Cost based query scrambling for initial
delays. In SIGMOD Conference, pages 130–141, 1998.

34. W.E. Walsh, G. Tesauro, J.O. Kephart, and R. Das. Utility functions in autonomic
systems. In Proc. ICAC, pages 70–77. IEEE Press, 2004.

35. G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback. Self-tuning database tech-
nology and information services: from wishful thinking to viable engineering. In
Proc. VLDB, pages 20–31, 2002.

36. D.C. Zilio, J. Rao, S. Lightstone, G.M. Lohman, A. Storm, C. Garcia-Arellano, and
S. Fadden. Db2 design advisor: Integrated automatic physical database design. In
Proc. VLDB, pages 1087–1097, 2004.


