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Abstract. Haplotype inference from genotype data is a key computa-
tional problem in bioinformatics, since retrieving directly haplotype in-
formation from DNA samples is not feasible using existing technology.
One of the methods for solving this problem uses the pure parsimony cri-
terion, an approach known as Haplotype Inference by Pure Parsimony
(HIPP). Initial work in this area was based on a number of different
Integer Linear Programming (ILP) models and branch and bound algo-
rithms. Recent work has shown that the utilization of a Boolean Satis-
fiability (SAT) formulation and state of the art SAT solvers represents
the most efficient approach for solving the HIPP problem.

Motivated by the promising results obtained using SAT techniques,
this paper investigates the utilization of modern Pseudo-Boolean Opti-
mization (PBO) algorithms for solving the HIPP problem. The paper
starts by applying PBO to existing ILP models. The results are promis-
ing, and motivate the development of a new PBO model (RPoly) for
the HIPP problem, which has a compact representation and eliminates
key symmetries. Experimental results indicate that RPoly outperforms
the SAT-based approach on most problem instances, being, in general,
significantly more efficient.

Keywords: haplotype inference, pure parsimony, pseudo-Boolean opti-
mization.

1 Introduction

The causes of many common human diseases remain, to this day, largely un-
known. Since genetic inheritance is one of the major risk factors for the large
majority of diseases, the study of genetic variation in human populations repre-
sents one of the critical steps towards a better understanding of the mechanisms
of disease.

Although a number of heritable disorders that depend on the variation of one
single location in one single gene are known, common diseases usually depend
on the combined effects of many different factors, in a number of different genes.

The study of the effects of particular variations of genes is simplified by the
fact that, in many cases, there exists a strong correlation between the allele
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present in a particular single nucleotide polymorphism (SNP) and other nearby
sites. A given combination of alleles in one chromosome is termed a haplotype,
and the deviation from independence that exists between alleles is known as
linkage disequilibrium (LD).

For genetic inheritable diseases that are due to a combination of allele values in
nearby loci, identifying common haplotypes in the population represents a key
first step towards the understanding of the pathogenesis of disease. However,
current genotyping methods do not provide haplotype information, which is
essential for detailed analysis of the mechanisms of disease.

At a given position for which an individual is heterozygous (i.e., inherited
different alleles at a given locus), it is technologically not feasible, in general, to
identify the particular chromosome that contains each allele. Additional infor-
mation can be obtained by genotyping the parents, but significant uncertainty
remains. Efficient methods for haplotype inference that can handle large vol-
umes of data are therefore crucial, in order to make adequate use of the results
of ongoing efforts like the HapMap project [17], an effort that aims at mak-
ing available genotype and haplotype information of a significant sample of the
human population.

Although a number of different methods has been proposed for the prob-
lem of haplotype inference, the Pure-Parsimony criterion [6,10,7] represents a
well known approach. Haplotype Inference by Pure-Parsimony (HIPP) aims at
finding a solution to the problem that minimizes the total number of distinct
haplotypes required. The problem of finding such a solution is APX-hard (and,
therefore, NP-hard) [10]. Experimental results [6,18] have shown that the accu-
racy of the HIPP approach is comparable with the one obtained with other ap-
proaches. However, until recently, HIPP inference methods were severely limited
on the size of the problems they could handle. Recently, a SAT based approach
for this problem, SHIPs [11,12], has shown that the use of effective constraint
satisfaction methods leads to an efficient solution of this problem.

Motivated by these results, this paper explores an alternative approach. Ex-
isting ILP models only have Boolean variables and, therefore, can be solved with
Pseudo-Boolean Optimization (PBO) solvers [5,13]. Hence, this paper starts by
considering the utilization of PBO solvers instead of standard ILP solvers. The
results are very promising, being competitive with SHIPs. These results motivate
the development of a new PBO model (RPoly) for the HIPP problem, which is
based on the PolyIP model [1,8] and, in addition, breaks key symmetries and
yields a significantly more compact representation. The results show that RPoly
is, in general, more efficient than SHIPs, and capable of solving more problem
instances in a given time limit.

This paper is organized as follows. First we introduce the haplotype inference
by pure parsimony problem. Afterwards, we describe the two main contributions
of the paper: (1) how to solve HIPP ILP models using PBO and (2) how to
optimize the existing polynomial model. Finally, we conclude and suggest future
research work.
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Fig. 1. Relative performance of HIPP solvers

2 Haplotype Inference by Pure Parsimony

A haplotype is the genetic constitution of an individual chromosome. The un-
derlying data that forms a haplotype is generally viewed as the set of SNPs in
a given region of a chromosome. Normal cells of diploid organisms contain two
haplotypes, one inherited from each parent. The genotype represents the con-
flated data of the two haplotypes. The value of a particular SNP may be A,
B or A/B, depending on whether the organism is homozygous with allele A,
homozygous with allele B or heterozygous.

Starting from a set of genotypes, the haplotype inference by pure parsimony
problem consists in finding a minimum set of haplotypes that can be used to
derive, by pairwise combinations, the given set of genotypes.

Given a set G of n genotypes, each of length m, the haplotype inference
problem consists in finding a set H of 2 · n haplotypes, not necessarily different,
such that for each genotype gi ∈ G there is at least one pair of haplotypes
(hj , hk), with hj and hk ∈ H such that the pair (hj , hk) explains gi. The variable
n denotes the number of individuals in the sample, and m denotes the number
of SNP sites. gi denotes a specific genotype, with 1 ≤ i ≤ n. Furthermore, gij

denotes a specific site j in genotype gi, with 1 ≤ j ≤ m.
Without loss of generality, we may assume that the values of the two possible

alleles of each SNP are always 0 or 1. Value 0 represents the wild type and
value 1 represents the mutant. A haplotype is then a string over the alphabet
{0,1}. Moreover, genotypes may be represented by extending the alphabet used
for representing haplotypes to {0,1,2}. Homozygous sites are represented by the
values 0 or 1, depending on whether both haplotypes have value 0 or 1 at that
site, respectively. Heterozygous sites are represented by value 2.
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Table 1. Classes of instances used: number of SNPs and genotypes

Class # Instances minSNPs maxSNPs minGENs maxGENs
ms 380 4 57 9 94
phasing 329 14 188 34 90
hapmap 24 4 29 5 68
biological 450 4 77 4 49
Total 1183 4 188 4 94

The HIPP problem is to find a minimum-size set H of haplotypes that explain
all genotypes in G. For example, consider the set of genotypes: 2120, 2120 and
1221. There are solutions for this example that use six distinct haplotypes, but
solution 0100/1110, 0100/1101, 1011/1101 uses only four distinct haplotypes.

Two strings (denoting genotypes or haplotypes) are incompatible if and only
if the strings have at least one site where one string has value 1 and the other
string has value 0. Otherwise the strings are said to be compatible.

A comparison of the performance of alternative approaches to the HIPP prob-
lem is summarized in Figure 1. A universe of 1183 problem instances is used,
from which 854 instances were taken from [12] and the remaining (harder) in-
stances are described by Schaffner [15] and correspond to the SU-100kb, SU1,
SU2 and SU3 classes available from http://www.stats.ox.ac.uk/∼marchini/
phaseoff.html. All problem instances were simplified in a preprocessing step,
according to what has been suggested in [2]: duplicated genotypes and sites were
removed, as well as complemented sites. For each class, Table 1 gives the number
of instances, and the minimum and maximum number of SNPs and genotypes,
respectively, after removing duplicated genotypes and duplicated and comple-
mented sites. The ms class includes the uniform and nonuniform classes of in-
stances that have been used in [2] but extended with additional, more complex,
problem instances. The phasing instances correspond to the instances described
in [15] which were generated to evaluate phasing algorithms. The hapmap class
of instances is also the one used in [2]. Finally, the instances for the biological
class were generated from publicly available data (e.g. [14,4,3,9]).

The HIPP solvers RTIP [6], PolyIP [1], HybridIP [2], Hapar [18] and SHIPs
[12] were considered1. The run times for each solver were sorted and plotted,
the cutoff point being 1000 seconds. All results shown were obtained on a 1.9
GHz AMD Athlon XP with 1GB of RAM running RedHat Linux. For the ILP-
based HIPP solvers, the ILP package used was CPLEX version 7.5. As can be
concluded, SHIPs is the HIPP tool capable of solving the largest number of
problem instances. SHIPs aborts 268 problem instances out of 1183 instances,
whereas RTIP aborts 389 instances, Hapar aborts 619 instances, HybridIP aborts
767 instances and PolyIP aborts 771 instances. Nonetheless, we should note that
95% of the problem instances aborted by RTIP were aborted due to memory
exhaustion. Hence, RTIP may be competitive for solving some problem instances
but it is not a robust solver.

1 All results were obtained with the tools provided by the authors.
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3 Solving ILP HIPP Models with PBO

This section reviews existing ILP models for the HIPP problem [7,10]. In addi-
tion, the section includes results using a modern Pseudo-Boolean Optimization
(PBO) solver instead of a standard ILP solver.

In a pseudo-Boolean formula, variables have Boolean domains and constraints
are linear inequalities with integer coefficients,

∑
cixi ≥ n ci, n ∈ Z, xi ∈ {0, 1}. (1)

For example, x+2 y−z ≥ 2 is a pseudo-Boolean constraint (also denoted as PB-
constraint). From an ILP point of view, PB-constraints can be seen as a special-
ization of ILP where all variables are Boolean. This problem formulation is also
known as 0-1 integer programming. From a SAT point of view, PB-constraints
can be seen as a generalization of clauses. Furthermore, a pseudo-Boolean for-
mula can be extended with an optimization function.

3.1 Exponential-Size ILP Models

The first ILP model proposed for the HIPP problem, RTIP [6], has linear space
complexity on the number of possible haplotypes and, therefore, it is exponential
on the number of given genotypes.

A Boolean variable yi,u is associated with each pair u of haplotypes that can
explain a given genotype gi, and denotes whether this pair of haplotypes is used
for explaining gi. A cardinality constraint,

∑

u

yi,u = 1, (2)

requires that exactly one pair of haplotypes must be used for explaining each
genotype, among all pairs that can explain the genotype. Each candidate haplo-
type is associated with a dedicated variable xv, such that xv = 1 if the haplotype
is used. The utilization of a specific pair of haplotypes for explaining a genotype
(i.e. yi,u = 1) implies the respective xv variable,

yi,u → xv, (3)

for each haplotype in the pair. The cost function is used to minimize the number
of haplotypes used,

minimize
∑

xv. (4)

This model corresponds to the TIP model [6]. The RTIP (Reduced TIP) model
introduces one essential simplification. If the pair of haplotypes for a variable
yi,u is such that they are not part of any other pair of haplotypes, then the yi,u

variable and the related xv variables can be removed from the formulation. A
key drawback of the RTIP model is that the number of candidate haplotypes
grows exponentially with the number of heterozygous sites. Hence, RTIP does
not scale for large problem instances.

The RTIP model inspired a branch-and-bound algorithm to the HIPP prob-
lem, known as Hapar [18].
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3.2 Polynomial-Size ILP Models

A more recent ILP model, PolyIP [1], is polynomial in the number of sites m
and population size n, with a number of constraints and variables, respectively,
in Θ(n2m) and Θ(n2 + n m). The PolyIP model represents the 2 · n candidate
haplotypes as sequences of Boolean variables, and then establishes conditions
for the haplotypes to explain the corresponding genotypes, such that the total
number of distinct haplotypes is minimized. Haplotypes are represented with
Boolean variables yi j , 1 ≤ i ≤ 2 n and 1 ≤ j ≤ m, i.e. m variables for each of
the 2 · n candidate haplotypes.

First, the PolyIP model defines conditions on the sites, with 1 ≤ i ≤ n and 1 ≤
j ≤ m,

y2i−1 j = 0 and y2i j = 0, if gij = 0,
y2i−1 j = 1 and y2i j = 1, if gij = 1,

y2i−1 j + y2i j = 1 if gij = 2,
(5)

where gij ∈ {0, 1, 2} denotes the possible values at each site. Second, the PolyIP
model defines conditions for identifying different haplotypes, with 1 ≤ l ≤ i ≤
2n and 1 ≤ j ≤ m. Boolean variable dl i is defined such that dl i = 1 if hi �= hl.
The resulting conditions become

yi j − yl j ≤ dl i,
yl j − yi j ≤ dl i.

(6)

If at least one site of hi and hl differs, then dl i needs to be assigned value 1.
Third, the model introduces the xi variables, denoting whether hi is different

from all previous haplotypes hl, where 1 ≤ l < i, and defines conditions on these
variables. Each Boolean variable xi is defined such that xi = 1 if hi is unique with
respect to the previous haplotypes. Thus, if hi is unique, then

∑i−1
l=1 dl i = i − 1;

otherwise
∑i−1

l=1 dl i < i − 1. As a result, the condition on variable xi becomes

xi ≥ 2 − i +
i−1∑

l=1

dl i. (7)

Finally, the cost function minimizes the number of different haplotypes,

minimize
2n∑
i=1

xi. (8)

A number of optimizations have been proposed to the basic PolyIP model [1],
with the purpose of improving the quality of the LP relaxation step of standard
ILP solvers, and therefore pruning the search space to be handled by the ILP
solver.

More recently, the same authors introduced a new polynomial-size formula-
tion, HybridIP [2], representing a hybrid of the RTIP and PolyIP formulations.
Nevertheless, existing experimental results (see Figure 1) suggest that the per-
formance of the two polynomial models does not differ significantly.
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Fig. 2. Relative performance of PolyIP, PolyPB and SHIPs

3.3 ILP vs. PBO Solvers

As is clear from the description of the ILP models, all variables are Boolean
and all coefficients are integer. Hence, the HIPP ILP models are also PBO mod-
els, and so PBO solvers can be considered. The results summarized in Figure 1
indicate that the performances of the PolyIP and HybridIP models are sim-
ilar. Moreover, the RTIP model is known to be inadequate for larger problem
instances, due to the exponential growth of the model in the number of heterozy-
gous sites per genotype. As a result, this section only evaluates the performance
of the PolyIP model using a PBO solver (hereafter referred to as PolyPB). The
PBO solver MiniSAT+ [5] is used on all reported PBO results. Although other
PBO solvers analyzed in [13] were considered, MiniSAT+ was by far the most
efficient.

MiniSAT+ handles PB-constraints through translation to SAT without mod-
ifying the SAT procedure itself. In addition, the objective function is satisfied
by iteratively calling the SAT solver where for each new iteration the objec-
tive function is updated until the problem is unsatisfiable. For example, given a
minimization problem with an objective function f(x), MiniSAT+ first runs the
solver on the set of constraints (without considering the objective function) to
get an initial solution f(x0) = k. Then it adds the constraint f(x) < k and runs
the solver again. If the problem is unsatisfiable, then k is the optimum solution.
If not, the process is repeated with the new smaller solution. Observe that trans-
lating to SAT results in an approach that is particularly suited for problems that
are almost pure SAT. Indeed, this is the case for the HIPP problem. Hence, one
may expect to get a faster procedure with MiniSAT+ than by applying a native
PBO solver, not optimized towards propositional SAT.
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Figure 2 compares the PolyIP model using the CPLEX solver, the PolyPB
model using the PBO solver MiniSAT+ and the SHIPs solver on the 1183 prob-
lem instances described in Table 1 for a timeout of 1000 seconds. Clearly, PolyPB
outperforms SHIPs in terms of the number of instances solved. Although both
solvers are able to solve the majority of the 1183 problem instances within 1000
seconds, PolyPB only aborts 100 instances whereas SHIPs aborts 268 instances.
Observe that PolyIP is significantly worse, aborting 771 out of 1183 instances.

In addition, Figure 3 provides a scatter plot with the run time for PolyPB
and SHIPs on each of the problem instances with a timeout of 1000 seconds.
For most problem instances SHIPs is faster than PolyPB; PolyPB is faster than
SHIPs on 454 out of 1183 instances, with many of these instances being solved
in less than one second. Nonetheless, this group of instances for which PolyPB
is faster than SHIPs also includes 184 instances that PolyPB is able to solve and
SHIPs aborts. On the other hand that there are only 16 instances that SHIPs is
able to solve and PolyPB aborts. As a result, we can conclude that PolyPB is
more robust than SHIPs. Finally, there are still 84 instances that both solvers
are unable to solve within 1000 seconds.

4 RPoly: An Optimized PolyPB Model

Although the results shown in the previous section are promising, it is possible
to further optimize the PolyPB model. Indeed, SHIPs is still showing a better
performance in a large number of problem instances, which motivates the in-
corporation of some of the SHIPs model features into the PolyPB model. This
section addresses optimizations to the PolyPB model with the main goal of re-
ducing the run times.
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Fig. 4. Run times for PolyPB with and without symmetry breaking

These optimizations are two-fold: (1) the elimination of key symmetries and
(2) the reduction of the size of the model. It is well-know that the SHIPs model
would not be competitive if it was not for some specific optimizations, which
include breaking key symmetries. Symmetries are broken by adding constraints
to the model. We have also observed that the PBO instances generated with the
PolyPB model are significantly larger than the SAT instances generated with
the SHIPs model. The number of constraints in the PBO model can be up to
an order of magnitude larger than the number of constraints in the SAT model,
whereas the number of variables in the PBO model can be up to a factor of 3
larger than the number of variables in the SAT model.

The resulting model is referred to as Reduced Poly model (RPoly).

4.1 Eliminating Key Symmetries

A key technique for pruning the search space is motivated by observing the
existence of symmetry in the problem formulation. Clearly, given a solution
to a HIPP problem were a genotype gi is explained by the pair of haplotypes
(h2i−1,h2i), the same genotype gi may also be explained by the pair of haplo-
types (h2i,h2i−1). Eliminating this symmetry significantly reduces the number
of solutions and consequently reduces the search space.

In practice, this kind of symmetry is eliminated by adding additional con-
straints to the model, which guarantee that the elements in a pair of haplotypes
are lexicographically ordered. Hence, for each site gij in a genotype gi we must
force the following:

– If gi j = 2 and gi j′ �= 2 (∀j′ : j′ < j), then y2i−1 j − y2i j < 0.

Figure 4 compares the performance of the PolyPB model with and without
symmetry breaking constraints. Clearly, with a few exceptions (72 out of 1183
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instances), eliminating symmetries accelerates the performance of the PBO
solver. The new model is faster than the PolyPB model for 90% of the instances
and up to 2 orders of magnitude. This result comes as no surprise, given the
success of the same technique when implemented in the SHIPs model. This re-
sult is indeed significant, as the new model only aborts 47 instances, whereas
the PolyPB model aborts 100 instances.

4.2 Reducing the Model

The organization of RPoly follows the organization of PolyIP: two haplotypes are
associated with each genotype, and conditions are defined which capture when a
different haplotype is used for explaining a given genotype. However, RPoly has
a few key differences. First, the set of variables is different. Instead of associating
a variable with each site of each haplotype, RPoly only associates variables with
heterozygous sites (since the value of haplotypes in the other sites is known before-
hand, and so can be implicitly assumed). In addition, each used variable describes
the possible pairs of values for the corresponding heterozygous site.

In practice, the model associates two haplotypes, ha
i and hb

i , with each geno-
type gi, and these haplotypes are required to explain gi. Moreover, the model
associates a variable ti j with each heterozygous site (i, j) (i.e. with gi j = 2).
Hence, ti j = 1 indicates that ha

i j = 1 and hb
i j = 0, whereas ti j = 0 indicates

that ha
i j = 0 and hb

i j = 1 2. The value of ha
i and hb

i at homozygous sites j is
implicitly assumed.

This alternative definition of the variables associated with the sites of geno-
types reduces the number of variables by a factor of 2. In addition, the model
only creates variables for heterozygous sites, and, therefore, the number of vari-
ables associated with sites equals the total number of heterozygous sites. As a
result, the conditions provided by expression (5) are eliminated. It should also
be mentioned that this definition of the variables associated with sites follows
the SHIPs model [11,12].

Finally, another key modification is that the candidate haplotypes for each
genotype are related with candidate haplotypes for other genotypes only if the
two genotypes are compatible. Clearly, incompatible genotypes are guaranteed
not to be explained by the same haplotype.

The proposed modification implies the use of two additional sets of variables.
Variable xp q

i1 i2
, with p, q ∈ {a, b} and 1 ≤ i2 < i1 ≤ n, is 1 if the p haplotype

of genotype i1 and the q haplotype of genotype i2 are incompatible. Clearly, if
genotypes i1 and i2 are incompatible, then the value of xp q

i1 i2
is 1 for the four

possible combinations of p and q. Moreover, two genotypes i1 and i2 are related
only with respect to sites j such that either gi1 or gi2 is heterozygous at that
site. In addition, the model uses variables to denote when one of the haplotypes
associated with a given genotype is different from all previous haplotypes. Hence,
up

i , with p ∈ {a, b} and 1 ≤ i ≤ n, is 1 if haplotype p of genotype i is different
from all previous haplotypes.
2 Hence, the symmetry in a pair of haplotypes is broken by considering that tij = 0

for the first heterozygous site gij of each genotype gi.
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The conditions on the up
i variables are based on the conditions for the xi

variables for the PolyIP model,
∧

1≤k<i

(xp a
i k ∧ xp b

i k) → up
i . (9)

The conditions on the xp q
i1 i2

variables are all of the following form, for all
1 ≤ j ≤ m:

¬(R ↔ S) → xp q
i1 i2

, (10)

where the predicates R and S depend on the values of the sites (i1, j) and (i2, j),
and on which of the haplotypes is considered, i.e., either a or b. Observe that
1 ≤ i2 < i1 ≤ n, 1 ≤ j ≤ m, and p, q ∈ {a, b}. Accordingly, the R and S
predicates are defined as follows:

– If gi1 j �= 2, then R = ¬(gi1 j ↔ (q ↔ a)) and S = ti2 j .
– If gi2 j �= 2, then R = ¬(gi2 j ↔ (q ↔ b)) and S = ti1 j .
– If gi1 j = 2 ∧ gi2 j = 2, then R = ¬(p ↔ q) and S = ¬(ti1 j ↔ ti2 j).

Finally, the cost function is given by

minimize
n∑

i=1

(ua
i + ub

i). (11)

The proposed modifications result in significantly smaller PBO problem in-
stances. Figure 5 compares the number of terms for the PolyPB and the RPoly
models. The results are consistent and show that the number of terms in RPoly
is a factor of 5 to 10 smaller than in PolyPB. Albeit not shown, the number
of variables in RPoly can be up to a factor of 3 smaller than the number of
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variables in PolyPB. We should note that the phasing class of instances exhibits
a different behavior: most of these instances have around 107 terms in the PBO
model with symmetry breaking. The number of terms in RPoly is not reduced
for a constant factor, as it is for the other classes of instances. These instances
have a higher number of incompatible genotypes when compared with the other
classes of instances. Hence, the impact of the reduced model is much more signif-
icant. For the same reason, the impact on the run times is also more significant
(see Figure 6 where the run time for the phasing instances using the PBO model
with symmetry breaking is around 102 seconds). As a result, for these instances
RPoly can outperform PolyPB by two orders of magnitude.

Finally we evaluate the effect of the reductions described above with respect
to the run times. Figure 6 compares the PolyPB model extended with sym-
metry breaking constraints and the RPoly model, both using the PBO solver
MiniSAT+, on the set of 1183 problem instances and with a timeout of 1000
seconds. With a few exceptions (28 out of 1183 instances), RPoly is consistently
faster than PolyPB, and the speedup can reach 2 orders of magnitude. The few
exceptions where RPoly is slower are explained by the branching heuristics used
by MiniSAT+, which, in some cases, may not select the most adequate variables
to branch on.

4.3 RPoly vs. SHIPs

In this section we measure the progress made with this work, by comparing the
SHIPs model [12] with the RPoly model. The RPoly model is based on the PolyIP
model but uses a PBO solver, MiniSAT+, and introduces key optimizations: the
elimination of symmetries between the elements within a pair of haplotypes and
the reduction on the size of the model.
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Although both RPoly and SHIPs use SAT-based technology, the two ap-
proaches differ. Whereas SHIPs considers an increasing number of haplotypes
until a solution is found, RPoly considers 2 · n haplotypes, where n is the num-
ber of genotypes, and iteratively reduces the number of different haplotypes until
a solution with a minimum number of different haplotypes is found.

Figure 7 compares the RPoly model using the PBO solver MiniSAT+ and
the SHIPs solver. For a small number of problem instances (52 out of 1183)
SHIPs is faster than RPoly, and the speedup can reach 2 orders of magnitude.
However, for most problem instances (1089 out of 1183), RPoly is faster than
SHIPs. It should be observed that SHIPs is, in general, slower on very easy
problem instances, essentially due to the initial setup time [11]. Nevertheless,
the results also clearly show that RPoly is significantly more robust than SHIPs.
RPoly aborts on a significantly smaller number of instances, being able to solve
more than 96% of the problem instances. Finally, observe that only two instances
aborted by RPoly can be solved by SHIPs.

5 Conclusions and Future Work

This paper studies the application of modern PBO solvers to the HIPP prob-
lem. By replacing the CPLEX ILP solver with the PBO solver MiniSAT+ [5],
the existing PolyIP model [1] is shown to be competitive with the state-of-the-art
method, SHIPs [12], being in general more robust. These results motivated the
development of a new ILP model for the HIPP problem, RPoly, which entails
a number of improvements to the basic PolyIP model inspired by SHIPs. The
results for RPoly are significantly more promising than for PolyIP: RPoly is most
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often faster than SHIPs and is also significantly more robust, aborting only on
a small number of problem instances (observe that, with two exceptions, SHIPs
also aborts all of these instances).

The results indirectly suggest that the performance improvements obtained
with SHIPs [11,12] are to a large extent explained by the efficiency of modern
SAT solvers. Indeed, SAT-inspired PBO solvers obtain extremely good results
with PolyIP and with RPoly, which are PBO models that differ significantly from
the SHIPs SAT-based approach. In addition, the different PBO models provide
a new, relevant, and essentially endless, source of challenging real problem in-
stances for PBO solvers.

Despite the promising results obtained using MiniSAT+ with the RPoly
model, several challenges remain. A number of problem instances cannot be
solved by any HIPP solver. In addition, larger HIPP instances are expected to
be significantly more challenging.

Finally, we should mention that having a competitive HIPP solver allows us
to extend the pure parsimony approach with some ideas which are on the basis of
other haplotype inference approaches. This will enable us to develop parsimony-
based methods that explicitly incorporate genetic models (e.g. as in Phase [16]),
with the objective of improving the accuracy of the reconstructed haplotypes.
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