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Abstract

The ability to detect ambiguities in context-free grammars is vital for
their use in several fields, but the problem is undecidable in the general
case. We present a safe, conservative approach, where the approximations
cannot result in overlooked ambiguous cases. We analyze the complexity
of the verification, and provide formal comparisons with several other
ambiguity detection methods.
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ACM categories: F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs; F.4.2 [Mathematical Logic and

Formal Languages]: Grammars and Other Rewriting Systems

1 Introduction

Syntactic ambiguity allows a sentence to have more than one syntactic interpre-
tation. A classical example is the sentence “She saw the man with a telescope.”,
where the phrase “with a telescope” can be associated to “saw” or to “the man”.
The presence of ambiguities in a context-free grammar (CFG) can severely ham-
per the reliability or the performance of the tools built from it. Sensitive fields,
where CFGs are used to model the syntax, include for instance language acquisi-
tion [7], RNA analysis [34, 5], controlled natural languages [1], or programming
languages [25, 38, 37].

While proven undecidable [6, 8], the problem of testing a context-free gram-
mar for ambiguity can still be tackled approximatively. The approximations
may result in two types of errors: false negatives if some ambiguities are left
undetected, or false positives if some detected “ambiguities” are not actual ones.

In this paper, we present a framework for the conservative detection of am-
biguities, only allowing false positives. Our general approach is that of the
verification of an infinite system: we build a finite approximation of the gram-
mar (Section 3) and check for ambiguities in this abstract structure (Section 4).
The driving purpose of the paper is to establish the following theoretical results:
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2 S. Schmitz

• An approximation model for CFGs, based on the quotienting of a graph
of all the derivation trees of the grammar, which we call its position graph,
into a nondeterministic finite automaton (NFA) (Section 3.2).

• The soundness of the verification we run on the resulting NFA. Although
the ambiguity of our NFA is already a conservative test for ambiguities
in the original grammar (Section 4.1), our verification improves on this
immediate approach by ignoring some spurious paths (Section 4.2). The
complexity of the algorithm is bounded by a quadratic function of the size
of our NFA (Section 4.4).

• Formal comparisons with several ambiguity checking methods: the bounded-
length detection schemes [15, 7, 38, 21] (which are not conservative tests),
the LR-Regular condition [10], and the horizontal and vertical ambiguity
condition [5] (Section 5); these comparisons rely on the generality of our
approximation model.

We report on the experimental results of a prototype implementation of our
algorithm in a different publication [37]. Let us proceed with an overview of our
approach to ambiguity detection in the coming section.

2 Outline

Ambiguity in a CFG is characterized as a property of its derivation trees: if
two different derivation trees yield the same sentence, then we are facing an
ambiguity. Considering again the classical ambiguous sentence “She saw the
man with a telescope.”, a simple English grammar G1= 〈N,T, P, S〉 that presents
this ambiguity could have the rules in P

S−→NP VP , NP−→d n |pn |NP PP , VP−→v NP |VP PP , PP−→pr NP , (G1)

where the nonterminals in N , namely S , NP , VP , and PP , stand respectively
for a sentence, a noun phrase, a verb phrase, and a preposition phrase, whereas
the terminals in T , namely d, n, v, pn, and pr , denote determinants, nouns,
verbs, pronouns, and prepositions.1 The two interpretations of our sentence are
mirrored in the two derivation trees of Figure 1.

2.1 Bracketed Grammars

Tree structures are easier to handle in a flat representation, where the structural

information is described by a bracketing [14]: each rule i = A
i
−→α of the grammar

is surrounded by a pair of opening and closing brackets di and ri.
Formally, our bracketed grammar of a context-free grammar G = 〈N,T, P, S〉

is the context-free grammar Gb = 〈N,Tb, Pb, S〉 where Tb = T ∪ Td ∪ Tr with

Td = {di | i ∈ P} and Tr = {ri | i ∈ P}, and Pb = {A
i
−→diαri | A

i
−→α ∈ P}. We

denote derivations in Gb by =⇒b. We define the homomorphism h from V ∗

b to V ∗

1We denote in general terminals in T by a, b, . . . , terminal strings in T ∗ by u, v, . . . ,
nonterminals by A, B, . . . , symbols in V = T ∪ N by X, Y , . . . , strings in V ∗ by α, β, . . . ,
and rules in P by i, j or by indices 1, 2, . . . ; ε denotes the empty string, and k : x the prefix
of length k of the string x.
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Figure 1: Two trees yielding the sentence “She saw the man with a telescope.”
with G1.

by h(di) = ε and h(ri) = ε for all i in P , and h(X) = X otherwise, and denote
by δb (resp. wb) a string in V ∗

b (resp. T ∗

b ) such that h(δb) = δ (resp. h(wb) = w).
Using the rule indices as subscripts for the brackets, the two trees of Figure 1

are represented by the following two sentences of the bracketed grammar for G1
′:2

d1 d2 d4 pn r4 d6 v d5 d3 d n r3 d8 pr d3 d n r3 r8 r5 r6 r2 $ r1 (1)

d1 d2 d4 pn r4 d7 d6 v d3 d n r3 r6 d8 pr d3 d n r3 r8 r7 r2 $ r1. (2)

The existence of an ambiguity can be verified by checking that the image of
these two different sentences by h is the same string pn v d n pr d n.

2.2 Super Languages

In general, an ambiguity in a grammar G is thus the existence of two different
sentences wb and w′

b of Gb such that w = w′. Therefore, we can design a
conservative ambiguity verification if we approximate the language L(Gb) with
a super language and look for such sentences in the super language.

There exist quite a few methods that return a regular superset of a context-
free language [29]; we present in the next section a very general model for such
approximations. We can then verify on the NFA we obtain whether the original
grammar might have contained any ambiguity. In Section 4, we exhibit some
shortcomings of regular approximations, and present how to compute a more
accurate context-free super language instead.

3 Position Graphs and their Quotients

3.1 Position Graph

Let us consider again the two sentences (1) and (2) and how we can read them
step by step on the trees of Figure 1. This process is akin to a left to right walk
in the trees, between positions to the immediate left or immediate right of a
tree node. For instance, the dot in

d1 d2 d4 pn r4 d6 v d5 d3 d n r3·d8 pr d3 d n r3 r8 r5 r6 r2 $ r1 (3)

identifies a position between NP and PP in the middle of the left tree of Figure 1.

2The extended version G′=〈N ′, T ′, P ′, S′〉 of a CFG G=〈N,T, P, S〉 adds a new start symbol

S′ to N , an end of sentence symbol $ to T , and a new rule S′
1
−→S$ to P .
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Figure 2: Portions of the position graph of G1 corresponding to the two trees of
Figure 1.

Transitions from one position to the other can then be performed upon
reading the node label, upon deriving from this node, or upon returning from
such a derivation. We have thus three types of transitions: symbol transitions

֓
X
−→, derivation transitions ֓

di−→, and reduction transitions ֓
ri−→, where i is a rule

number. The set of all these positions in all parse trees along with the transition
relation is a position graph. Figure 2 presents two portions of the position graph
for G1; the position identified by the dot in (3) is now a vertex in the left graph.

Although a dotted sentence of Gb like (3) suffices to identify a unique posi-
tion in the derivation tree for that sentence, it is convenient to know that this
position is immediately surrounded by the NP and PP symbols. We therefore

denote by xbdi(
α
ub·α′

u′

b

)rix
′

b the position identified by xbdiub·u′

brix
′

b such that

the derivations

S′ =⇒∗

b xbAx
′

b

i
=⇒b xbdiαα

′rix
′

b, α =⇒∗

b ub and α′ =⇒∗

b u′

b (4)

hold in G′

b. Using this notation, the position identified by (3) is denoted by

d1 d2 d4 pn r4 d6 v d5(
NP

d3 d n r3· PP

d8 pr d3 d n r3 r8
)r5 r6 r2 $ r1. (5)

Definition 1 The position graph Γ = 〈N , −֓→〉 of a grammar G associates the
set N of positions with the relation −֓→ labeled by elements of Vb, defined by

xbdi(
α
ub·Xα′

vbu
′

b

)rix
′

b ֓
X
−→ xbdi(

αX
ubvb·α′

u′

b

)rix
′

b iff X ∈ V,X =⇒∗

b vb,

xbdi(
α
ub· Bα′

vbu
′

b

)rix
′

b ֓
dj

−→ xbdiubdj( · β
vb
)rju

′

brix
′

b iff B
j
−→β and β =⇒∗

b vb,

xbdiubdj(
β
vb· )rju′

brix
′

b ֓
rj
−→ xbdi(

αB
ubvb·α′

u′

b

)rix
′

b iff B
j
−→β, α =⇒∗

b ub and α′ =⇒∗

b u′

b.

We label paths in Γ by the sequences of labels on the individual transitions. We
denote the two sets of positions at the beginning and end of the sentences by
µs = {d1( · S$

wb$
)r1 | S =⇒∗

b wb} and µf = {d1(
S
wb· $$ )r1 | S =⇒∗

b wb}. For each

sentence wb of Gb, a νs in µs is related to a νf in µf by νs ֓
S
−→ νf .

The parsing literature classically employs items to identify positions in gram-

mars; for instance, [NP
5
−→NP·PP ] is the LR(0) item [24] corresponding to po-

sition (5). There is a direct connection between these two notions: items can
be viewed as equivalence classes of positions—a view somewhat reminiscent of
the tree congruences of Sikkel [39].
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Figure 3: The nondeterministic position automaton for G1 using item0.

3.2 Position Equivalences

In order to look for ambiguities in our grammar, we need a finite structure
instead of our infinite position graph. This is provided by an equivalence relation
between the positions of the graph, such that the equivalence classes become
the states of a nondeterministic automaton.

Definition 2 The nondeterministic position automaton Γ/≡ of a context-free
grammar G using the equivalence relation ≡ is a tuple 〈Q,V ′

b , R, qs, {qf}〉 where

• Q = [N ]≡ ∪ {qs, qf} is the state alphabet, where [N ]≡ is the set of equiv-
alence classes [ν]≡ over N modulo the equivalence relation ≡,

• V ′

b is the input alphabet,

• R in Q(V ′

b ∪{ε})×Q is the set of rules {qχ ⊢ q′ | ∃ν ∈ q and ν′ ∈ q′, ν ֓
χ
−→

ν′} ∪ {qsε ⊢ [νs]≡ | νs ∈ µs} ∪ {[νf ]≡ε ⊢ qf | νf ∈ µf} ∪ {qf$ ⊢ qf}, and

• qs and qf are respectively the initial and the final state.

If the chosen equivalence relation is of finite index, then the nondeterministic
position automaton is finite. For instance, an equivalence relation that results
in a NFA similar to a nondeterministic LR(0) automaton [19, 20]—the main
difference being the presence of the ri transitions—is item0 defined by

xbdi(
α
ub·α′

u′

b

)rix
′

b item0 ybdj(
β
vb·β′

v′

b

)rjy
′

b iff i = j and α′ = β′. (6)

The equivalence classes in [N ]item0
are the LR(0) items. Figure 3 presents the

nondeterministic automaton for G1 resulting from the use of item0 as equivalence
relation. Some plain ε-transitions and states of form ·A and A· were added in
order to reduce clutter in the figure. The addition of these states and transitions
results in a O(|G|) bound on the size of Γ/item0 [19]. Our position (5) is now
in the equivalence class represented by the state labeled by NP−→NP·PP in
Figure 3.

ISRN I3S/RR-2006-30-FR



6 S. Schmitz

Let us denote by � the relation between configurations of a NFA A =
〈Q,Σ, R, qs, F 〉, such that qaw � q′w if and only if there exists a rule qa ⊢ q′ in R.
The language recognized by A is then L(A) = {w ∈ Σ∗ | ∃qf ∈ F, qsw �

∗ qf}.

Theorem 1 Let G be a context-free grammar and ≡ an equivalence relation on
N . The language generated by Gb is included in the terminal language recognized
by Γ/≡, i.e. L(Gb) ⊆ L(Γ/≡) ∩ T ∗

b .

4 Ambiguity Detection

We are now in position to detect ambiguities on a finite, regular structure that
approximates our initial grammar.

4.1 Regular Ambiguity Detection

Our first conservative ambiguity checking procedure relies on Theorem 1. Fol-
lowing the arguments developed in Section 2.2, an ambiguity in G implies the
existence of two sentences wb and w′

b in the regular super language L(Γ/≡)∩T ∗

b

such that w = w′. We call a CFG with no such pair of sentences regular ≡-
unambiguous, or RU(≡) for short.

The existence of such a pair of sentences can be tested in O(|Γ/≡|2) us-
ing accessibility relations like the ones developped in Section 4.3. How good
is this algorithm? Being conservative is not enough for practical uses; after
all, a program that always answers that the tested grammar is ambiguous is a
conservative test. The regular ambiguity test sketched above performs unsat-
isfactorily: when using the item0 equivalence, it finds some LR(0) grammars
ambiguous, like for instance G2 with rules

S−→aAa |bAa, A−→c. (G2)

The sentences d2ad4cr4ar2 and d2ad4cr4ar3 are both in L(Γ2/ item0) ∩ T ∗

b .

The LR algorithm [24] hints at a solution: we could consider nonterminal
symbols in our verification and thus avoid spurious paths in the NFA. A single
direct step using a nonterminal symbol represents exactly the context-free lan-
guage derived from it, much more accurately than any regular approximation
we could make for this language.

4.2 Common Prefixes with Conflicts

Let us consider again the two sentences (1) and (2), but let us dismiss all the
di symbols; the two sentences (7) and (8) we obtain are still different:

pn r4 v d n r3 pr d n r3 r8 r5 r6 r2 $ r1 (7)

pn r4 v d n r3 r6 pr d n r3 r8 r7 r2 $ r1. (8)

They share a longest common prefix pn r4 v d n r3 before a conflict3 between pr
and r6.

3Our notion of conflict coincides with that of LR(0) conflicts when one employs item0.

ISRN I3S/RR-2006-30-FR



Conservative Ambiguity Detection in CFGs 7

Observe that the two positions in conflict could be reached more directly in
a NFA by reading the prefix NP v NP . We obtain the two sentential forms

NP v NP pr d n r3 r8 r5 r6 r2 $ r1 (9)

NP v NP r6 pr d n r3 r8 r7 r2 $ r1. (10)

We cannot however reduce our two sentences to two identical sentential forms:
our common prefix with one conflict pn r4 v d n r3 r6 would reduce to a different
prefix NP VP , and thus we do not reduce the conflicting reduction symbol r6.

The remaining suffixes pr d n r3 r8 r5 r6 r2 $ r1 and pr d n r3 r8 r7 r2 $ r1 share
again a longest common prefix pr d n r3 r8 before a conflict between r5 and r7;
the common prefix reduces to PP , and we have the sentential forms

NP v NP PP r5 r6 r2 $ r1 (11)

NP v NP r6 PP r7 r2 $ r1. (12)

Keeping the successive conflicting reduction symbols r5, r6 and r7, we finally
reach a common suffix r2 $ r1 that cannot be reduced any further, since we
need to keep our conflicting reductions. The image of our two different reduced
sentential forms (11) and (12) by h is a common sentential form NP vNP PP $,
which shows the existence of an ambiguity in our grammar.

We conclude from our small example that, in order to give preference to the
more accurate direct path over its terminal counterpart, we should only follow
the ri transitions in case of conflicts or in case of a common factor that cannot
be reduced due to the earlier conflicts. This general behavior is also the one
displayed by noncanonical parsers [42].

4.3 Accessibility Relations

We implement the idea of common prefixes with conflicts in the mutual ac-
cessibility relations classically used to find common prefixes [41, Chapter 10].
Mutual accessibility relations are used to identify couples of states accessible
upon reading the same language from the starting couple (qs, qs), which brings
the complexity of the test down to a quadratic function in the number of tran-
sitions, and avoids the potential exponential blowup of a NFA determinization.

The case where reduction transitions should be followed after a conflict is
handled by considering pairs over B×Q instead of Q: the boolean tells whether
we followed a di transition since the last conflict. In order to improve readability,
we write qχ ⊢ q′ for q and q′ in B × Q if their states allow this transition to
occur. The predicate %q in B denotes that we are allowed to ignore a reduction
transition. Our starting couple (qs, qs) has its boolean values initially set to
true.

Definition 3 The primitive mutual accessibility relations over (B×Q)2 are

shift mas defined by (q1, q2) mas (q3, q4) if and only if there exists X in V such
that q1X ⊢ q3 and q2X ⊢ q4

epsilon mae=mael ∪ maer where (q1, q2) mael (q3, q2) if and only if q1di ⊢ q3
or q1ε ⊢ q3 and %q3 and symmetrically for maer, (q1, q2) maer (q1, q4) if
and only if q2di ⊢ q4 or q2ε ⊢ q4, and %q4,

ISRN I3S/RR-2006-30-FR



8 S. Schmitz

reduction mar defined by (q1, q2) mar (q3, q4) if and only if there exists i in P
such that q1ri ⊢ q3 and q2ri ⊢ q4, and furthermore ¬ %q1 or ¬ %q2, and
then ¬ %q3 and ¬ %q4,

conflict mac=macl ∪ macr with (q1, q2) macl (q3, q2) if and only if there exist i
in P , q4 in Q and z in T ∗

d · T ′ such that q1ri ⊢ q3, q2z �
+ q4 and ¬ %q3,

and symmetrically for macr, (q1, q2) macr (q1, q4) if and only if there exist
i in P , q3 in Q and z in T ∗

d ·T ′ such that q2ri ⊢ q4, q1z �
+ q3, and ¬ %q4.

The global mutual accessibility relation ma is defined as mas ∪ mae ∪ mar

∪ mac.

These relations are akin to the item construction of a LR parser: the relation
mas corresponds to a shift, the relation mae to an item closure, the relation mar

to a goto, and the relation mac to a LR conflict.
Let us call a grammar G such that (qs, qs) (mae ∪ mas)∗◦ mac ◦ ma∗ (qf , qf )

does not hold in Γ/≡ noncanonically ≡-unambiguous, or NU(≡) for short.

Theorem 2 Let G be a context-free grammar and ≡ a position equivalence re-
lation. If G is ambiguous, then G is not NU(≡).

4.4 Complexity

The complexity of our algorithm depends mostly on the equivalence relation we
choose to quotient the position graph. Supposing that we choose an equivalence
relation ≡ of finite index and of decidable computation of complexity C(Γ/≡),
then we need to build the image ma∗ ({(qs, qs)}). This step and the search for
a conflict in this image can both be performed in time O(|Γ/≡|2). The overall
complexity of our algorithm is thus O(C(Γ/≡) + |Γ/≡|2).

The complexity C(Γ/item0) of the construction of the collapsed position
graph Γ/item0 is linear with the size of the resulting nondeterministic posi-
tion automaton. The overall complexity of our ambiguity detection algorithm
when one uses item0 is therefore O(|G|2).

5 Formal Comparisons

We compare here our ambiguity detection algorithm with some of the other
means to test a context-free grammar for ambiguity we are aware of. We first
establish the edge of our algorithm over the regular ambiguity test of Section 4.1.
The comparison with LR-Regular testing requires the full power of our method,
and at last, the horizontal and vertical ambiguity detection technique is shown
to be incomparable with our own.

5.1 Regular Ambiguity

Theorem 3, along with the example of G2, shows a strict improvement of our
method over the simple algorithm discussed in Section 4.1.

Theorem 3 If G is RU(≡), then it is also NU(≡).

ISRN I3S/RR-2006-30-FR



Conservative Ambiguity Detection in CFGs 9

5.2 Bounded Length Detection Schemes

Many algorithms specifically designed for ambiguity detection look for ambigui-
ties in all sentences up to some length [15, 7, 38, 21]. As such, they fail to detect
ambiguities beyond that length: they allow false negatives. Nonetheless, these
detection schemes can vouch for the ambiguity of any string shorter than the
given length; this is valuable in applications where, in practice, the sentences
are of a small bounded length. The same guarantee is offered by the equivalence
relation prefixm defined for any fixed length m by4

xbdi(
α
ub·α′

u′

b

)rix
′

b prefixm ybdj(
β
vb·β′

v′

b

)rjy
′

b iff m :b xbub = m :b ybvb. (13)

Provided that G is not left recursive, Γ/prefixm is finite.

Theorem 4 Let wb and w′

b be two bracketed sentences in L(Γ/prefixm) ∩ T ∗

b

with w = w′ and |w| ≤ m. Then wb and w′

b are in L(Gb).

Outside of the specific situation of languages that are finite in practice,
bounded length detection schemes can be quite costly to use. The performance
issue can be witnessed with the two families of grammars Gn

3 and Gn
4 with rules

S−→A |Bn, A−→Aaa |a, B1−→aa, B2−→B1B1, . . . , Bn−→Bn−1Bn−1 (Gn
3 )

S−→A |Bna, A−→Aaa |a, B1−→aa, B2−→B1B1, . . . , Bn−→Bn−1Bn−1, (Gn
4 )

where n ≥ 1. In order to detect the ambiguity of Gn
4 , a bounded length algorithm

would have to explore all strings in {a}∗ up to length 2n + 1. Our algorithm
correctly finds Gn

3 unambiguous and Gn
4 ambiguous in time O(n2) using item0.

5.3 LR(k) and LR-Regular Testing

Conservative algorithms do exist in the programming language parsing commu-
nity, though they are not primarily meant as ambiguity tests. Nonetheless, a
full LALR or LR construction is often used as a practical test for non ambigu-
ity [34]. The LR(k) testing algorithms [24, 19, 20] are much more efficient in
the worst case and provided our initial inspiration. Our position automaton is
a generalization of the item grammar or nondeterministic automaton of these
works, and our test looks for ambiguities instead of LR conflicts. Let us consider
again Gn

3 : it requires a LR(2n) test for proving its unambiguity, but it is simply
NU(item0).

One of the strongest ambiguity tests available is the LR-Regular condi-
tion [10, 17]: instead of merely checking the k next symbols of lookahead, a
LRR parser considers regular equivalence classes on the entire remaining in-
put to infer its decisions. Given Π a finite regular partition of T ∗ that defines
a left congruence ∼=, a grammar G is LR(Π) if and only if S=⇒

rm

∗δAx=⇒
rm

δαx,

S=⇒
rm

∗γBy=⇒
rm

γβy = δαz and x ∼= z (mod Π) imply A−→α = B−→β, δ = γ and
y = z.

Our test for ambiguity is strictly stronger than the LR(Π) condition with
the equivalence relation itemΠ=item0 ∩ lookΠ, where lookΠ is defined by

xbdi(
α
ub·α′

u′

b

)rix
′

b lookΠ ybdj(
β
vb·β′

v′

b

)rjy
′

b iff x′ ∼= y′ (mod Π). (14)

4 The bracketed prefix m :b xb of a bracketed string xb is defined as the longest string in
{yb | xb = ybzb and |y| = m} if |x| > m or simply xb if |x| ≤ m.
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Theorem 5 If G is LR(Π), then it is also NU(itemΠ).

Let us consider now the grammar with rules

S−→AC |BCb, A−→a, B−→a, C−→cCb |cb. (G5)

Grammar G5 is not LRR: the right contexts cnbn$ and cnbn+1$ of the reduc-
tions using A−→a and B−→a cannot be distinguished by regular covering sets.
Nevertheless, our test on Γ5/ item0 shows that G5 is not ambiguous.

5.4 Horizontal and Vertical Ambiguity

Brabrand et al. [5] recently proposed an ambiguity detection scheme also based
on regular approximations of the grammar language. Its originality lies in the
decomposition of the ambiguity problem into two (also undecidable) problems,
namely the horizontal and vertical ambiguity problems. The detection method
then relies on the fact that a context-free grammar is unambiguous if and only
if it is horizontal and vertical unambiguous. The latter tests are performed on
a regular approximation of the grammar [28].

Definition 4 The automaton Γ/≡ is vertically ambiguous if and only if there

exist an A in N with two different productions A
i
−→α1 and A

j
−→α2, and the

bracketed strings xb, x
′

b, ub, u
′

b, wb, and w′

b in T ∗

b with w = w′ such that

[xbdi( ·α1

ub
)rix

′

b]≡wb �
∗ [xbdi(

α1

ub · )rix′

b]≡ and

[xbdj( ·α2

u′

b

)rjx
′

b]≡w
′

b �
∗ [xbdj(

α2

u′

b
· )rjx′

b]≡.

The automaton Γ/≡ is horizontally ambiguous if and only if there is a production
i = A−→α in P , a decomposition α = α1α2, and the bracketed strings xb, x

′

b,
ub, u

′

b, vb, v
′

b, wb, w
′

b, yb and y′b in T ∗

b with v = v′, w = w′, y = y′, |y| ≥ 1 and
vbybwb 6= v′by

′

bw
′

b such that

[xbdi( ·α1α2

ubu
′

b

)rix
′

b]≡vbybwb �
∗ [xbdi(

α1

ub ·α2

u′

b

)rix
′

b]≡ybwb �
∗ [xbdi(

α1α2

ubu
′

b
· )rix′

b]≡

[xbdi( ·α1α2

ubu
′

b

)rix
′

b]≡v
′

by
′

bw
′

b �
∗ [xbdi(

α1

ub ·α2

u′

b

)rix
′

b]≡w
′

b �
∗ [xbdi(

α1α2

ubu
′

b
· )rix′

b]≡.

Theorem 6 Let G be a context-free grammar and Γ/≡ its position automaton.
If G is RU(≡), then Γ/≡ is horizontally and vertically unambiguous.

Theorem 6 shows that the horizontal and vertical ambiguity criteria result
in a better conservative ambiguity test than regular ≡-ambiguity, although at a
higher price: O(|G|5) in the worst case. Owing to these criteria, the technique of
Brabrand et al. accomplishes to show that the palindrome grammar with rules

S−→aSa |bSb |a |b |ε (G6)

is unambiguous, which seems impossible with our scheme. On the other hand,
even when they employ unfolding techniques, they are always limited to regular
approximations, and fail to see that the LR(0) grammar with rules

S−→AA, A−→aAa |b (G7)
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is unambiguous. The two techniques are thus incomparable, and could benefit
from each other.

6 Conclusion

As a classical undecidable problem in formal languages, ambiguity detection in
context-free grammars did not receive much practical attention. Nonetheless,
the ability to provide a conservative test could be applied in many fields where
context-free grammars are used. This paper presents one of the few conservative
tests explicitly aimed towards ambiguity checking, along with the recent work
of Brabrand et al. [5].

The ambiguity detection scheme we presented here provides some insights
on how to tackle undecidable problems on approximations of context-free lan-
guages. The general method can be applied to different decision problems, and
indeed has also been put to work in the construction of an original parsing
method [13] where the amount of lookahead needed is not preset but computed
for each parsing decision. We hope to see more applications of this model in the
future.
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thanks the anonymous referees for their numerous helpful remarks.
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A Omitted Material

We gather in the appendices A.3, A.4 and A.5 the technical material and the
proofs omitted in the sections 3, 4 and 5 of main body of the paper. We complete
our discussion with more related work in Appendix A.6.

A.3 Position Graphs and their Quotients

A.3.1 Position Graphs

Our first lemma relates the various paths between two positions of the position
graph with the possible derivations in the original grammar.

Lemma 1 Let ν and ν′ be positions in N , and δb and γb be strings in V ∗

b with

ν ֓
δb−→ ν′. If δb =⇒

∗

b γb or γb =⇒
∗

b δb in Gb, then ν ֓
γb−→ ν′.

Proof. Suppose δb =⇒b
n γb; we proceed by induction on n the number of

individual derivation steps. If n = 0, then δb = γb and the property holds.

Let now δb =⇒b
n−1 ρbAσb

i
=⇒b ρbαriσb = γb with ν ֓

ρb−→ ν1 ֓
A
−→ ν2 ֓

σb−→ ν′. By

Definition 1, ν1 ֓
di−→ ν3 ֓

α
−→ ν4 ֓

ri−→ ν2 and thus ν ֓
γb−→ ν′.

A similar procedure yields a proof if γb =⇒∗

b δb.� �

A.3.2 Position Equivalences

Let us denote by � the relation between configurations of a NFA, such that
qaw � q′w if and only if there exists a rule qa ⊢ q′ in R. The language recognized
by a NFA A = 〈Q,Σ, R, qs, F 〉 is then L(A) = {w ∈ Σ∗ | qsw �

∗ qf , qf ∈ F}.

A straightforward induction on the number of individual steps in ν ֓
δb−→ ν′

yields the following proposition.

Proposition 1 Let ν, ν′ be positions in N and δb a string in V ∗

b . If ν ֓
δb−→ ν′,

then [ν]≡δb �
∗ [ν′]≡.�

Theorem 1 Let G be a context-free grammar and ≡ an equivalence relation on
N . The language generated by Gb is included in the terminal language recognized
by Γ/≡, i.e. L(Gb) ⊆ L(Γ/≡) ∩ T ∗

b .

Proof. Let wb be a sentence in L(Gb) (and thus in T ∗

b ). Let us further consider

the positions νs = d1( · S$

wb$
)$r1 and νf = d1(

S
wb· $$ )r1; νs ֓

S
−→ νf . Using the

derivation S =⇒∗ wb in Gb and Lemma 1, we know that νs ֓
wb−−→ νf . Therefore,

by Proposition 1, [νs]≡wb �
∗ [νf ]≡. By Definition 2, qsε ⊢ [νs]≡ and [νf ]≡ε ⊢ qf

are in R, thus wb is accepted by Γ/≡, i.e. wb is in L(Γ/≡) ∩ T ∗

b .� �

Lattice of Equivalence Relations The usual partial order on Eq(N )—the
complete lattice of all equivalence relations on N—is the inclusion relation ⊆.
The largest element in Eq(N ), denoted by ⊤, always results in a single equiva-
lence class, while the smallest (and finest) equivalence relation is the identity on
N , denoted by ⊥. The lattice structure provides two operations for combining
equivalence relations into new ones: for any two elements ≡a and ≡b of Eq(N ),
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≡a ∨ ≡b is the least upper bound or join of ≡a and ≡b, and ≡a ∧ ≡b is the great-
est lower bound or meet. These operations are defined as ≡a ∨ ≡b= (≡a ◦ ≡b)

+

and ≡a ∧ ≡b=≡a ∩ ≡b.
This very ability to combine equivalence relations makes our grammatical

representation highly generic, and allows for various trade-offs. For instance,
finer equivalence relations are obtained when using the meet of two equiva-
lence relations; they result in larger nondeterministic position automata. The
itemk equivalence relation—comparable in effect to a LR(k) precision, see The-
orem 5—can be described as item0 ∧ lookk for any k ≥ 0 where

xbdi(
α
ub·α′

u′

b

)rix
′

b lookk ybdj(
β
vb·β′

v′

b

)rjy
′

b iff k : x′ = k : y′. (15)

Size of the Nondeterministic Automaton Let us remark that our lattice
of equivalence relations is connected to a lattice of nondeterministic position
automata sizes: if ≡a⊆≡b, then |[N ]≡a

| ≥ |[N ]≡b
|, thus |Γ/≡a| ≥ |Γ/≡b|. The

smallest nondeterministic position automaton is therefore Γ/⊤, of size |V | +
2|P |+ 2.

A.4 Ambiguity Detection

A.4.1 Common Prefixes with Conflicts

In general, we consider two different sentences wb and w′

b of Gb such that w = w′.
They share a longest common prefix ub with the di symbols ignored such that
wb = ubrivb,1 and w′

b = ubv
′

b,1 with ri 6= 1 : v′b,1. Let us call ub,1 = ubri
and u′

b,1 = ub the shortest common prefixes with one conflict. The remaining
portions vb,1 and v′b,1, if different, also have a pair of shortest common prefixes
ub,2 and u′

b,2 with one conflict, so that ub,1ub,2 and u′

b,1u
′

b,2 are shortest common
prefixes with two conflicts.

Using the example of Section 4.2 but keeping the di symbols, the pairs of
shortest common prefixes with one conflict are successively

ub,1 = d1 d2 d4 pn r4 d6 v d5 d3 d n r3 and u′

b,1 = d1 d2 d4 pn r4 d7 d6 v d3 d n r3 r6,

ub,2 = d8 pr d3 d n r3 r8 r5 and u′

b,2 = d8 pr d3 d n r3 r8,

ub,3 = r6 and u′

b,3 = ε,

ub,4 = ε and u′

b,4 = r7,

at which point there only remains a common suffix vb = r2 $ r1. With explicit
di symbols, one can verify that the d1 and d2 symbols matching the r1 and
r2 symbols of vb are not in vb, and thus that no reduction could occur inside
vb. Our initial sentences (1) and (2) are decomposed as ub,1ub,2ub,3ub,4vb and
u′

b,1u
′

b,2u
′

b,3u
′

b,4vb.
The decomposition is not unique, but that does not hamper the soundness

of our algorithm. The following proposition formalizes the decomposition we
just performed.

Proposition 2 Let w be a sentence of a context-free grammar G with two dif-
ferent parse trees represented by strings wb and w′

b in V ∗

b : w = w′. Then
there exists t ≥ 1 such that wb = ub,1 · · ·ub,tvb and w′

b = u′

b,1 · · ·u
′

b,tvb where
ub,1 · · ·ub,t and u′

b,1 · · ·u
′

b,t are shortest common prefixes of wb and w′

b with t
conflicts, and vb is a common suffix of wb and w′

b.�
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A.4.2 Accessibility Relations

Let us denote by map the union mas ∪ mae ∪ mar. We explicit the relation
between ma and common prefixes with t conflicts in the following lemma.

Lemma 2 Let wb and w′

b be two different sentences of Gb with a pair of shortest
common prefixes with t conflicts ub,1 · · ·ub,t and u′

b,1 · · ·u
′

b,t. Furthermore, let
νs and ν′s be the corresponding starting positions in µs, and ub,t = ubri and
u′

b,t = ub.
Then, there exist νr, νt and ν′t in N with

(i) νs ֓
ub,1···ub,t−1ub

−−−−−−−−−→ νr ֓
ri−→ νt and ν′s ֓

u′

b,1···u
′

b,t−1ub

−−−−−−−−−→ ν′t,

(ii) ([νs]≡, [ν
′

s]≡) (mas ∪ mae)∗ ◦ (mac ◦ map∗)t−1([νr]≡, [ν
′

t]≡), and

(iii) ([νr]≡, [ν
′

t]≡) mac ([νt]≡, [ν
′

t]≡).

Proof. We first note that (i) always holds in Γ, and that together with the fact
that ub,1 · · ·ub,t and u′

b,1 · · ·u
′

b,t are longest common prefixes with t conflicts, it
implies that (iii) holds. Let us then prove (ii) by induction on t.

We can show using a simple induction on the length |ub| that, for t = 1,
the common prefix ub is such that ([νs]≡, [ν

′

s]≡) (mas ∪ mae)∗ ([νr]≡, [ν
′

1]≡).
If this length is zero, then ([νs]≡, [ν

′

s]≡) mae ([νr]≡, [ν
′

1]≡) and thus (ii) holds.
We then consider three atomic ways to increase this length while keeping ub a
common prefix: add an a symbol, a di, or an ri symbol. The first two cases are
clearly handled by mas and mae. In the third case, using Lemma 1, there exist

νA and ν′A in N such that νs ֓
vb−→ νA ֓

A
−→ νr and ν′s ֓

vb−→ ν′A ֓
A
−→ ν′1. Applying

the induction hypothesis, we see that ([νs]≡, [ν
′

s]≡) (mas ∪ mae)∗ ([νA]≡, [ν
′

A]≡),
and since furthermore ([νA]≡, [ν

′

A]≡) mas ([νr]≡, [ν
′

1]≡), (ii) holds for νr and ν′1.
Let us now prove the induction step for t > 1. By induction hypothesis and

(iii), ([νs]≡, [ν
′

s]≡) (mas ∪ mae)∗ ◦ (mac ◦ map∗)t−2◦ mac ([νt−1]≡, [ν
′

t−1]≡), and
we only need to prove that ([νt−1]≡, [ν

′

t−1]≡) map∗ ([νr]≡, [ν
′

t]≡). We proceed
again by induction on the length of the common prefix ub. The initial step for
|ub| = 0 is clear, and the induction step where we add an a or a di symbol also.
The case where we add an ri symbol triggers the use of mar if at least one of
the two states verifies ¬ %q. Otherwise, we did not follow any ri transition since
the last di one, and thus Lemma 1 applies. In all cases, (ii) holds.� �

We just need to combine Lemma 2 with Proposition 2 in order to prove our
main result:

Theorem 2 Let G be a context-free grammar and ≡ a position equivalence re-
lation. If G is ambiguous, then G is not NU(≡).�

A.5 Formal Comparisons

The lattice of context-free grammar classes inclusions presented in Figure 4
sums up the results of our comparisons.

A.5.1 Regular Ambiguity

The simple algorithm discussed in Section 4.1 and by the author in [36] is
based on Theorem 1: any ambiguity in the original grammar is reflected in the
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NU(item0)

LALR(1)

LR(0)

HVRU(≡)NU(≡)

NU(itemΠ)

LR(Π)

UCFG

NU(itemk)

LR(k) LL(Π)

SLL(Π)LL(k)

SLL(k)

RU(≡)

Figure 4: Context-free grammar classes inclusions. The classes parameterized
by k, Π and ≡ denote the full classes for any fixed k, any finite regular partition
Π of T ∗, and any position equivalence relation ≡ with finite index respectively.

regular superset L(Γ/≡) ∩ T ∗

b . The quotienting into Γ/≡ is a generalization
of the techniques used to build regular superset approximations of context-free
languages [29]. Such approximations have been applied for instance to LR-
Regular lookahead computations [3, 12] or to guided parsing [4].

Lemma 3 Let q1, q2, q3 and q4 be states in Q such that (q1, q2) ma∗ (q3, q4).
Then, there exist ub and u′

b in T ∗

b such that u = u′, q1ub �
∗ q3 and q2u

′

b �
∗ q4.

Proof. We proceed by induction on the number of steps n in (q1, q2) man (q3, q4).
If n = 0, then q1 = q3 and q2 = q4, hence ub = u′

b = ε fit our requirements.
Let us prove the induction step. Suppose we have two states q5 and q6 such

that (q3, q4) ma (q4, q6), and, using the induction hypothesis, two strings ub and
u′

b in T ∗

b such that u = u′, q1ub �
∗ q3 and q2u

′

b �
∗ q4. Let us find vb and v′b

two strings in T ∗

b such that v = v′, q3vb �
∗ q5 and q4v

′

b �
∗ q6 for each of the

primitive mutual accessibility relations. For mas, vb = v′b such that X =⇒∗ vb
in Gb fit; for mae, vb = v′b = di do; for mar, vb = v′b = ri do; at last, for macl,
vb = ri and v′b = ε do and symmetrically for macr.� �

Theorem 3 If G is RU(≡), then it is also NU(≡).

Proof. Since the relation (mae ∪ mas)∗◦ mac ◦ ma∗ that defines noncanonical
≡-ambiguity is included in ma∗, Lemma 3 also applies to it. Therefore, if G is
noncanonically ≡-ambiguous, then there are two strings ub and u′

b in T ∗

b such
that u = u′ and qsub �

∗ qf and qsu
′

b �
∗ qf , i.e. ub and u′

b are in L(Γ/≡) ∩ T ∗

b .
Note that the presence of the first occurrence of mac in the relation implies that
the two bracketed strings ub and u′

b are different, which concludes the proof.�
�

A.5.2 Bounded Length Detection Schemes

Lemma 4 Let q be a state in Q and wb be a string in T ∗

b such that qswb �
∗ q

in Γ/prefixm. If |w| ≤ m, then for all ν in q, there exists νs in µs such that

νs ֓
wb−−→ ν.
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Proof. We proceed by induction on the number n of steps in qswb �
n q. If

n = 1, then wb = ε and any ν in q is also in µs, and the lemma holds.
For the induction step, we consider qswbχ �

n−1 qχ � q′ with χ in Tb. For

all ν′ in q′, there exists ν such that ν ֓
χ
−→ ν′. Since |w| ≤ m, ν is in q, and we

can invoke the induction hypothesis to find an appropriate νs in µs such that

νs ֓
wb−−→ ν ֓

χ
−→ ν′.� �

Lemma 4 yields immediately Theorem 4. Our ambiguity detection algorithm
being a refinement of regular ≡-ambiguity, the theorem implies in turn that am-
biguities in sentences of lengths smaller than m are always actual ambiguities.

A.5.3 LR(k) and LR-Regular Testing

Conservative algorithms do exist in the programming language parsing commu-
nity, though they are not primarily meant as ambiguity tests. Nonetheless, a
full LALR or LR construction is often used as a practical test for non ambigu-
ity [34]. The LR(k) testing algorithms [24, 19, 20] are much more efficient in the
worst case and provided our initial inspiration. Our nondeterministic position
automaton can be seen as a generalization of the item grammar or nondeter-
ministic automaton of these works, and our test looks for ambiguities instead
of LR conflicts.

The stronger LRR condition relies on a partition Π that defines a left con-
gruence ∼= for string concatenation (if this is not the case, a refinement of Π
which is also a left congruence can always be constructed and used instead).
Then, a grammar G is LR(Π) if and only if

S=⇒
rm

∗δAx=⇒
rm

δαx, S=⇒
rm

∗γBy=⇒
rm

γβy = δαz and x ∼= z (mod Π) (16)

implies
A−→α = B−→β, δ = γ and y = z. (17)

This definition is a proper generalization of the LR(k) condition. Practical
implementations [3, 12] of the LRR parsing method actually compute, for each
inadequate LR state, a finite state automaton that attempts to discriminate
between the x and z regular lookaheads. The final states of this automaton act
as the partitions of Π.

The two following lemmas show some immediate properties of lookΠ and
item0.

Lemma 5 Let ν = xbdi(
α
ub·α′

u′

b

)rix
′

b be a position in N and wb a bracketed

string in T ∗

b . If [ν]lookΠwb �
∗ qf in Γ/lookΠ, then w$ ∼= u′x′ (mod Π).

Proof. We proceed by induction on n the number of steps in [ν]lookΠwb �
n qf .

If n = 1, then ν is in µf , wb = u′

b = ε and x′

b = $. We consider for the induction
step the path [ν]lookΠχwb � qwb �

n qf , where χ is in Tb. Using the induction

hypothesis, any ν′ = ybdj(
β
vb·β′

vb
)rjy

′b in q is such that w$ ∼= v′y′ (mod Π).

If χ ∈ Td, any ν′ in q is such that β = vb = ε and v′y′ ∼= u′x′(mod Π), and the

lemma holds trivially by transitivity of ∼=. If χ = a, then ν = xbdi(
α
ub· aα′

au′

b

)rix
′

b

and any ν′ in q is such that v′y′ ∼= u′x′ (mod Π). Since Π is a left congruence,
w$ ∼= u′x′ (mod Π) implies that aw$ ∼= au′x′ (mod Π) and the lemma holds. If
χ ∈ Tr, then ν = xbdi(

α
ub· )rix′

b and any ν′ in q is such that v′y′ ∼= x′ (mod Π),
and the lemma holds.� �
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Lemma 6 Let ν = xbdi(
α
ub·α′

u′

b

)rix
′

b be a position in N and γ a string in (V ∪

Td)
∗. If qsγ �

∗ [ν]item0
in Γ/item0, then A

i
−→α·α′ is a valid LR(0) item for γ,

i.e. S=⇒
rm

∗δAz
i

=⇒
rm

δαα′z = γα′z holds in G.

Proof. We proceed by induction on the number n of steps in qsγ �
n [ν]item0

.
If n = 1, then S−→·α′ is a valid LR(0) item for γ = ε. Let us consider
for the induction step qsγχ �

n [ν]item0
χ � [ν′]item0

with χ in V ∪ Td, where

S=⇒
rm

∗δAz
i

=⇒
rm

δαα′z = γα′z holds in G.

If χ = dj , then α′ = Bα′′ and ν′ is of form ybdj( · β
vb
)rjy

′

b for some B
j
−→β in

P . Then, γα′z = γBα′′z
j
=⇒
rm

γβα′′z holds in G and B
j
−→·β is a valid LR(0) item

for γχ. If χ is in V , then α′ = χα′′ and ν′ is of form xbdi(
αχ
ubvb·α

′′

u′′

b

)rix
′

b. Then,

γα′z = γχα′′z and A
i
−→αχ·α′′ is a valid LR(0) item for γχ.� �

Theorem 5 If G is LR(Π), then it is also NU(itemΠ).

Proof. Let us suppose that G is noncanonically itemΠ-ambiguous. We have the
relation

(qs, qs) (mas ∪ mae)∗ (q1, q2) mac (q3, q2) ma∗ (qf , qf ). (18)

Let ν1 and ν2 be two positions in q1 and q2 at the origin of the mac relation.

We suppose ν2 is of general form ybdj(
β
vb·β′

v′

b

)rjy
′

b. Relation (q1, q2) mac (q3, q2)

indicates that q1ri ⊢ q3 for some i in P : ν1 is necessarily of form xbdi(
α
ub· )rix′

b.

The relation also forbids ri to be equal to 1 : v′rj .
Clearly, the first part (qs, qs) (mas ∪ mae)∗ (q1, q2) of Equation (18) implies

that qsδα �
∗ q1 and qsγβ �

∗ q2 with δα = γβ for some δ and γ in (V ∪ Td)
∗.

By Lemma 6,

S=⇒
rm

∗δAx′ i
=⇒
rm

δαx′ and S=⇒
rm

∗γBy′
j
=⇒
rm

γββ′y′ = δαβ′y′ (19)

hold in G.
Let us now consider the second part (q1, q2) mac (q3, q2) ma∗ (qf , qf ) of

Equation (18). By Lemma 3, there exist two bracketed strings wb and w′

b with
w = w′ such that q1wb �

∗ qf and q2w
′

b �
∗ qf . By Lemma 5, x′ ∼= w (mod Π)

and v′y′ ∼= w′ (mod Π) and by transitivity

v′y′ ∼= x′ (mod Π). (20)

We follow now the classical argument of Aho and Ullman [2, Theorem 5.9] and
study the cases where β′ is ε, in T+, or contains a nonterminal as a factor.

If β′ = ε, then our Equations (19) and (20) fit the requirements of Equa-
tion (16). Nevertheless, v′ = ε and ri 6= 1 : v′brj thus implies i 6= j, violating
the requirements of Equation (17). If β′ = v′ is in T+, then once again we fit
the requirements of Equation (16). Nevertheless, in this case, y′ 6= v′y′, hence
violating the requirements of Equation (17). If there is at least one nonterminal
C in β′, then

S′=⇒
rm

∗γβv1Cv3y
′=⇒

rm

∗γβv1v2v3y
′ = δαv1v2v3y

′ = δαv′y′. (21)

Remember that ri 6= 1 : v′brj , thus v1v2 6= ε and Equation (17) cannot hold.��

We have implemented our algorithm [37] along with a LR and a LRR test
in GNU bison [11]. Table 1 shows the number of initial LR(0) conflicts left
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Table 1: Number of initial LR(0) conflicts remaining with each test.

Grammar LR(0) LRR NU SLR(1) LRR NU LR(1)
ANSI C’ 387 43 32 43 43 32 29
Standard ML 477 299 271 165 163 135 127
Elsa– 1379 278 226 66 63 58 64
Elsa 2094 - 308 91 88 77 -

unsolved with our tests using successively LR(0), SLR(1) and LR(1) items.
More precisely, the first three columns present the number of LR(0) conflicts
taken as pairs of LR(0) items in conflict, the number of such LR(0) conflicts that
remain after a LRR exploration of the right context of each conflict, and the
number of LR(0) conflicts that remain after a noncanonical exploration of the
right context with our test. The three next columns do the same but employ a
SLR(1) notion of conflicts, and the last column uses LR(1) items. The missing
entries indicate memory exhaustions. The tested grammars are the ANSI C
grammar [23] with its typedef ambiguity, the Standard ML grammar [27], and
a simplified and the complete version of the C++ grammar of Elsa [26].

At the same level of precision, our algorithm performs better than the others,
and is also an order of magnitude faster using SLR(1) items than the LR(1) test.

A.5.4 Horizontal and Vertical Ambiguity

We first recall the definition of horizontal and vertical ambiguity.

Definition 5 (Brabrand et al. [5]) A context-free grammar is vertically un-
ambiguous if and only if, for all A in N with two different productions A−→α1

and A−→α2 in P , L(α1) ∩ L(α2) = ∅.
It is horizontally unambiguous if and only if, for all productions A−→α in

P , and for all decompositions α = α1α2, L(α1) ∩∨ L(α2) = ∅, where ∩∨ is
the language overlap operator defined by L1 ∩∨ L2 = {xyz | x, xy ∈ L1, y ∈
T+, and yz, z ∈ L2}.

Theorem 6 Let G be a context-free grammar and Γ/≡ its position automaton.
If G is RU(≡), then Γ/≡ is horizontally and vertically unambiguous.

Proof. If Γ/≡ is vertically ambiguous, then xbwbrix
′

b and xbw
′

brjx
′

b are two
different sentences in L(Γ/≡) ∩ T ∗

b with xwx′ = xw′x′, and thus G is regu-
lar ≡-ambiguous. If Γ/≡ is horizontally ambiguous, then xbvbybwbrix

′

b and
xbv

′

bybw
′

brix
′

b are two different sentences in L(Γ/≡)∩T ∗

b with xvywx′ = xv′yw′x′,
and thus G is regular ≡-ambiguous. �

The intended application of the test of Brabrand et al. is the testing of gram-
mars that describe the secondary structure of the RNA [34]. For completeness,
we copy here the results of our tool [37] on these in Table 2.

A.5.5 LL-Regular Testing

In spite of their popularity as an alternative to the bottom-up parsers of the
LR(k) family, top-down parser construction tests [35, 40] would not be very rele-
vant for practical ambiguity detection: the class of LL(k) grammars is arguably
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Table 2: Reported ambiguities in the RNA grammars from [34].

Grammar [34] actual class bison HVRU [5] NU(item1)
G1 ambiguous 18+12 1+5 14
G2 ambiguous 19+14 1+6 13
G3 non-LR 4+0 0+0 2
G4 SLR(1) 0+0 0+0 0
G5 SLR(1) 0+0 0+0 0
G6 LALR(1) 0+0 0+0 0
G7 non-LR 5+0 0+0 3
G8 LALR(1) 0+0 0+0 0

not large enough. The exception is the class of LL-Regular grammars [22, 30, 32],
defined similarly to LR-Regular grammars by generalizing the LL(k) condition.
In particular, the Strong LL-Regular condition [32] has given birth to the LL(*)
algorithm of the upcoming version 3 of ANTLR [31] and to the ambiguity de-
tection tool shipped with its IDE, ANTLRWorks. These classes of grammars
are strictly contained inside the class of LR-Regular grammars for left congru-
ences [17], and are thus captured by our noncanonical ambiguity test when using
itemΠ.

In this section, we explicit the (non) relation between the LLR condition
and the regular ambiguity test. A grammar G is LL(Π) if and only if

S=⇒
lm

∗zAδ=⇒
lm

zαδ=⇒
lm

∗zx, S=⇒
lm

∗zAδ=⇒
lm

zβδ=⇒
lm

∗zy and x ∼= y (mod Π) (22)

imply
α = β. (23)

Let us consider the grammar with rules

S−→BAb, A−→a |aa, B−→bBa |b. (G8)

It is SLL(2) but not RU(item2), as witnessed by the two different sentences
d2 d5 b d6 b r6 ar5 d3 ar3 b r2 and d2 d5 b d6 b r6 d4 aar4 b r2 recognized by Γ/item2.
On the other hand, the grammar with rules

S−→aAb |aAa, A−→ab |a (G9)

is not LL(2), but is RU(item2).

A.6 More Related Work

A.6.1 Systems of Pushdown Acceptors and their Transformations

Systems of pushdown acceptors were defined by Kuich [25] as a representation of
CFGs amenable to testing for quasi determinism. If a system is not immediately
quasi deterministic, one of its language and ambiguity preserving transforma-
tions can be tested instead. The quasi determinism of a system or of one of its
transformations implies the unambiguity of the original grammar.

The approach of Kuich is very close to our own: the systems of pushdown
acceptors are another interpretation of Γ/item0, and the transformations provide
the same flexibility as the choice of an equivalence relation finer than item0 for
us. Nonetheless, the quasi determinism condition is very restrictive, and Kuich
had to rely on extensive transformations in practice, including determinization
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and identification of which nonterminals displayed self embedding or not. A
formal comparison of the criteria is likely to be rather meaningless if we do not
complete quasi determinism with some of the transformations to yield a more
powerful criterion.

It is worth noting at this point that our own distinction between an equiva-
lence relation and a criterion on the resulting NFA is somewhat blurry as well,
and really dictated by the usual representations found in the parsing literature.

A.6.2 Noncanonical Parsers

Noncanonical parser constructions are amongst the most powerful deterministic
parser constructions available and as such provide very powerful tests for the
ambiguity of a grammar. Grammar G5 for instance is NSLR(2) [43], and thus
cannot be ambiguous.

Nevertheless, most noncanonical techniques are defined by their construction
mechanisms: if the resulting parser is deterministic, then the grammar is not
ambiguous. The computational cost of an attempt to build a deterministic
parser can be exponential in the size of the grammar. Our strategy of using
nonterminal transitions as often as possible is inspired by the noncanonical
constructions, but we maintain a reasonable worst-case complexity by avoiding
the determinization phase altogether. In this regard, practical tests ought to be
performed in order to verify the edge of the mutual accessibility relations: the
blowup of determinization is unlikely to occur in practice [33].

The techniques used in this paper have also found their application in the
construction of noncanonical parsers: the nondeterministic position automaton
can be determinized with a subset construction to yield a parser [13].

A.6.3 Grammatical Representations

The nondeterministic position automaton we introduced in this paper can be
seen as a generalization of several similar representations defined in different con-
texts, for instance ∨C-flow graphs [15], item grammars [16], transition diagrams
or networks [9, 44], nondeterministic LR automata [19], or item graphs [12]. Be-
sides testing, these representations have been applied to parser generation [16,
11, 13] and to regular approximations of context-free languages [29].

A.6.4 Verification of Programs

Context-free grammars can also model programs running mutually recursive
processes—they are better known as normed Basic Process Algebra equations.
The equivalence of such programs using the bisimulation semantics can be tested
in polynomial time [18]. Nevertheless, ambiguity checking needs completed
trace semantics, and it is unclear whether any suitable solution exists in the
verification literature.
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