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COMPLEXITY OF PROPOSITIONAL PROOFS

UNDER A PROMISE

NACHUM DERSHOWITZ AND IDDO TZAMERET

Abstract. We study – within the framework of propositional proof
complexity – the problem of certifying unsatisfiability of CNF formu-
las under the promise that any satisfiable formula has many satisfying
assignments, where “many” stands for an explicitly specified function
Λ in the number of variables n. To this end, we develop propositional
proof systems under different measures of promises (that is, different Λ)
as extensions of resolution. This is done by augmenting resolution with
axioms that, roughly, can eliminate sets of truth assignments defined
by Boolean circuits. We then investigate the complexity of such sys-
tems, obtaining an exponential separation in the average-case between
resolution under different size promises:
(1) Resolution has polynomial-size refutations for all unsatisfiable

3CNF formulas when the promise is ε · 2n, for any constant
0 < ε < 1.

(2) There are no sub-exponential size resolution refutations for ran-
dom 3CNF formulas, when the promise is 2δn (and the number of

clauses is o(n3/2)), for any constant 0 < δ < 1.

“Goods Satisfactory or Money Refunded”
—The Eaton Promise

1. Introduction

Demonstrating unsatisfiability of propositional formulas is a fundamental
problem in both logic and complexity theory, as well as in hardware and
software validation. Any standard sound and complete propositional proof
system has the ability to separate the set of unsatisfiable formulas in con-
junctive normal form (CNF) from the set of CNF formulas having at least
one satisfying assignment, in the sense that every unsatisfiable CNF has a
refutation in the system, while no satisfiable CNF has one. Our goal is to
develop and study, within the framework of propositional proof complexity,
systems that are “sound and complete” in a relaxed sense: they can separate
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the set of unsatisfiable CNF formulas from the set of CNF formulas hav-
ing sufficiently many satisfying assignments (where the term “sufficiently
many” stands for an explicitly given function of the number of variables in
the CNF). We call such proof systems promise refutation systems, as they
are complete and sound for the set of CNF formulas promised to be either
unsatisfiable or to have many satisfying assignments.

As the proof systems we develop here are intended for proving unsatisfia-
bility of CNF formulas (in other words, to refute them, which is the same as
validating their negation), throughout this paper we work solely with refuta-
tion systems, and speak about “refutations” and “proofs” interchangeably,
always intending refutations, unless otherwise stated. In particular, we work
with refutation systems that extend the widely studied resolution refutation
system.

Our first task is to introduce a natural model for promise propositional
refutation systems. This is accomplished by augmenting standard resolution
(or any other propositional proof system extending resolution) with an addi-
tional collection of axioms, the promise axioms. Each refutation in a promise
refutation system can make use of at most one promise axiom. The promise
axioms are meant to capture the idea that we can ignore or “discard” a cer-
tain number of truth assignments from the space of all truth assignments,
and still be able to certify (due to the promise) whether or not the given
CNF is unsatisfiable. The number of assignments that a promise axiom is
allowed to discard depends on the promise we are given, and, specifically, it
needs to be less than the number of assignments promised to satisfy a given
CNF (unless it is unsatisfiable).

Assuming we have a promise that a satisfiable CNF has more than Λ
satisfying assignments, we can discard up to Λ assignments. We refer to Λ
as the promise. This way, the refutation system is guaranteed not to contain
refutations of CNF formulas having more than Λ satisfying assignments,
as even after discarding (at most Λ) assignments, we still have at least
one satisfying assignment left. On the other hand, any unsatisfiable CNF
formula has a refutation in the system, as resolution already has a refutation
of it.

We now explain (somewhat informally) what it means to “discard” as-
signments and how promise axioms formulate the notion of discarding the
correct number of truth assignments. Essentially, we say that a truth as-
signment a is discarded by some Boolean formula if a falsifies the formula.
More formally, let X := {x1, ..., xn} be the set of underlying variables of
a given CNF, called the original variables. Let A be some CNF formula
in the variables X, and assume that A also contains variables not from X,
called extension variables. Let a ∈ {0, 1}n be a truth assignment for the X
variables, and assume that there is no extension of a (assigning values to
the extension variables) that satisfies A. Thus, any assignment satisfying
A must also satisfy X 6≡ a (that is, A |= X 6≡ a), and so any (implication-
ally) complete proof system can prove X 6≡ a from A, or, in the case of a
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refutation system, can refute X ≡ a, given A. In this case, we say that the
assignment a is discarded by A.

The promise axioms we present enjoy two main properties:

(1) They discard assignments from the space of possible assignments to
the variables X.

(2) They express the fact that not too many assignments to the variables
X are being discarded (in a manner made precise).

The first property is achieved as follows: Let C be any Boolean circuit
with n output bits. Then we can formulate a CNF formula A (using exten-
sion variables) expressing the statement that the output of C is (equal to)
the vector of variables X. This enables A to discard every truth assignment
to the variables of X that is outside the image of the Boolean map defined
by C, because, if an assignment a to X is not in the image of C, then
no extension of a can satisfy A—assuming the formulation of A is correct.
(For technical reasons, the actual definition is a bit different than what is
described here; see Section 3.)

The second property is achieved as follows: Assume we can make explicit
the statement that the domain of the map defined by the Boolean circuit C
above is of size at least 2n − Λ. (See Section 3 for more details.) Then, for
the second property to hold, it is sufficient that the axiom formulates the
statement that the circuit C defines an injective map (and thus the image
of the map contains enough truth assignments), which can be done quite
naturally.

Given a certain promise and its associated promise axiom, we call a refuta-
tion of resolution, augmented with the promise axiom, a resolution refutation
under the (given) promise.

Our second task, besides introducing the model of promise refutation
systems, is to investigate the basic properties of this model and in particular
to determine its average-case proof complexity with respect to different size
of promises (see below for a summary of our findings in this respect).

1.1. Background and Motivation. In propositional proof complexity
theory, it is standard to consider an abstract or formal propositional proof
system (usually called a Cook-Reckhow proof system, following [CR79]) as
a polynomial-time algorithm A that receives a Boolean formula F (usually
in CNF) and a string π over some finite alphabet (“the (proposed) refuta-
tion” of F ), such that there exists a π with A(F, π) = 1 if and only if F is
unsatisfiable. (A string π for which A(F, π) = 1 is also called a witness for
the unsatisfiability of F .) Equipped with this abstract definition of propo-
sitional proof systems, showing that for every abstract proof system there
exists some family of formulas F for which there is no polynomially-bounded
family of proofs π of F is equivalent to showing NP 6= co-NP.

For this reason (among others), it is customary in proof complexity theory
to concentrate on specific (sometimes provably weaker) proof systems for
which proofs have a simple structure. This makes the complexity analysis
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of such proof systems simpler. Prominent examples of such systems are
Frege systems and weaker subsystems of Frege, the most notable being the
resolution refutation system [Rob65], which also plays an important rôle
in many automated theorem provers. In accordance with this, we shall be
interested in the present paper not with abstract proof systems (that is, not
with finding general witnesses for unsatisfiability, possibly under a promise),
but rather with specific and more structured proof systems, and specifically
with refutation systems built up as extensions of resolution.

A natural relaxation of the problem of unsatisfiability certification is to
require that, if a CNF is satisfiable, then it actually has many satisfying as-
signments. As mentioned above, we call the specific number of assignments
(as a function of the number of variables n) required to satisfy a satisfi-
able CNF formula, the “promise”. Accordingly, one can define an abstract
promise proof system in an analogous manner to the definition of an abstract
proof system. It is thus natural to ask whether giving such a promise can
help in obtaining shorter proofs of unsatisfiability.

In the case of a big promise, that is, a constant fraction of the space of
all truth assignments (Λ = ε · 2n, for a constant 0 < ε < 1), there is already
a deterministic polynomial-time algorithm for any fixed natural number k
that certifies the unsatisfiability of all unsatisfiable kCNF formulas under
the promise: The algorithm receives a kCNF that is either unsatisfiable or
has more than Λ satisfying assignments and answers whether the formula is
unsatisfiable (in case the formula is satisfiable the algorithm provides a sat-
isfying assignment). See [Hir98, Tre04] for such efficient algorithms.1 This
trivially implies the existence of polynomial-size witnesses for any unsatisfi-
able kCNF under the promise ε ·2n. But does resolution already admit such
short witnesses of unsatisfiability (that is, resolution refutations) under a big
promise? We show that the answer is positive (for all unsatisfiable 3CNF
formulas).

In the case of a smaller promise, by which we mean Λ = 2δn for a constant
0 < δ < 1, it is possible to efficiently transform any CNF over n variables
to a new CNF with n′ = ⌈n/(1 − δ)⌉ variables, such that the original CNF

is satisfiable if and only if the new CNF has at least 2δn
′

satisfying assign-
ments.2 Thus, the worst-case complexity of certifying CNF unsatisfiability
under such a promise is polynomially equivalent to the worst-case complex-
ity of certifying CNF unsatisfiability without a promise. However, it is still
possible that a promise of 2δn might give some advantage (that is, a super-
polynomial speedup over refutations without a promise) in certifying the

1In the case the promise is Λ = 2n/poly(n), the algorithm in [Hir98] also gives a
deterministic sub-exponential time procedure for unsatisfiability certification of kCNF
formulas (for a constant k).

2 This can be achieved simply by adding new (n′
−n) “dummy variables”. For instance,

by adding the clauses of a tautological CNF in these dummy variables to the original CNF.
This way, if the original CNF has at least one satisfying assignment then the new CNF

has at least 2n
′
−n

≥ 2δn
′

satisfying assignments.
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unsatisfiability of certain (but not all) CNF formulas; for instance, in the
average-case.3

Feige, Kim, and Ofek [FKO06] have shown that when the number of

clauses is Ω(n7/5) there exist polynomial-size witnesses to the unsatisfiabil-
ity of 3CNF formulas in the average-case. On the other hand, Beame, Karp,
Pitassi, and Saks [BKPS02] and Ben-Sasson andWigderson [BSW01] showed
that resolution does not provide sub-exponential refutations for 3CNF for-
mulas in the average-case when the number of clauses is at most n(3/2)−ǫ, for
any constant 0 < ǫ < 1/2.4 This shows that general witnessing of 3CNF un-
satisfiability is strictly stronger than resolution refutations. But is it possible
that, under a promise of 2δn, resolution can do better in the average-case?
We show that the answer is negative.

There are two main motivations for studying propositional proofs under
a given promise and their complexity. The first is to answer the natural
question whether CNF unsatisfiability certification enjoys any advantage
given a certain promise. As already mentioned, the answer is positive when
the promise is a constant fraction of all the truth assignments, and our
results imply that this phenomenon already occurs for resolution. For a small
promise of 2δn, we can show that, at least in the case of resolution refutations
of most 3CNF formulas (of certain clause-to-variable density), the answer
is negative. In fact, we can show that the answer stays negative even when

the promise is bigger than 2δn, and specifically when Λ = 2n/2n
ξ
for some

constant 0 < ξ < 1. Overall, our results establish the first unsatisfiability
certification model in which a promise of a certain given size is known to
help (that is, allow more efficient certifications) in the average-case, while
promises of smaller sizes do not help.

The second motivation is more intrinsic to proof complexity theory: It is a
general goal to develop natural frameworks for propositional proofs that are
not sound in the strict sense, but rather possess an approximate notion of
soundness (like showing that certain “approximations” give speed-ups). For
this purpose, the proof systems we propose formalize—in a natural way—
the notion of separating unsatisfiable CNF formulas from those that have
many satisfying assignments. The promise axioms we present also allow for
a natural way of controlling the size of the promise, which in addition leads
to an exponential separation between different size promises.

3Note that if we add dummy variables to a 3CNF then we obtain an “atypical instance”
of a 3CNF. Thus, assuming we have polynomial-size witnesses of unsatisfiability of 3CNF
formulas under a small promise in the average-case (that is, the “typical case”), the reduc-
tion alone (that is, adding dummy variables) does not automatically yield polynomial-size
witnesses for 3CNF formulas in the average-case without a promise as well.

4Beame et al. [BKPS02] showed such a lower bound for n(5/4)−ǫ number of clauses (for
any constant 0 < ǫ < 1/4). Ben-Sasson and Wigderson [BSW01] introduced the size-width
tradeoff that enables one to prove an exponential lower bound for random 3CNF formulas
with n(3/2)−ǫ number of clauses (for any constant 0 < ǫ < 1/2), but the actual proof for
this specific clause-number appears in [BS01].
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This paper introduces the concept of propositional proofs under a promise,
analyzes the proof complexity of these proof systems with respect to different
promise sizes, giving a separation between promises of different sizes, and
also illustrates several new facts about the widely studied resolution proof
system.

1.2. Results. We show that resolution refutations are already enough to
efficiently separate unsatisfiable 3CNF formulas from those 3CNF formulas
with an arbitrarily small constant fraction of satisfying assignments. In
particular, in Section 4, we show the following:

Main Result 1: Let 0 < ε < 1 be any constant and let Λ = ε·2n be the given
promise. Then every unsatisfiable 3CNF with n variables has a polynomial-
size (in n) resolution refutation under the promise Λ.

The proof of this resembles a deterministic algorithm of Trevisan [Tre04]
for approximating the number of satisfying assignments of kCNF formulas.

In contrast to the case of a big promise, the results show that, at least for
resolution, a small promise of Λ = 2δn (for any constant 0 < δ < 1) does not
give any advantage over standard resolution (that is, resolution without the
promise axioms) in most cases (that is, in the average-case). Specifically, in
Section 5 we show the following:

Main Result 2: Let 0 < δ < 1 be any constant and let Λ = 2δn be the
given promise. Then, there is an exponential lower bound on the size of
resolution refutations of random 3CNF formulas under the promise Λ, when
the number of clauses is o(n3/2).

This lower bound actually applies to a more general model of promise
proofs. It remains valid even if we allow (somehow) the promise proofs to
discard arbitrarily chosen sets of truth assignments (of size Λ = 2δn), and
not necessarily those sets that are definable by (small) Boolean circuits. In

fact, the lower bound applies even to a bigger promise of Λ = 2n−nξ
, for

some constant 0 < ξ < 1.
The proof strategy for this lower bound follows that of Ben-Sasson and

Wigderson [BSW01] (the size-width tradeoff approach), and so the rate of
the lower bound matches the one in that paper. The main novel observation
is that under the appropriate modifications this strategy also works when
one restricts the set of all truth assignments to a smaller set (that is, from 2n

down to 2n − 2δn for a constant 0 < δ < 1, and in fact down to 2n − 2n/2n
ξ
,

for some constant 0 < ξ < 1).
It is important to note that these two main results show that the decision

to discard sets of truth assignments defined by Boolean circuits does not
affect the results in any way, and thus should not be regarded as a restriction
of the model of promise refutations (at least not for resolution). To see
this, note that we could allow a promise refutation to discard arbitrarily
chosen sets of truth assignments (of the appropriate size determined by the
given promise), that is, sets of truth assignments that are not necessarily
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definable by (small) Boolean circuits. However, although this modification
strengthens the model, it is not really necessary for the upper bound in Main
Result 1, as this upper bound is already valid when one discards sets of truth
assignments by (small) Boolean circuits. On the other hand, as mentioned
above, the lower bound in Main Result 2 is already valid when one allows a
promise refutation to discard any arbitrarily chosen set of truth assignments
(of the appropriate size).

The exact model of promise propositional proof systems is developed in
Section 3. It is preceded, in the next section, by preliminaries and termino-
logical conventions.

2. Preliminaries

2.1. Notations. For natural number m, we use [m] to denote the set
{1, . . . ,m} of naturals.

Let A,B be two propositional formulas. We write A ≡ B as an abbrevi-
ation for (A → B) ∧ (B → A). The notation A 6≡ B abbreviates ¬(A ≡ B).
We say that A semantically implies B, denoted by A |= B, iff every satisfying
assignment to A also satisfies B.

A CNF formula over the variables x1, . . . , xn is defined as follows: A
literal is a variable xi or its negation ¬xi. A clause is a disjunction of
literals. We treat a clause as a set of literals, that is, we delete multiple
occurrences of the same literal in a clause. A CNF formula is a conjunction
of clauses (sometimes treated also as a set of clauses, where the conjunction
between these clauses is implicit). A kCNF formula is a CNF with all clauses
containing k literals each.

The width of a clause D is the number of literals in it, denoted |D|. The
size of a CNF formula K is the total number of clauses in it, denoted |K|.
The width of a CNF formula K is the maximum width of a clause in K.

We denote by K ′ ⊆ K that K ′ is a sub-collection of clauses from K.

2.2. Resolution Refutation Systems. Resolution is a complete and
sound proof system for unsatisfiable CNF formulas.

Let C and D be two clauses containing neither xi nor ¬xi. The resolution
rule allows one to derive C ∨D from C ∨xi and D∨¬xi. The clause C ∨D
is called the resolvent of the clauses C ∨ xi and D ∨ ¬xi on the variable xi,
and we also say that C ∨ xi and D ∨ ¬xi were resolved over xi.

The weakening rule allows one to derive the clause C ∨D from the clause
C, for any two clauses C,D.

Definition 2.1 (Resolution). A resolution proof of the clause D from a
CNF formula K is a sequence of clauses D1,D2, . . . ,Dℓ , such that: (1) each
clause Dj is either a clause of K or a resolvent of two previous clauses in
the sequence or derived by the weakening rule from a previous clause in the
sequence; (2) the last clause Dℓ = D. The size of a resolution proof is the
total number of clauses in it. The width of a resolution proof is the maximal
width of a clause in it. A resolution refutation of a CNF formula K is a
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resolution proof of the empty clause ✷ from K. (The empty clause stands
for false; that is, the empty clause has no satisfying assignments.)

Let K be an unsatisfiable CNF formula. The resolution refutation size of
K is the minimal size of a resolution refutation of K and is denoted S(K).
Similarly, the resolution refutation width of K is the minimal width of a
resolution refutation of K and is denoted w(K). If K has a polynomial-size
resolution refutation we say that resolution can efficiently certify the unsat-
isfiability of K. Similarly, if the clause D has a polynomial-size resolution
proof from K we say that D is efficiently provable from K.

2.3. Size-Width Tradeoffs. We recall now the approach for proving
size lower bounds on resolution refutations developed by Ben-Sasson and
Wigderson [BSW01]. The basic idea is that a lower bound on the resolu-
tion refutation width of a CNF formula K implies a lower bound on the
resolution refutation size of K:

Theorem 1 ([BSW01]). Let K be a CNF formula of width r, then

S(K) = exp

(

Ω

(

(w(K) − r)2

n

))

.

2.4. Boolean Circuit Encoding. The promise axioms we introduce use
Boolean circuits to define the set of assignments to be discarded (see Sec-
tion 3). Therefore, as resolution operates only with clauses, we need to
encode Boolean circuits as collections of clauses (CNF formulas). We as-
sume that all Boolean circuits use only three gates: ∨,∧,¬ (though this is
not necessary) where ∨ (denoting or) and ∧ (denoting and) have fan-in 2
and ¬ (denoting not) has fan-in 1. Let C be a Boolean circuit with m input
bits and n output bits. Let W = {w1, . . . , wm} be the m input variables of
C and let X denote the n variables {x1, . . . , xn}. We consider the n output
bits of C as the outputs of n distinct circuits C1(W ), . . . , Cn(W ) in the W
variables, and we write C(W ) ≡ X to mean that X equals the output of
C(W ) (that is, C1(W ) ≡ x1 ∧ · · · ∧ Cn(W ) ≡ xn). This notation can be
extended in a similar manner to C(W1) ≡ C ′(W2) and C(W1) 6≡ C ′(W2).

By Cook’s Theorem, there exists a CNF formula F (in both the W
variables and new extension variables) that encodes the circuit C. This
means that there are n new extension variables (among other extension
variables) y1, . . . , yn in F such that for all assignments a: F (a) = 1 iff
C(w1(a), . . . , wm(a)) = y1(a) ◦ · · · ◦ yn(a), where we denote by wi(a) the
truth value of wi under the assignment a and by ◦ the concatenation of
Boolean bits. In other words, F expresses the fact that y1, . . . , yn are the
output bits of C. If C is of size s (that is, the number of Boolean gates in C
is s), then the size of F is O(s · log(s)). Therefore, if C is of size polynomial
in n then F is also of polynomial-size in n. We denote by ‖C(W )‖ the CNF
formula F that encodes C(W ).

For most purposes, we will not need an explicit description of how the
encoding of Boolean circuits as CNF formulas is done through ‖C(W )‖.
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Nevertheless, in Section 4 we need to ensure that resolution can efficiently
prove several basic facts about the encoded circuits. For this reason, and for
the sake of concreteness of the promise axioms (Definitions 3.3 and 3.4) we
provide the precise definition of the encoding in the Appendix (Section A.1),
in addition to proving some of the encoding’s basic (proof theoretical) prop-
erties. The interested reader can look at the Appendix for any missing
details, but anyone willing to accept the existence of an efficient CNF en-
coding of Boolean circuits that is also intensional for resolution (in the sense
that resolution can efficiently prove basic properties of the encoded circuits)
can skip Section A.1 without risk.

3. Promise Proof Systems

In this section we define precisely the model of refutations under a
promise. As discussed in the introduction, we work with the resolution
refutation system as our underlying system and augment it with a new set
of axioms that we call the promise axioms. We call this proof system promise
resolution. The promise axioms are meant to express the fact that we can
discard a certain number of truth assignments from the space of all truth
assignments and still be able to certify (due to the promise) whether the
input CNF is unsatisfiable or not. Each promise resolution refutation can
use at most one promise axiom.

From now on, throughout the paper, we shall assume that the underlying
variables of the CNF formulas that are meant to be refuted are taken from
the set X := {x1, . . . , xn}. The X variables are called the original variables.
Any other variable that appears in a (promise resolution) refutation is called
an extension variable.

Definition 3.1 (CNF formulas under a promise). Let Λ be a fixed function
in n (the number of X variables) such that 0 ≤ Λ(n) ≤ 2n. The function Λ
is called the promise. The set of CNF formulas under the promise Λ consists
of all CNF formulas in the X variables that are either unsatisfiable or have
more then Λ(n) satisfying assignments (for n = |X|).

The refutation systems we build are sound and complete for the set of
CNF formulas under a (given) promise. That is, every unsatisfiable CNF for-
mula has a refutation in the system (this corresponds to completeness), while
no CNF having n variables and more than Λ(n) satisfying assignments has a
refutation in it (this corresponds to soundness under the promise). Sound-
ness (under the promise) is achieved by requiring that resolution should
prove the fact that we discard the right number of assignments (see Sec-
tion 3.1 for details).

Definition 3.2 (Assignment discarding). Let A be a CNF in theX variables
that can contain (but does not necessarily contain) extension variables (that
is, variables not from X). We say that an assignment to the X variables a
is discarded by A if there is no extension of a (to the extension variables in
A) that satisfies A.
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(See Section 1 for more regarding assignment discarding.)

3.1. Promise Axioms.

3.1.1. Big promise. We first concentrate on a promise of a constant fraction
of assignments (for a smaller promise the axiom is similar; see below).

Let the promise (see Definition 3.1) be Λ = ε · 2n, for a constant 0 <
ε < 1 (we fix this Λ throughout this subsection), and let r = ⌈log(1/ε)⌉ and

t = 2r − 1. Let C be a sequence of Boolean circuits C := (C(1), . . . , C(t)).

Assume that each C(i) has n− r input bits and n output bits and computes
the Boolean map fi : {0, 1}

n−r → {0, 1}n. Assume further that the fi’s are
all injective maps and that the images of all these maps are pairwise disjoint.
Denote by Im(fi) the image of the map fi. For simplicity, we call the union
∪t
i=1Im(fi) the image of C and denote it by Im(C). By the definition of r,

we have 2n−r ≤ ε · 2n, and by the injectivity and pairwise disjointness of the
images of the fi’s we have:

|Im(C)| = t · 2n−r = (2r − 1) · 2n−r = 2n − 2n−r ≥ 2n − Λ . (1)

Therefore, we can treat Im(C) as the set of all possible truth assignments
for the original variables X, without losing soundness: If K is unsatisfiable
then there is no assignment in Im(C) that satisfies K; and if K is satisfiable
then according to the promise it has more than Λ satisfying assignments,
which means that there is at least one assignment in Im(C) that satisfies K.
This idea is formulated as a propositional formula as follows:

Definition 3.3 (Promise Axiom for Λ = ε·2n). Let the promise be Λ = ε·2n,
for a constant 0 < ε < 1, and let r = ⌈log(1/ε)⌉ and t = 2r − 1. Let C be

a sequence of Boolean circuits C := (C(1), . . . , C(t)). Assume that each C(i)

has n − r input bits and n output bits and let W1 and W2 be two disjoint
sets of n − r extension variables each. The promise axiom PRM C,Λ is the
CNF encoding (via the encoding defined in Section A.1) of the following
Boolean formula:
(

t
∧

i=1

(

C(i)(W1) ≡ C(i)(W2) → W1 ≡ W2

)

∧
∧

1≤i<j≤t
C(i)(W1) 6≡ C(j)(W2)

)

−→
t
∨

i=1
C(i)(W1) ≡ X.

The promise axiom PRMC,Λ expresses the fact that if each circuit in

C computes an injective map (this is formulated as ∧t
i=1(C

(i)(W1) ≡

C(i)(W2) → W1 ≡ W2)), and if the images of the maps computed by each

pair of circuits in C are disjoint (this is formulated as ∧1≤i<j≤tC
(i)(W1) 6≡

C(j)(W2)), then we can assume that the assignments to the original variables

X are taken from the image of C (this is formulated as ∨t
i=1C

(i)(W1) ≡ X).
The fact that the image of C is of size at least 2n − Λ is expressed (due to
Equation (1)) by the number of input bits (that is, n− r) of each circuit in
C and the number of circuits in C (that is, t). Also note that the promise
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axiom is of polynomial-size as long as the circuits in C are (since 1/ε is a
constant).

The following claim shows that the promise axioms are sound with respect
to the promise Λ, in the sense that they do not discard too many truth
assignments:

Claim 1. The promise axiom PRM C,Λ discards at most Λ truth assign-
ments. That is, there are at most Λ distinct assignments a to theX variables
such that PRM C,Λ |= X 6≡ a.

Proof. Assume that some Boolean map computed by some circuit in C is
not injective. Then any assignment to the X variables has an extension ρ
(to the extension variables in the promise axiom) that falsifies the premise
of the main implication in PRMC,Λ and thus ρ satisfies PRMC,Λ. Therefore
no assignments to X are discarded.

Similarly, assume that the images of some pair of maps computed by
two circuits in C are not disjoint. Then, again, any assignment to the X
variables has an extension that satisfies PRMC,Λ, and so no assignments to
X are discarded.

Assume that all the Boolean maps computed by circuits in C are injec-
tive and have pairwise disjoint images. Then every assignment satisfies the
premise of the main implication in the promise axiom PRMC,Λ. Therefore,
it suffices to show that the consequence of the main implication of the axiom
(that is, ∨t

i=1C
(i)(W1) ≡ X ) discards at most Λ assignments to the X vari-

ables. By definition (of the encoding of the circuits) for all assignments a
to the X variables that are in Im(C) there is an extension of a that satisfies

∨t
i=1C

(i)(W1) ≡ X. Now, all the circuits C(i) compute injective maps with
pairwise disjoint images, and thus by Equation (1) there are at least 2n −Λ
distinct elements (that is, assignments) in Im(C). Hence, at least 2n − Λ
assignments to the X variables are not discarded. �

3.1.2. Smaller promise. We shall also need to formulate promise axioms for
promises smaller than ε · 2n. Specifically, we shall work with a promise of
Λ = 2δn for a constant 0 < δ < 1 (we fix this Λ throughout this subsection).
For such a promise, the promise axiom is similar to Definition 3.3, except
that the number of input bits of each circuit in C needs to be modified
accordingly. (We shall use the same terminology as that used above for the
Big Promise.)

Definition 3.4 (Promise Axiom for Λ = 2δn). Let the promise be Λ = 2δn,
for a constant 1 < δ < 1, and let t = ⌈(1− δ)n⌉. Let C be a sequence

of Boolean circuits C := (C(1), . . . , C(t)). Assume that for each 1 ≤ i ≤ t

the circuit C(i) has n− i input bits and n output bits. Let W1, . . . ,Wt and
W ′

1, . . . ,W
′
t be 2t disjoint sets of extension variables5, where for all 1 ≤ i ≤ t,

5We have not been very economical in adding extension variables here; but this is not
essential.
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Wi,W
′
i consist of n − i variables each. The promise axiom PRM C,Λ is the

CNF encoding (via the encoding defined in Section A.1) of the following
Boolean formula:
(

t
∧

i=1

(

C(i)(Wi) ≡ C(i)(W ′
i ) → Wi ≡ W ′

i

)

∧
∧

1≤i<j≤t
C(i)(Wi) 6≡ C(j)(Wj)

)

−→
t
∨

i=1
C(i)(Wi) ≡ X.

Note that the promise axiom is of polynomial size as long as the circuits
in C are (since t ≤ n).

Also note that the proof of Claim 1 did not use the parameters r and
t (which determine the number of input bits in the circuits in C and the
number of circuits in C, respectively) but only the size |Im(C)|. Thus, the
same claim holds also for the promise axiom in Definition 3.4, which means
that this promise axiom discards at most 2n−|Im(C)| truth assignments, for
some sequence of circuits in C that compute injective maps with pairwise
disjoint images. Therefore, we need to verify that |Im(C)| ≥ 2n − Λ, for all
C that consists of circuits computing injective maps with pairwise disjoint
images.

Notice that for all 1 ≤ i ≤ t the circuit C(i) computes a Boolean map,
denoted fi, such that fi : {0, 1}

n−i → {0, 1}n. Assume that all the fi’s are
injective and that the images of each pair of functions fi, fj , for 1 ≤ i 6= j ≤
t, are disjoint. Then, we have:

|Im(C)| =

(

1

2
+

1

22
+

1

23
+ · · · +

1

2t

)

· 2n =

(

1−
1

2t

)

· 2n (2)

= 2n − 2n−⌈(1−δ)n⌉ ≥ 2n − 2δn = 2n − Λ

Also note that |Im(C)| ≤ 2n − 2δn−1 and so if the circuit in C are injective
with pairwise disjoint images then PRMC,Λ discards at least 2δn/2 truth
assignments.

3.2. Promise Resolution.

Definition 3.5 (Promise resolution). Let Λ be the promise (see Defini-
tion 3.1) and let K be a CNF in the X variables. A promise resolution
(under the promise Λ) proof of the clause D from a CNF formula K is a
sequence of clauses D1,D2, . . . ,Dℓ such that:

(1) Each clause Dj is either a clause of K or a clause of a promise axiom
PRM C,Λ (where PRM C,Λ is either a big or a smaller promise axiom
as defined in Definitions 3.3 and 3.4 and C is an arbitrary sequence
of circuits with the prescribed input and output number of bits) or
a resolvent of two previous clauses in the sequence;

(2) The sequence contains (the clauses of) at most one promise axiom;
(3) The last clause Dℓ = D .
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The size, width and refutations of promise resolution is defined the same
as in resolution.

Note that promise resolution is a Cook-Reckhow proof system (see the first
paragraph in Section 1.1 for a definition): It is possible to efficiently verify
whether a given CNF is an instance of the promise axiom, and hence to verify
whether a sequence of clauses constitute a legitimate promise refutation.
This can be done by “decoding” the CNF that encodes the promise axiom
PRMC,Λ and then checking that each circuit in C has the right number
of input and output bits (we discuss this issue in some more detail in the
appendix).

Proposition 1. Let Λ be the promise (where Λ is either ε ·2n or 2δn, for
0 < ε, δ < 1). Then promise resolution under the promise Λ is a sound
and complete proof system for the set of CNF formulas under the promise Λ
(see Definition 3.1). In other words, every unsatisfiable CNF has a promise
resolution refutation and every CNF that has more than Λ satisfying assign-
ments does not have promise resolution refutations.

Proof. Completeness stems from completeness of resolution. Soundness un-
der the promise Λ stems from Claim 1 (which, by the notes after Definition
3.4, holds for both the big and the smaller promise axioms). �

3.3. Discussion. Let K be an unsatisfiable CNF formula in n variables,
PRMC,Λ a promise axiom (where the circuits in C all compute injective and
pairwise disjoint Boolean maps) and let S := Im(C) ⊆ {0, 1}n (such that
|S| ≥ 2n − Λ). Then, one can think of a promise resolution refutation of K
using the axiom PRMC,Λ as containing two separate parts:

(i) a resolution ‘refutation’ of K where the space of truth assignments
is restricted to S;

(ii) a resolution proof that |S| ≥ 2n − Λ.

Note that if we want to consider promise resolution as having only part
(i), then we can modify (actually, strengthen) the promise axiom into

∨t
i=1C

(i)(W ) ≡ X. However, this choice means losing the soundness of
the proof system under the promise (that is, the soundness with respect to
CNF formulas under a promise as defined in Definition 3.1), since we do
not have any guarantee that the circuit C discards at most Λ assignments
(and so CNF formulas with more than Λ satisfying assignments might have
refutations in such a system).

It is possible to use any number of axioms of the form C(i)(W ) ≡ X, as
long as resolution can prove both the injectivity of each of the maps com-
puted by the circuits C(i) introduced and the pairwise disjointness of these
maps (as formulated by a propositional formula similar to the formulation

in the promise axioms), and provided that the circuits C(i) have number of
input bits that induce the right size of domains (that is, that the total size
of their domains is at least 2n − Λ).
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It is also possible to modify the promise axioms to suit any chosen size of
promise Λ (possibly, only an approximation of Λ). This can be achieved by
choosing a sequence of circuits with the appropriate size of domain (explicitly
expressed by the number of input bits in each circuit in the sequence, and
the total number of circuits).

Some comments about the formulation of the promise axioms are in order.

Comment 1. Note that we could not use only a single circuit C in the
promise axioms (in contrast to a sequence of circuits), because that way we
would not have the possibility of controlling the size of the domain of C and
efficiently verifying that this size is the correct one inside resolution. To see
this, note that if the number of input variables to C is n (the number of
original variables) and the map computed by C is (provably) injective then
C does not discard any assignment. If, on the other hand, the number of
input variables to C is less than n, then C discards at least half the truth
assignments, which might be too many.

Comment 2. Also note that in order to discard assignments we cannot use
a seemingly more natural axiom of the form C(W ) 6≡ X for some circuit C
(with domain of size Λ). The reason is that this would not discard assign-
ments in the image of C: It is not necessarily true that C(W ) 6≡ X |= X 6≡ b
for all b ∈ {0, 1}n such that b ∈ Im(C) (notice that even for such a b there
might be some assignment a for which C(a) 6≡ b).

On the other hand, Jan Kraj́ıček [Kra07] observed that it is possible to
discard assignments by an axiom of the form C(W ) 6≡ X, where C is a
fixed circuit with domain of size at most Λ (that is, it has k < n number of
input bits, where 2k ≤ Λ), and where the rule of using this axiom is that we
can introduce any instance of C(W ) 6≡ X where all the variables in W are
substituted by constants 0, 1 and variables from X. This choice of axioms
simplifies somewhat the actual formulation of the promise axioms, as it does
not require that C computes an injective Boolean map. However, a possible
drawback of such a formulation is the following: It is possible that for certain
circuits (of the appropriate number of input and output bits) we shall need
to use exponentially many such axiom instances to discard all (or most of)
the assignments pertaining to the image of the circuits. In contrast to this,
our formulation of the promise axioms above enables a single instance of a
promise axiom using any circuit (more correctly, a sequence of circuits of the
appropriate number of input and output bits) to discard all the assignments
outside the image of the circuit.

4. Big Promise: Upper Bound

In this section, we show that under the promise Λ = ε · 2n , for any con-
stant 0 < ε < 1, resolution can efficiently certify the unsatisfiability of all
unsatisfiable 3CNF formulas. The proof method resembles the algorithm
presented by Trevisan [Tre04]. For a constant k, this algorithm receives a
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kCNF formula K and deterministically approximates the fraction of satis-
fying assignments of K within an additive error of ε. The running time of
the algorithm is linear in the size of K and polynomial in 1/ε.

The idea behind the refutations in this section is based on the following
observation: Given an unsatisfiable 3CNF formulaK and a constant c, either
there are 3(c−1) variables that hit6 all the clauses in K or there are at least
c clauses in K over 3c distinct variables denoted by K ′ (that is, each variable
in K ′ appears only once). In the first case, we can consider all the possible
truth assignments to the 3c variables inside resolution: if K is unsatisfiable
then any such truth assignment yields an unsatisfiable 2CNF formula, which
can be efficiently refuted in resolution (cf. [Coo71]). In the second case, we
can make use of a promise axiom to efficiently refute K ′ (this set of clauses
has less then Λ satisfying assignments, for sufficiently large c). Specifically,
in the second case, we construct a sequence of small circuits C for which any
satisfying assignment for K ′ is provably in resolution (with polynomial-size
proofs) outside the image of C.

The following is the main result of this section:

Theorem 2. Let 0 < ε < 1 be a constant and let Λ = ε · 2n be the given
promise. Then every unsatisfiable 3CNF with n variables has a polynomial-
size (in n) resolution refutation under the promise Λ.

This theorem is a consequence of the three lemmas that follow.

Lemma 3. Let K be a 3CNF formula. For every integer c one of the
following holds: (i) there is a set of at most 3(c − 1) variables that hit all
the clauses in K; or (ii) there is a sub-collection of clauses from K, denoted
K ′, with at least c clauses and where each variable appears only once in K ′.

Proof. Assume that c > 2 (otherwise the lemma is trivial). Suppose that
there is no set of at most 3(c − 1) variables that hit all the clauses in K
and let D1 be some clause in K. Then, there ought to be a clause D2 from
K that contains 3 variables that are not already in D1 (or otherwise, the
3 (distinct) variables in D1 hit all the clauses in K, which contradicts the
assumption). In a similar manner we can continue to add new clauses from
K until we reach a set of c clauses D1,D2, . . . ,Dc, where no variable appears
more than once in this set of clauses. �

If case (i) of the prior lemma holds, then the following lemma suffices to
efficiently refute the 3CNF:

Lemma 4. Let c be constant and K be an unsatisfiable 3CNF formula in
the X variables (where n = |X|). Assume that there is a set S ⊆ X of
at most 3(c − 1) variables that hit all the clauses in K. Then there is a
polynomial-size (in n) resolution refutation of K.

6A set of variables S that “hit all the clauses in a CNF formula K” is a set of variables
for which every clause in K contains some variable from S.
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Proof sketch: We simply run through all truth assignments to the vari-
ables in S (since |S| ≤ 3(c − 1), there are only constant number of such
truth assignments). Under each truth assignment to the S variables, K be-
comes an unsatisfiable 2CNF. It is known that any unsatisfiable 2CNF has
a polynomial-size resolution refutation (cf. [Coo71]). Thus, we can refute K
with a polynomial-size resolution refutation.

If case (ii) in Lemma 3 holds, then it suffices to show that resolution under
a big promise can efficiently refute any 3CNF formula T with a constant
number of clauses (for a sufficiently large constant), where each variable in
T occurs only once (such a T is of course satisfiable, but it has less than an ε
fraction of satisfying assignments for a sufficiently large number of clauses).
This is established in the following lemma.

Lemma 5. Fix the constant c = 3⌈log7/8(ε/2)⌉. Let Λ = ε · 2n, where
0 < ε < 1 is a constant and n is sufficiently large. Assume that T is a
3CNF with c/3 clauses (and c variables) over the X variables, where each
variable in T occurs only once inside T . Then there is a polynomial-size
resolution refutation of T under the promise Λ.

Proof. The proof consists of constructing a sequence of polynomial-size cir-
cuits C (where the parameters of the circuits in C are taken from Defini-
tion 3.3; that is, r = ⌈log(1/ε)⌉ and t = 2r−1), such that: (i) resolution can
efficiently prove the injectivity and the pairwise disjointness of the images
of the circuits in C; and (ii) there is a polynomial-size refutation of T and
PRMΛ,C . In other words, there is a polynomial-size derivation of the empty
clause from the clauses of both T and PRMΛ,C .

Without loss of generality we assume that the variables in T are x1, . . . , xc.
The sequence C consists of the circuits C(1), . . . , C(t), where each circuit
C(i) has n − r input bits and n output bits. Denote the Boolean circuit

that computes the jth output bit of C(i) by C
(i)
j and let the input variables

of all the circuits in C be W := {w1, . . . , wn−r}. As shown in equation
(1), since the circuits in C are intended to compute injective and pairwise
image-disjoint maps, the image of C would be of size 2n − 2n−r. We now
define the map that each circuit in C computes.

First, we determine the Boolean functions computed by the output bits
in positions c + 1, . . . , n in all the circuits in C. For all 1 ≤ i ≤ t and all

c+ 1 ≤ j ≤ n let C
(i)
j (W ) compute the (j − r)th input variable wj−r.

Second, we need to determine the rest of the output bits for all the circuits
in C, that is, we need to determine the Boolean functions computed by

C
(i)
j , for all 1 ≤ i ≤ t and all 1 ≤ j ≤ c. Our intention is that for all

1 ≤ i ≤ t, the (single output) circuits C
(i)
1 , . . . , C

(i)
c should compute (when

combined together) a Boolean map, denoted by fi, from c − r input bits
W 0 := {w1, . . . , wc−r}, to c output bits. The jth output bit of fi (which

is computed by C
(i)
j ) is denoted by fi,j, for 1 ≤ j ≤ c. In other words,



COMPLEXITY OF PROPOSITIONAL PROOFS UNDER A PROMISE 17

fi(W 0) = fi,1(W 0) ◦ · · · ◦ fi,c(W 0), where ◦ denotes concatenation of bits
(we shall describe the functions fi below). Summing it up for now, we have
the following:

C
(1)
1 (W 0) = f1,1(W 0), . . . , C

(1)
c (W 0) = f1,c(W 0),

C
(1)
c+1(wc−r+1) = wc−r+1, . . . , C

(1)
n (wn−r) = wn−r

...
...

C
(t)
1 (W 0) = ft,1(W 0), . . . , C

(t)
c (W 0) = ft,c(W 0),

C
(t)
c+1(wc−r+1) = wc−r+1, . . . , C

(t)
n (wn−r) = wn−r,

(3)

where C
(i)
j (wk) = wk denotes the fact that C

(i)
j outputs the (input) variable

wk (in which case we assume that the circuit C
(i)
j consists of only a single

gate: the variable wk); and where C
(i)
j (W 0) = fi,j(W 0) denotes the fact that

C
(i)
j computes the function fi,j in the c− r input variables W 0.
We now describe the requirements from the functions fi,j. Specifically,

let B ⊆ {0, 1}c be the set of all falsifying assignments7 to T and denote
by Im(fi) the image of fi, for all 1 ≤ i ≤ t. We need the fi’s functions
to map every input (over c − r input bits) to a truth assignment (over the
c variable x1, . . . , xc) that falsifies T (that is, a truth assignment from B).
We also need the fi’s to be injective and have pairwise disjoint images by
the requirements of the promise axiom (Definition 3.3). So that, overall,
the Boolean maps computed by the circuits in C would discard all the truth
assignments that satisfy T . To prove the existence of such fi’s we need the
following claim:

Claim 2. There exists a collection of Boolean functions fi, where 1 ≤ i ≤ t,
for which the following three properties hold.

(1) ∪t
i=1Im(fi) ⊆ B;

(2) All the fi’s are injective and have pairwise disjoint images;
(3) All the fi’s depend on a constant number of input variables:

w1, . . . , wc−r (and hence, all the fi,j’s depend only on these vari-
ables).

Proof. Each fi should depend on c−r variables and should be injective, and
further, each pair of fi’s should have disjoint images; thus we have:

∣

∣

∣

∣

∣

t
⋃

i=1

Im(fi)

∣

∣

∣

∣

∣

= t · 2c−r = (2r − 1) · 2c−r = 2c · (1− 2−r) . (4)

Hence, to prove the existence of the collection of fi’s with the required
three properties it suffices to show that | ∪t

i=1 Im(fi)| ≤ |B|, and by (4) it
suffices to show:

7Note that the assignments here are actually partial truth assignments with respect
to X, that is, they give truth values only to the variables x1, . . . , xc (these are all the
variables in T ).
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2c · (1− 2−r) ≤ |B| . (5)

Observe that the fraction of distinct assignments that satisfy T is equal
to the probability (over all truth assignments to T ) that a uniformly chosen
random truth assignment satisfies all the c/3 clauses in T , which is equal to

(

7

8

)c/3

=

(

7

8

)⌈log7/8(ε/2)⌉

, (6)

and so

|B| = 2c ·

(

1−

(

7

8

)⌈log7/8(ε/2)⌉
)

.

Therefore, for (5) to hold it remains to show

2−r ≥

(

7

8

)⌈log7/8(ε/2)⌉
,

which holds because

2−r = 2−⌈log(1/ε)⌉ ≥ 2− log(1/ε)−1 = 2− log(1/ε)/2

= ε/2 =
(

7
8

)log7/8(ε/2) ≥
(

7
8

)⌈log7/8(ε/2)⌉ .

�

Having established the existence of functions fi for which the three condi-

tions in Claim 2 hold, we define each circuit C
(i)
j , for 1 ≤ i ≤ t and 1 ≤ j ≤ c,

to compute the function fi,j. Since the domain of each fi,j is constant (that

is, 2c−r) each C
(i)
j can be of constant size.

Note that the circuits in C = (C(1), . . . , C(t)) indeed compute t injective
Boolean maps that have pairwise disjoint images. Disjointness of images
stems from the fact that the fi’s functions all have disjoint images, and
injectivity stems from the fact that the fi’s are all injective, and that for each

1 ≤ i ≤ t, the Boolean map computed by C
(i)
c+1 ◦ . . . ◦ C

(i)
n (again, ◦ denotes

concatenation of bits) is exactly the identity map id : {0, 1}n−c → {0, 1}n−c.
To complete the proof of Lemma 5, we need to show that resolution can

efficiently prove that indeed the circuits in C all compute injective Boolean
maps and have pairwise disjoint images (as well as to efficiently refute T
when assuming that X can take only assignments from the image of C).
This is done in the following claim:

Claim 3. Let C be the sequence of circuits as devised above, and let
PRMC,Λ be the corresponding (big) promise axiom. Then there is a
polynomial-size resolution refutation of T and PRMC,Λ.

Proof. The proof follows by considering the encoding of the (big) promise
axiom PRMC,Λ via the encoding scheme in the Appendix (Section A.1)
and showing how resolution can prove the empty clause from T and this
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encoding. Here we shall use a less formal description; more details can be
found in the appendix.

First we need resolution to prove the premise of the main im-
plication in PRMC,Λ. This breaks into two parts corresponding

to ∧t
i=1

(

C(i)(W1) ≡ C(i)(W2) → W1 ≡ W2

)

and ∧1≤i<j≤tC
(i)(W1) 6≡

C(j)(W2).
For the first part, we need to refute the statement expressing that C con-

tains some circuit C(i) that computes a non-injective Boolean map. This
can be efficiently refuted in resolution: Assume (inside resolution) that
C(i)(W 1) ≡ C(i)(W 2) , for some 1 ≤ i ≤ t, then by (3) we can efficiently
prove (inside resolution) that for all c − r + 1 ≤ j ≤ n − r it happens that

w
(1)
j ≡ w

(2)
j (where w

(1)
j is the jth variable in W 1, and w

(2)
j is the jth vari-

able in W 2) (see details in the appendix, and in particular Section A.1.3).
Thus, it remains to refute the statement that for some 1 ≤ j ≤ c − r it

happens that w
(1)
j 6≡ w

(2)
j . This is indeed a contradiction by definition of

the circuits in C (as they compute injective maps). Since all the output bits

w
(1)
j , w

(2)
j for 1 ≤ j ≤ c − r, are computed by constant size circuits C

(i)
j for

1 ≤ j ≤ c− r and 1 ≤ i ≤ t (with constant number of input variables), such
a contradiction can be refuted in constant size resolution refutation (again,
see more details in the appendix).

The disjointness of the images of the (maps computed by the) circuits in
C is also efficiently provable inside resolution in a similar manner, and we
shall not describe it here.

Therefore, we arrive (inside resolution) at the consequence of the main

implication in the promise axiom: ∨t
i=1C

(i)(W 1) ≡ X . It remains to refute

T and ∨t
i=1C

(i)(W 1) ≡ X.
Again, T has a constant number of variables (that is, c). Consider only

the circuits that output to the variables x1, . . . , xc in ∨t
i=1C

(i)(W 1) ≡ X:

these are the circuits C
(i)
1 , . . . , C

(i)
c for all 1 ≤ i ≤ t. We shall denote the

set of these circuits by C ′. The (functions computed by) the circuits in
C ′ depend on a constant number of variable W 0 and they have constant
size. Denote by Z the subformula of PRMC,Λ that contains the (encoding
of) the circuits in C ′ including the encoding of the statement that for some
1 ≤ i ≤ t the variables x1, . . . , xc are equal to the output of the circuits

C
(i)
1 , . . . , C

(i)
c . By the definition of the circuits in C (see condition (1) in

Claim 2) Z discards all the satisfying assignments of T (over the c variables
in T )8. Thus, T and Z constitute together a contradiction of constant size
(as there are no satisfying assignments for both T and Z). Therefore, there
is a constant size resolution refutation of T and Z. �

8We have abused notation here, as we defined assignment discarding of only complete
assignments to X while here we say that Z discards a partial assignment to the variables
x1, . . . , xc only; but the definition of such partial assignment discarding is similar (consider
the variables x1, . . . , xc to be the only original variables).
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This concludes the proof of Lemma 5. �

5. Smaller Promise: Lower Bound

In this section, we prove an exponential lower bound on the size of res-
olution refutations under the promise 2δn, for any constant 0 ≤ δ ≤ 1.
The lower bound apply to random 3CNF formulas with o(n3/2) number of
clauses (where n is the number of variables in the 3CNF). This lower bound
matches the known lower bound on resolution refutation-size for random
3CNF formula (without any promise). Basically, the proof strategy of our
lower bound is similar to that of Ben-Sasson and Wigderson [BSW01], ex-
cept that we need to take care that every step in the proof works with the
augmented (smaller) promise axiom.

The lower bound is somewhat stronger than described above in two re-
spects. First, we show that restricting the set of all truth assignments 2n

to any smaller set (that is, not just those sets defined by small circuits)
that consists of 2n − 2δn assignments (for any constant 0 ≤ δ ≤ 1), does
not give resolution any advantage in the average-case. One can think of
such a restriction as modifying the semantic implication relation |= to take
into account only assignments from some prescribed set of assignments S,
such that |S| = 2n − 2δn (in other words, for two formulas A,B, we have
that A |= B under the restriction to S iff any truth assignment from S that
satisfies A also satisfies B). Formally, this means that the lower bound does
not use the fact that the restricted domain of size 2n − 2δn is defined by
a sequence C of polynomial-size circuits (nor the fact that the circuits in
C ought to have polynomial-size resolution proofs of their injectivity and
pairwise disjointness).

Second, we could allow for a promise that is bigger than 2δn, and in

particular for a promise of 2n(1−1/n1−ξ) = 2n/2n
ξ
, for some constant 0 < ξ <

1 (see Remark 1 below). The actual proof of the lower bound uses the smaller

promise of 2δn, but the proof for a 2n/2n
ξ
promise is the same. (Although

we have not defined precisely how the promise axioms are formulated in the

case of a promise equal to 2n/2n
ξ
, it is possible to formulate such promise

axioms along the same lines described in Definition 3.4.)
The following defines the usual average-case setting of 3CNF formulas

(there are other definitions, that are essentially similar):

Definition 5.1 (Random 3CNF formulas). For a 3CNF formula K with n
variables X and β · n clauses, we say that β is the density of K. A random
3CNF formula on n variables and density β is defined by picking β ·n clauses
from the set of all 23 ·

(n
3

)

clauses, independently and indistinguishably
distributed, with repetitions.
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We say that an event (usually a property of a 3CNF in n variables and
density β) happens with high probability if it happens with 1− o(n) proba-
bility in the specified probability space (usually random 3CNF formulas as
defined in Definition 5.1).

Our goal is to prove a lower bound on the average-case refutation-size of
3CNF formulas taken from the set of 3CNF formulas under a promise as
defined in Definition 3.1 (note that the probability space defined in Defini-
tion 5.1 is defined over a different set of 3CNF, that is, the set of all 3CNF
formulas). For this purpose, we define a probability space over the set of
3CNF formulas under a promise: The distribution of random 3CNF formu-
las under a promise Λ on n variables and density β is the distribution of
random 3CNF formulas in Definition 5.1 conditioned on the event that the
3CNF is either unsatisfiable or has more than Λ(n) satisfying assignments.

We now argue that to satisfy our goal to prove a lower bound on the
average-case proof complexity of 3CNF formulas under a promise, it is suffi-
cient to prove the lower bound result considering the distribution of random
3CNF formulas as defined in Definition 5.1.

It is well known that almost all 3CNF formulas with a density β above
a certain constant threshold (say, 5) are unsatisfiable. This means that any
property of a 3CNF (with density above the threshold) that happens with
high probability in the distribution in Definition 5.1 also happens with high
probability in the distribution of random 3CNF formulas under a promise
Λ(n) (as defined above); this is because there are only a fraction o(1) of
3CNF formulas (with a given fixed number of variables n and a given fixed
density β above the threshold) that are satisfiable (and moreover have at
least one satisfying assignment but less than Λ(n) satisfying assignments).
Thus, if we prove that with high probability a random 3CNF formula has
no small promise resolution refutation then it implies also that with high
probability a random 3CNF formula under a promise has no small promise
resolution refutation. Therefore, we shall consider from now on only the
distribution of 3CNF formulas as defined in Definition 5.1, and forget about
the other distribution.

5.1. The Lower Bound. Throughout this section we fix 0 < δ < 1 and
Λ = 2δn. We also fix an arbitrary instance of a promise axiom PRMC,Λ (from
Definition 3.4; where C is a sequence of the appropriate number of circuits,
and each circuit in C have the appropriate number of input and output bits).
For K a CNF formula, we denote by Vars(K) the set of variables that occur
in K.

The following is the main theorem of this section. The lower bound
matches that appearing in [BSW01] for resolution.

Theorem 6. Let 0 < δ < 1 and 0 < ǫ < 1/2. With high probability a

random 3CNF formula with β = n1/2−ǫ requires a size exp(Ω(β−4/(1−ǫ) ·n))
resolution refutation under the promise Λ = 2δn.
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Remark 1. As mentioned above, we could allow in Theorem 6 for a promise

that is bigger than 2δn, and precisely for a promise of 2
n(1− 1

n1−ξ ) = 2n/2n
ξ
,

for any constant ξ such that ǫ
(1−ǫ) < ξ < 1 (for instance, this allows for a

promise of 2n/2n
1/3

).

The proof strategy of Theorem 6 is to show that with high probability for
a random 3CNF formula K with density β = n1/2−ǫ, a resolution refutation
under the promise 2δn of K must contain some clause D of large width.
Then we can apply the size-width tradeoff from Theorem 1 to reach the
appropriate size lower bound.

However, we need to be a bit careful here, as in order to illustrate an
exponential lower bound via the size-width tradeoff of Theorem 1, we need
to guarantee that all the initial clauses (that is, all the axiom clauses) are
of constant width. The 3CNF formula K is certainly of constant width,
but the clauses pertaining to the promise axiom PRMC,Λ might not be (see
the appendix for a detailed specification of these clauses). We can solve
this problem easily: First, we add yet more extension variables to encode
the clauses of the promise axiom with new constant width clauses. Second,
we note that the original clauses of the promise axiom can be derived by
a linear-size resolution proof from the new constant width version of the
promise axiom (therefore, if there is a polynomial-size resolution refutation
of K using the original promise axiom, then there is also a polynomial-
size resolution refutation of K using the new constant width version of the
promise axiom). Finally, we prove the exponential lower bound on resolution
augmented with the constant width version of the promise axiom (instead
of the original clauses pertaining to the promise axiom).

Let us explain now how to get the new constant-width promise axiom from
the clauses pertaining to the original promise axiom from Definition 3.4
(as depicted in the appendix). Let E = ℓ1 ∨ . . . ∨ ℓm be a clause in the
promise axiom that has more than constant width (that is, ℓi’s are literals
and m = ω(1)). Then, we replace the clause E with the following collection
of clauses:

ℓ1 ∨ e1, ¬e1 ∨ ℓ2 ∨ e2, ¬e2 ∨ ℓ3 ∨ e3, . . . ,¬em−1 ∨ ℓm, (7)

where the ei’s are new extension variables. By resolving on the ei variables,
one after the other, it is possible to derive with a linear-size resolution proof
the original clause E from the clauses in (7) (consider the first two clauses
(from left) in (7), and resolve over the variable e1, then the resolvent of this
step is resolved over the variable e2 with the third clause in (7), and so forth).
(Note that every truth assignment that satisfies (7) also satisfies E, and so
any clause that is semantically implied by E (see the preliminaries, Section 2)
is also semantically implied by (7). This means that the new constant width
version of the promise axiom discards the same truth assignments to the
variables X as the original version of the promise axiom.)
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Thus, from now on in this section we assume that the promise axiom
consists of clauses of a constant width.

The rest of this section is devoted to the proof of Theorem 6.
For a clause D define:

η(D) := min
{

|K ′|
∣

∣

∣
K ′ ⊆ K and (PRMC,Λ ∪K ′) |= D

}

.

Remark 2. We use the symbol η to distinguish it from a similar measure
µ used in [BSW01]: Here we require the minimal set of clauses from K that
combined with the axiom PRMC,Λ semantically imply D.

We show that with high probability for a random 3CNF formula with
density β = n1/2−ǫ, for 0 < ǫ < 1/2, the following is true:

(1) Let k = 2n · (80β)−2/(1−ǫ). Then η(✷) ≥ k.
(2) Any refutation ofK must contain a clauseD such that k/2 ≤ η(D) ≤

k.
(3) Any clause D from 2 must have large width, and specifically |D| ≥

ǫn(80β)−2/(1−ǫ) (which, by Theorem 1, concludes the proof).

The following two definitions are similar to those in [BSW01] (we refer
directly to 3CNF formulas instead of 3-uniform hypergraphs):

Definition 5.2 (CNF Expansion). For a 3CNF formula K with density

β = n1/2−ǫ, for 0 < ǫ < 1/2, the expansion of K is

e(K) := min







2|Vars(K ′)| − 3|K ′|

∣

∣

∣

∣

∣

K ′ ⊂ K and

n · (80β)−2/(1−ǫ) ≤ |K ′|

≤ 2n · (80β)−2/(1−ǫ)







.

Definition 5.3 (Partial matchability). A 3CNF formula K with density

β = n1/2−ǫ, for 0 < ǫ < 1/2, is called partially matchable if for all K ′ ⊂ K

such that |K ′| ≤ 2n · (80β)−2/(1−ǫ) we have |Vars(K ′)| ≥ |K ′|.

The next lemma gives two properties of random 3CNF formulas that
occur with high probability (see the appendix of [BSW01] for a proof). We
then use this lemma to show that with high probability 1,2,3 above hold.

Lemma 7 ([BKPS02]). Let 0 < ǫ < 1/2 and let K be a random 3CNF with

n variables and density β = n1/2−ǫ, then with high probability:

(1) e(K) ≥ ǫn(80β)−2/(1−ǫ); and
(2) K is partially matchable.

We now prove 1. In light of part (2) in Lemma 7, in order to prove that
with high probability 1 holds it is sufficient to prove the following:

Lemma 8. Let K be a 3CNF formula in the X variables with density β =
n1/2−ǫ, for 0 < ǫ < 1/2. If K is partially matchable then η(✷) ≥ 2n ·

(80β)−2/(1−ǫ).
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Proof. By partial matchability of K, for all K ′ ⊂ K such that |K ′| ≤ 2n ·

(80β)−2/(1−ǫ) it happens that |Vars(K ′)| ≥ |K ′|. Thus, by Hall’s Theorem
we can choose a distinct variable (representative) from each clause in K ′ and

set it to satisfy its clause. Clearly, |Vars(K ′)| ≤ 3|K ′| ≤ 6n · (80β)−2/(1−ǫ),

and so there is a (partial) truth assignment ρ to at most 6n · (80β)−2/(1−ǫ)

variables in X that satisfies K ′. Since β = n1/2−ǫ,

6n · (80β)−2/(1−ǫ) = 6 · 80−2/(1−ǫ) · nǫ/(1−ǫ), (8)

which, by 0 < ǫ < 1/2, is equal to O(nλ) for some 0 < λ < 1. Thus for
sufficiently large n there are more than δn variables from X not set by ρ,
which means that there are more than 2δn different ways to extend ρ into
truth assignments (to all the variables in X) that satisfy K ′.9 Since the
promise axiom PRMC,Λ can discard up to 2δn truth assignments to the X
variables, we get that PRMC,Λ∪K ′ is satisfiable (any assignment to X that
is not discarded by PRMC,Λ can be extended to the extension variables in
a way that satisfies PRMC,Λ).

We have thus showed that every collection K ′ containing at most
2n · (80β)−2/(1−ǫ) clauses from K and augmented with the promise ax-
iom PRMC,Λ is satisfiable. This implies in particular that η(✷) ≥ 2n ·

(80β)−2/(1−ǫ). �

We now prove 2. Note that the resolution rule is sub-additive with respect
to η in the sense that for all three clauses E,F,D such that D is a resolvent
of E and F , it holds that

η(E) + η(F ) ≥ η(D).

We also clearly have that for every axiom clause E (either from K or from
the promise axiom):

η(E) = 1.

Let

k = 2n · (80β)−2/(1−ǫ).

By Lemma 8, with high probability for a 3CNF formula K with density
β = n1/2−ǫ (for 0 < ǫ < 1/2) it happens that η(✷) ≥ k. By sub-additivity
of the resolution rule with respect to η, in any resolution refutation of K
under the promise Λ, there ought to be some clause D such that

k/2 ≤ η(D) ≤ k.

We now prove 3. Let D be a clause such that k/2 ≤ η(D) ≤ k from 2 and
let K ′ be the (minimal) set of clauses from K for which PRMC,Λ ∪K ′ |= D
and k/2 ≤ |K ′| ≤ k. We shall prove that (with high probability for a

9Actually, for sufficiently large n there are more than Ω(n − nǫ/(1−ǫ)) such variables,

from which we can assume the bigger promise Λ = 2n/2n
ξ

, for any ǫ
(1−ǫ)

< ξ < 1, as

noted in Remark 1.
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random 3CNF) |D| ≥ ǫn(80β)−2/(1−ǫ). In light of Lemma 7 part (1), in
order to prove this, it is sufficient to prove the next two lemmas.

Define ∂K ′, called the boundary of K ′, to be the set of variables in K ′

that occur only once in K ′ (in other words, each variable in ∂K ′ appears
only in one clause in K ′).

Lemma 9. |∂K ′| ≥ e(K).

Proof. Every variable not in ∂K ′ must be covered by at least two distinct
clauses in K ′, and so |Vars(K ′)| ≤ |∂K ′| + 1

2 · (3|K ′| − |∂K ′|). Thus, we
have |∂K ′| ≥ 2|Vars(K ′)| − 3|K ′| ≥ e(K) (where the last inequality is by
Definition 5.2 and since k/2 ≤ |K ′| ≤ k). �

Lemma 10. |D| ≥ |∂K ′|.

Proof. Let xi ∈ ∂K ′, for some 1 ≤ i ≤ n, and denote by Ki the (unique)
clause from K ′ that contains xi. Assume by a way of contradiction that xi
does not occur in D.

By minimality of K ′ with respect to η and D there exists an assignment
α (here we treat α as a total truth assignment, that is, a truth assignment
to both the X variables and the extension variables in the promise axiom)
such that

(K ′ \Ki)(α) = 1 and D(α) = 0 (9)

(as otherwise (K ′ \Ki) |= D which clearly implies PRMC,Λ∪(K ′\Ki) |= D,
which then contradicts the minimality of K ′ with respect to η and D).

By assumption, xi occurs neither in K ′ \Ki nor in D. Hence, we can flip
the value of α on xi so that Ki(α) = 1 while still keeping (9) true. We thus
have:

K ′(α) = 1 and D(α) = 0 (10)

Since |K ′| ≤ k, we have that |Vars(K ′)| ≤ 3k = 6n · (80β)−2/(1−ǫ) (recall
that |K ′| is the number of clauses in K ′). If |D| ≥ |∂K ′| we are done.
Otherwise,

|Vars(K ′)|+ |D| < |Vars(K ′)|+ |∂K ′| ≤ 2|Vars(K ′)| ≤ 12n · (80β)−2/(1−ǫ).

Thus, similar to equation (8), for sufficiently large n, the total number of
distinct variables in K ′ and D is at most |Vars(K ′)| + |D| = O(nλ), for
some 0 < λ < 1. This means that for sufficiently large n there are more
than δn variables from X for which flipping the value of α on them still
validates (10).10 Hence, there are more than 2δn distinct assignments to the
X variables for which (10) holds.

The promise axiom PRMC,Λ discards at most 2δn assignments to the X

variables. This means that there are at most 2δn assignments ρ to the X
variables that falsify PRMC,Λ (that is, that every extension of ρ to all the

10Again, similar to what was noted in the proof of Lemma 8, for sufficiently large n
there are actually more than Ω(n− nǫ/(1−ǫ)) such variables.
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extension variables falsifies PRMC,Λ), while all other assignments ρ to the X
variables have an extension (to all the the extension variables) that satisfies
PRMC,Λ. Thus, by the previous paragraph there ought to be at least one
assignment ρ to the X variables that has an extension ρ′ to the extension
variables, such that

PRMC,Λ(ρ
′) = 1 ,K ′(ρ′) = 1 and D(ρ′) = 0, (11)

which contradicts the assumption that PRMC,Λ ∪K ′ |= D. �

6. Conclusion

This paper establishes a new framework of propositional proof systems
that are able to separate the unsatisfiable CNF formulas from the set of
CNF formulas having many satisfying assignments. We were able to analyze
the complexity of basic cases pertaining to such proof systems, such as the
case of a big promise (a constant fraction of all truth assignments) and the
average-case proof complexity of refutations under a smaller promise (that
is, a promise of 2δn, for any constant 0 < δ < 1).

One question we have not addressed is what can be gained (if at all)
when we augment a stronger proof system than resolution, like bounded-
depth Frege proof system or Frege proof system, with the promise axioms
(for a small promise like 2δn, as for a big promise already resolution can
efficiently refute all unsatisfiable 3CNF formulas).

Another question that arises is whether the fact that we require the
Boolean circuits in the promise axioms to be provably injective and to prov-
ably posses disjoint images (that is, provably inside resolution) constitutes a
real restriction. (Note that the lower bound for resolution under the promise
2δn in Section 5 did not use at all these requirements.) In other words, we

ask whether there is a sequence of circuits C(1), . . . , C(t) for which adding
the axiom ∨t

i=1C
(i)(W ) ≡ X (where the parameter t and the number of vari-

ables in m are taken from the smaller promise axiom 3.4) to resolution (or a
stronger proof system) gives a super-polynomial speed-up for some contra-
dictory family of formulas over standard resolution (or the stronger proof
system); but that we cannot prove efficiently in resolution (or the stronger
proof system) that C(1), . . . , C(t) are injective or that they have pairwise
disjoint images?

A different and more general task is to come up with other natural models
of propositional proof systems that capture a “relaxed” notion of soundness.
For instance, Pitassi [Pit06] suggested considering “approximate proofs” in
the framework of algebraic proof systems.

Finally, we have not dealt directly in this paper with the promise Λ =
2n/poly(n), though it is most likely that a similar upper bound (with a
similar proof) to that shown in Section 4 also holds for this promise (when
the promise axiom is modified accordingly). In this respect it is worth
mentioning that Kraj́ıček [Kra07] observed that the work of Razborov and
Rudich [RR97] implies the existence (under a cryptographic conjecture) of a
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Boolean function g with nδ input bits (denoted by y1, . . . , ynδ) and n output
bits (denoted by g1(y1, . . . , ynδ), . . . , gn(y1, . . . , ynδ)), for any constant 0 <
δ < 1, that has the following property: Given any CNF formula K in n
variables x1, . . . , xn, substituting g1(y1, . . . , ynδ), . . . , gn(y1, . . . , ynδ) for the
original xi variables inK yields a new CNF formula that is unsatisfiable only
if K has at most 2n/nω(1) satisfying assignments. This means that under
the promise 2n/poly(n) the substitution g is sound : Any unsatisfiable CNF
formula (clearly) stays unsatisfiable after the substitution, while any CNF
with more than 2n/poly(n) satisfying assignments stays satisfiable after the
substitution.

Appendix A. Encodings

A.1. Encoding of Boolean Circuits and Promise Axioms. In this
section we describe in detail how the promise axiom (see Definition 3.3)
is encoded as a CNF formula. As already mentioned in the Preliminaries
(Section 2), by Cook’s Theorem there is always an efficient way to encode a
Boolean circuit as a CNF formula using extension variables (that is, a CNF
with size O(s · log(s)) can encode a circuit of size s). However, we shall need
to be more specific regarding the actual way the encoding is done since we
require that resolution should be able to efficiently prove some basic facts
about the encoded circuits.

A.1.1. Boolean circuit encoding. The following definition is similar to the
circuit encoding defined in Alekhnovich et al. in [ABSRW04] (note that it
deals with a single output bit Boolean circuit):

Definition A.1 (Encoding of Boolean circuits). Let C(W ) be a Boolean
circuit (with ∨,∧ as fan-in two gates and ¬ a fan-in one gate) and m input
variables W := w1, . . . , wm and a single output bit. For every gate v of the
circuit C we introduce a special extension variable yv. For input gates wj

(1 ≤ j ≤ m) we identify ywj with wj. We denote by y1 the literal y and

by y0 the literal ¬y. The CNF formula ‖C(W )‖ consists of the following
clauses:

(i) yǭ1v1 ∨ yǭ2v2 ∨ y
π◦(ǫ1,ǫ2)
v , where v is a ◦ ∈ {∨,∧} gate in C and v1, v2 are

the two input gates of v in C and 〈ǫ1, ǫ2〉 is any vector in {0, 1}2 and π◦ is
the truth table function of ◦ (and 0̄ = 1, 1̄ = 0);

(ii) yǭ1v1 ∨ y
π¬(ǫ1)
v , where v is a ¬ gate in C and v1 is the single input gates

of v in C, and ǫ1 ∈ {0, 1} and π¬ is the truth table function of ¬.
We write ‖C(W )‖(y) to indicate explicitly that the output gate v of C is

encoded by the extension variable y.

A.1.2. Encoding of the promise axioms. We now give a rather detailed de-
scription of how the promise axioms are encoded as CNF formulas. We shall
consider only the ‘big’ promise axiom (Definition 3.3), but the other variant
(Definition 3.4) is similar. We encode the promise axioms in a bottom-up
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manner, encoding the sub-formulas separately, and then combining all of
them together.

We assume that a Boolean circuit C(W ) with n output bits is encoded as n
distinct circuits and we write ‖C(W )‖(Y ) to indicate explicitly that the out-
put gates v1, . . . , vn of C are encoded by the extension variables y1, . . . , yn
(where Y := {y1, . . . , yn}). This means that ‖C(W )‖(Y ) is the CNF formula
∧n
i=1‖Ci(W )‖(yi), where Ci(W ) is the circuit computing the ith output bit

of C(W ) and yi is the variable that encodes (see Definition A.1) the (single)
output bit of Ci(W ). We also require that if the (function computed by the)
circuit C(W ) does not depend,11 on some input bit wi, then wi does not
occur in the encoding of C(W ).

Let 1 ≤ k ≤ t (where the parameter t is taken from Definition 3.3). We
first encode as a CNF formula the negation of following sub-formula from
the promise axiom:

C(k)(W 1) ≡ C(k)(W 2) → W 1 ≡ W 2 .

We denote this CNF encoding by ¬INJk (where INJ stands for injective).

Definition A.2 (¬INJk). Let 1 ≤ k ≤ t and m = n − r (all the pa-

rameters are taken from Definition 3.3). Let W 1 := {w
(1)
1 , . . . , w

(1)
m } ,

W 2 := {w
(2)
1 , . . . , w

(2)
m } , Y k := {y

(k)
1 , . . . , y

(k)
n } and Zk := {z

(k)
1 , . . . , z

(k)
n }

be sets of new distinct extension variables. The CNF formula ¬INJ k con-
sists of the following set of clauses:

(1) ||C(k)(W 1)||(Y k); ||C(k)(W 2)||(Zk) (expresses that Y k, Zk are the

output bits of C(k)(W 1), C
(k)(W 2), respectively);

(2) ¬ui ∨ ¬y
(k)
i ∨ z

(k)
i ; ¬ui ∨ y

(k)
i ∨ ¬z

(k)
i , for all 1 ≤ i ≤ n (expresses

that ui implies y
(k)
i ≡ z

(k)
i );

(3) vi ∨w
(1)
i ∨w

(2)
i ; vi ∨ ¬w

(1)
i ∨ ¬w

(2)
i ; for al 1 ≤ i ≤ m (expresses that

¬vi implies w
(1)
i ≡ w

(2)

i );

(4) u1, . . . , un (expresses that Y ≡ Z);
(5) ¬v1 ∨ . . . ∨ ¬vm (expresses that W 1 6≡ W 2);

For simplicity of writing we introduce the following notation: Let ℓ be a
literal and let A be a CNF formula. We denote by ℓ©∨A the set of clauses
(that is, the CNF formula) that results by adding to each clause of A the
literal ℓ.

We now encode as a CNF formula denoted by ¬INJ the negation of

t
∧

k=1

(

C(k)(W 1) ≡ C(k)(W 2) → W 1 ≡ W 2

)

.

Definition A.3 (¬INJ). The CNF formula ¬INJ consists of the following
set of clauses:

11We say that a Boolean function f does not depend on an input bit wi if for all input
assignments α to f , flipping the truth value of wi in α does not change the value of f .
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(1) ¬pk©∨¬INJk for al 1 ≤ k ≤ t (expresses that INJk implies ¬pk);
(2) p1 ∨ . . . ∨ pt (expresses ∨

t
k=1¬INJk.)

In a similar manner one can encode as a CNF the negation of the formula
∧

1≤i<j≤t

(

C(i)(W 1) 6≡ C(j)(W 2)
)

,

denoted by ¬DSJ (where DSJ stands for disjoint). We shall not develop the
encoding precisely, as this is pretty much similar to ¬INJ.

The last part of the promise axiom we need to encode is the formula

t
∨

i=1

C(i)(W 1) ≡ X.

We denote the CNF encoding of this formula by RST (which stands for
restriction). Again, this is similar to the encoding of ¬INJ, but we show
how to encode it anyway, since we would like to illustrate in the sequel how
resolution can use RST to efficiently prove some basic facts about the X
variables (in the case the circuits in C have certain simple form).

Definition A.4 (RST). For every 1 ≤ k ≤ t, recall that Y k :=

{y
(k)
1 , . . . , y

(k)
n } are the output variables of ||C(k)(W 1)|| from Definition A.2.

The CNF formula RST consists of the following set of clauses:

(1) ¬f
(k)
i ∨ ¬y

(k)
i ∨ xi; ¬f

(k)
i ∨ y

(k)
i ∨ ¬xi for all 1 ≤ i ≤ n (expresses

that f
(k)
i implies y

(k)
i ≡ xi);

(2) ¬hk ∨ f
(k)
1 , . . . ,¬hk ∨ f

(k)
n (expresses that hk implies Y k ≡ X);

(3) h1 ∨ . . . ∨ ht (expresses
t
∨

i=1
Y k ≡ X.)

Finally, the promise axiom PRMC,Λ is the following CNF formula:

Definition A.5 (CNF encoding of PRMC,Λ). The CNF encoding of the
promise axiom PRMC,Λ consists of the following clauses:

(1) ¬q1©∨¬INJ (expresses that INJ implies ¬q1);
(2) ¬q2©∨¬DSJ (expresses that DSJ implies ¬q2);
(3) q1©∨ (q2©∨RST) (expresses ¬INJ ∨¬DSJ ∨RST, which is equivalent

to INJ ∧DSJ) → RST).

A.1.3. Proving basic facts about encoded circuits inside resolution. The fol-
lowing simple claim illustrates how one can reason inside resolution, and
specifically can “eliminate implications” inside resolution. Consider, for in-
stance, line 1 in PRMC,Λ (Definition A.5). This line expresses that INJ
implies ¬q1. In other words, it is logically equivalent to INJ → ¬q1. Assume
that we already know INJ (which formally means that we have a resolution
refutation of ¬INJ). We would like to arrive inside resolution at ¬q1. The
following straightforward claim illustrates how to do this in resolution.
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Claim 4. Let A be an unsatisfiable CNF formula with a resolution refuta-
tion of size s and let ℓ be any literal. Then there is a resolution proof of ℓ
from ℓ©∨A of size s.

Proof. Assume that the resolution refutation of A is the sequence of clauses
A1, . . . , As, where As = ✷ (the empty clause). Then ℓ ∨ A1, . . . , ℓ ∨ As is a
resolution proof of ℓ∨✷ = ℓ from ℓ©∨A (we assume that ℓ is not in any Ai;
or else, by the weakening rule, the claim also holds). �

Note that Claim 4 implies that if there is a refutation of ¬INJ of size s,
then there is also a proof of ¬q1 of the same size s, from line 1 in PRMC,Λ

(Definition A.5).
We now illustrate how resolution can efficiently prove a certain simple

fact about simple circuits. This is needed (among other efficient proofs of
similar simple facts) in order to show the upper bound in Section 4 (and
specifically, it is used in Claim 3). Other similar facts about the Boolean
circuits constructed in Section 4 can be proved inside resolution in a similar
manner, and we shall not describe these proofs here.

For some 1 ≤ k ≤ t, let C(k) be a circuit from a sequence of circuits C
(as in the promise axioms), where m and n are the number of input and

output variables of C(k), respectively. Assume that the ith output bit of
C(k) computes the jth input bit wj for some 1 ≤ j ≤ m and 1 ≤ i ≤ n. We
require that resolution can efficiently refute (the encoding via Definition A.2
of):

C(k)(W 1) ≡ C(k)(W 2) ∧ w
(1)
j 6≡ w

(2)
j

(note that by assumption this is clearly a contradiction).

Since C
(k)
i just computes the jth input bit wj, then in fact we can as-

sume that the encoding ‖C
(k)
i (W )‖(yi) consists of only the single clause wj

(remember that by Definition A.1 we identify between the variable encoding
an input gate with the input variable wj itself; and here we know that wj

is also the output variable). Thus, by 2 in Definition A.2 we have that the

output bit yj of C
(k)
i (W 1) equals the output bit zj of C

(k)
i (W 2), and yj is

actually w
(1)
j and zj is actually w

(2)
j . Therefore, by Definition A.2 3, we can

prove vj. So, by one resolution rule applied to A.2 5, we are left with ∨i 6=jvi.

Assume that all but a constant number of the output bits of C(k) compute
some (distinct) input bit wj , for some 1 ≤ j ≤ m (this assumption corre-
sponds to the circuits we build in Section 4). Then the process described in

the previous paragraphs can be iterated for all such output bits of C(k), in
order to cut off (that is, resolve over) all the vj variables in clause 5 in Defi-
nition A.2, until we reach only a disjunction of constant number of variables
vj instead of clause 5 in A.2.

We are thus left with a constant number of circuits depending only on a
constant number of input variables. Therefore, we can now refute with a
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polynomial-size resolution refutation the encoding of

C(k)(W 1) ≡ C(k)(W 2) ∧W 1 6≡ W 2 (12)

(if indeed the circuit C(k) computes an injective map, which means that (12)
is unsatisfiable).

A.1.4. Comments on decoding the encoded promise axioms. In order to as-
sert that promise resolution is a Cook-Reckhow proof system (see the first
paragraph in Section 1.1 for a definition) we need to make sure that a promise
resolution refutation can be identified as such in polynomial-time. For this,
one needs to be able to verify whether a given CNF is an instance of the
promise axiom.

As mentioned in Section 3, this can be done by “decoding” the CNF that
encodes the promise axiom PRMC,Λ and then checking that each circuit in
C has the right number of input and output bits. Here we illustrate how
this can be achieved.

First, it is possible to identify which are the clauses pertaining to the
promise axioms out of all the clauses in the refutation (for instance, any
clause used as an axiom that is not one of the clauses of the CNF meant
to be refuted). Second, it is possible to identify which are the clauses of
the promise axiom that are part of the circuit encoding (that is, clauses
in line 1 in Definition A.2). It is then possible to decode the circuits from
the encoding, and check that the circuits are legitimate ones and have the
intended number of input and output variables (we omit the details).
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