Skip to main content

Decomposition in Hidden Markov Models for Activity Recognition

  • Conference paper
Multimedia Content Analysis and Mining (MCAM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4577))

Included in the following conference series:

Abstract

Dynamic probabilistic networks have been widely used in activity recognition. However, few models are competent for long-term complex activities involving multi-person interactions. Based on the study of activity characteristics, this paper proposes a decomposed hidden Markov modelĀ (DHMM) to capture the structures of activity both in time and space. The model combines spatial decomposition and hierarchical abstraction to reduce the complexity of state space as well as the number of parameters greatly, with consequent computational benefits in efficiency and accuracy. Experiments on two-person interactions and individual activities demonstrate that DHMMs are more powerful than Coupled HMMs and Hierarchical HMMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moeslund, T.B., Hilton, A., Krger, V.: A survey of advances in vision-based human motion capture and analysis. International Journal on Computer Vision and Image UnderstandingĀ 104(2-3), 90ā€“127 (2006)

    ArticleĀ  Google ScholarĀ 

  2. Zacks, J.Z., Tversky, B.: Event structure in perception and conception. Psychological BulletinĀ 127, 3ā€“21 (2001)

    ArticleĀ  Google ScholarĀ 

  3. Murphy, K.P.: Hidden Semi-Markov modelsĀ (HSMMs) (2002), http://www.ai.mit.edu/muphyk

  4. Hongeng, S., Nevatia, R.: Large-scale event detection using Semi-hidden Markov models. In: Proc. ICCV, pp. 1455ā€“1462 (2003)

    Google ScholarĀ 

  5. Ghahramani, Z.: An introduction to hidden Markov models and bayesian networks. Journal of Pattern Recognition and Artificial Intelligence 15(1), 9C42 (2001)

    Google ScholarĀ 

  6. Brand, M., Oliver, N.M., Pentland, A.P.: Coupled hidden Markov models for complex action recognition. In: Proc. CVPR, pp. 994ā€“999 (1997)

    Google ScholarĀ 

  7. Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. PAMIĀ 22, 831ā€“843 (2000)

    Google ScholarĀ 

  8. Gong, S., Xiang, T.: Recognition of group activities using dynamic probabilistic networks. In: Proc. ICCV, pp. 742ā€“749 (2003)

    Google ScholarĀ 

  9. Galata, A., Johnson, N., Hogg, D.: Learing variable-length markov models of behavior. Comuter Vision and Image UnderstandingĀ 81, 398ā€“413 (2001)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  10. Bui, H.H., Venkatesh, S., West, G.: Policy recognition in the abstract hidden Markov model. Journal of Artificial Intelligence ResearchĀ 17, 451ā€“499 (2002)

    MATHĀ  Google ScholarĀ 

  11. Oliver, N., Garg, A., Horvitz, E.: Layered representations for learning and inferring office activity from multiple sensory channels. Computer Vision and Image UnderstandingĀ 96(2), 163ā€“180 (2004)

    ArticleĀ  Google ScholarĀ 

  12. Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden Markov model: analysis and applications. Machine LearningĀ 32(1), 41ā€“62 (1998)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  13. Murphy, K.P, Paskin, M.: Linear time inference in hierarchical HMMs. In: Proc. NIPS, pp. 833ā€“840 (2001)

    Google ScholarĀ 

  14. Liu, X.H., Chua, C.S.: Multi-agent activity recognition using observation decomposed hidden Markov models. Image and Vision ComputingĀ 24, 166ā€“175 (2006)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  15. Nguyen, N.T., Phung, D.Q., Venkatesh, S., Bui, H.: Learning and detecting activities from movement trajectories using the hierarchical hidden Markov model. In: Proc. CVPR, pp. 955ā€“960 (2005)

    Google ScholarĀ 

  16. Zhang, W.D, Chen, F., Xu, W.L., Zhang, E.W.: Real-time video intelligent surveillance system. In: Proc. ICME, pp. 1021ā€“1024 (2006)

    Google ScholarĀ 

  17. Du, Y.T., Chen, F., Xu, W.L., Li, Y.B.: Recognizing interaction activities using dynamic Bayesian network. In Proc. ICPR, pp. 618ā€“621 (2006)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nicu Sebe Yuncai Liu Yueting Zhuang Thomas S. Huang

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Zhang, W., Chen, F., Xu, W., Cao, Z. (2007). Decomposition in Hidden Markov Models for Activity Recognition. In: Sebe, N., Liu, Y., Zhuang, Y., Huang, T.S. (eds) Multimedia Content Analysis and Mining. MCAM 2007. Lecture Notes in Computer Science, vol 4577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73417-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73417-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73416-1

  • Online ISBN: 978-3-540-73417-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics