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An Algebraic Algorithm for the Identification
of Glass Networks with Periodic Orbits

along Cyclic Attractors?

Igor Zinovik, Daniel Kroening, and Yury Chebiryak

Computer Systems Institute, ETH Zurich, 8092 Zurich, Switzerland
{izinovik|daniel.kroening|yury.chebiryak}@inf.ethz.ch

Abstract. Glass piecewise linear ODE models are frequently used for
simulation of neural and gene regulatory networks. Efficient computa-
tional tools for automatic synthesis of such models are highly desirable.
However, the existing algorithms for the identification of desired models
are limited to four-dimensional networks, and rely on numerical solutions
of eigenvalue problems. We suggest a novel algebraic criterion to detect
the type of the phase flow along network cyclic attractors that is based
on a corollary of the Perron-Frobenius theorem. We show an application
of the criterion to the analysis of bifurcations in the networks. We pro-
pose to encode the identification of models with periodic orbits along
cyclic attractors as a propositional formula, and solving it using state-
of-the-art SAT-based tools for real linear arithmetic. New lower bounds
for the number of equivalence classes are calculated for cyclic attractors
in six-dimensional networks. Experimental results indicate that the run-
time of our algorithm increases slower than the size of the search space
of the problem.

1 Introduction

Many biological models can be formulated as hybrid systems in which the switch-
like behavior of genes is approximated by discontinuous step functions, while the
other state variables still change continuously in time. Piecewise-linear differen-
tial equations (PLDE) were proposed by Glass and Kaufmann as an approxi-
mation for systems in the context of gene regulation [1, 2]. These equations are
applied to the analysis of gene regulatory networks [3–6] and neural networks [7,
8]. The piecewise linear approach for describing complex nonlinear dynamics is
actively studied and utilized in control theory, design of electric and electronic
circuits, and embedded software.

The main distinction of biological phenomena is that the interactions are
characterized by very localized coupling of the state variables, unlike complex
couplings in the context of control and electronic circuit problems. In the result-
ing model, interactions between genes are present only in the piecewise constant
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terms of the PLDE equations [9]. Let n denote the number of genes and xi de-
note the concentration of the product of gene i. The vector of the xi-s is denoted
by x. The equations can be written in the form

ẋi = −gi(x)− γixi for 1 ≤ i ≤ n,

where γi > 0 is the degradation rate of xi. The function gi : Rn≥0 → R≥0

describes the coupling of the variables and is defined as

gi(x) =
∑
l∈L

kilbil(x)

where kil ≥ 0 is a rate parameter, L is a set of indexes, and bil : Rn≥0 → {0, 1} is a
composition of step functions with the steps located at the prescribed threshold
concentrations xi = θil. The function bil expresses the conditions under which
the gene causes production of the protein at a rate kil. The constant θil denotes
the l-th threshold concentration of the protein encoded by gene i. The thresholds
induce a partitioning of the phase space into a set of n-dimensional boxes. In
each box, the protein concentrations are described by ODEs with a constant
production term µi and a rate parameter γi:

ẋi = µi − γixi for 1 ≤ i ≤ n

The global behavior of PLDE with several thresholds for every continuous vari-
able are actively studied in the context of modeling of gene regulatory net-
works [10] and the qualitative theory of differential equations [11]. If the model
of the gene activity is restricted to on/off expressions and the decay rates are
identical for all reactions, the PLDE system is reduced to a Glass model [12].
The general form of a Glass network is

ẋi = Gi(x̃1, . . . , x̃n)− αxi for 1 ≤ i ≤ n and α > 0.

The protein production rates are defined via the interaction functions Gi, where
x̃i = a if xi < θi, and xi = b if xi > θi with real constants a < b. Using
appropriate scaling of the variables, the PLDE can be transformed into the
system

ẏi = Fi(ỹ1, . . . , ỹn)− yi for 1 ≤ i ≤ n,

where ỹi = 0 if yi < 0, and ỹi = 1 if yi > 0 [12]. The equations describe a
network with all thresholds equal 0 and unit decay rate. The equations can be
easily integrated, and the trajectories are straight lines in every orthant1 Ok, k ∈
{1, 2, 3, . . . , 2n}, of the phase space. The phase flow in each orthant Ok is defined
by its focal point fk= (fk1 , f

k
2 , . . . , f

k
n) ∈ Rn where fki = Fi(ỹ1, ỹ2, . . . , ỹn)|Ok

.
Thus, the Glass network can be specified by a choice of a set of focal points
{f (k)}, k ∈ {1, 2, 3, . . . , 2n}.

The phase flow in Glass networks is studied using a state transition diagram,
which is represented by an n-cube with directed edges. Each orthant of the phase
1 Generalization of a quadrant to the n-dimensional Euclidean space.
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space is associated with a vertex of the n-cube, and each common boundary of
the orthants corresponds to an edge of the cube. The edge is directed according
to the direction of the phase flow across the boundary [13]. Figure 1 illustrates a
phase flow with two trajectories of a two-dimensional Glass network. The state
transition diagram for a 3-dimensional Glass network is shown in Fig. 2. The
vertices of the n-cube are labeled by tuples of n binary variables (ỹ1, ỹ2, . . . , ỹn),
which define a valuation of the network interaction functions Fi. Periodic trajec-
tories of the networks correspond to closed cycles in the transition graphs (e.g.,
see thick line in Fig. 2).
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Fig. 1. 2-d phase flow
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Fig. 2. 3-d transition diagram

The global phase flow in Glass networks can be quite complex. Oscillations
towards equilibrium states, cycles and limit cycles may occur when linear parts
of the trajectories are connected continuously over sequences of orthants [13,
14, 12, 15]. Numerical simulations [13, 16] indicate that for dimensions greater
than 4, Glass networks may exhibit aperiodic and chaotic behavior. Studies of
the periodic solutions for Glass models show that there are networks that possess
a special type of stable limit cycles: the flow between the orthants along these
cycle is unambiguous, i.e., for each orthant along the cycle, all trajectories must
go to the same successor. In other words, the basin of attraction of the periodic
trajectory is composed of all orthants spanned by the trajectory. Networks with
such stable cycles are called networks with cyclic attractors [13].

Definition 1 (Cyclic Attractor). A cycle in the state diagram is called a
cyclic attractor if a) it is a chord-free simple cycle in the n-cube2, and b) all
edges adjacent to the cycle have to be directed towards the cycle nodes

As example, the cycle shown in Fig. 2 is the cyclic attractor.
Models for gene regulatory networks with equilibrium states and stable limit

cycles are of special interest in Systems Biology because the models serve for sim-
ulation of cell differentiation processes and variability of cell types [17, 18]. The
classification of the cyclic attractors with respect to symmetry transformation of

2 Every edge in the graph that joins two vertices of the cycle is an edge of this cycle.
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the n-cube up to dimension 5 has been completed [13]. Numerical studies of the
3-dimensional cyclic attractor identified unique stable oscillations for the value
of the bifurcation parameter greater than the Hopf bifurcation point [19]. The
network with cyclic attractors was integrated numerically for the 4-dimensional
state space to simulate a neural network [20]. Three stable periodic trajectories
were found by the parametric study of PLDE models, and the period of each
cycle was computed for a set of thresholds θi.

To summarize, the classification of the transition diagrams has been obtained
for Glass networks up to dimension five. Analytical results on phase flow are
presented for three- and four-dimensional networks. The analysis relies on the
integration of PLDE and numerical solutions of eigenvalue problems for the
matrix associated with the Poincaré return map. Models for the simulation of
gene regulatory and neural networks utilize Glass networks with cyclic attractors.
Phase flow along cyclic attractors was proven to admit either a stable periodic
orbit or to converge to the origin. If the focal coordinates {f (k)

i } for the system
with cyclic attractor equal ±1, the flow always is attracted by the unique 1-
period trajectory.

The determination of the parameters of gene regulation models based on ex-
perimental observations is known to be highly desirable [17], and is a computa-
tionally difficult problem [21]. A solution of the inverse problem of 4-dimensional
Glass network reconstruction based on a partial information about the transition
diagram and the signs of focal coordinates is shown in [3]. The objective of this
paper is to suggest an efficient method for the identification of networks with
cyclic attractors that exhibit phase flow of a prescribed type for a given set of
focal point coordinates.

The problem is stated as follows: based on a given sequence of absolute
values of focal point coordinates {|f (k)

i |} and the desired flow type, identify a
Glass network with an attractor that admits the prescribed flow.

As there are straight-forward upper bounds for the length of cyclic attrac-
tors for a given dimension, we propose to use an encoding into propositional
satisfiability (SAT) for the search. There are two contributions we present:

1. We propose an algebraic method for analysis of structural stability of phase
flow for Glass networks with cyclic attractors. Our method utilizes a corollary
of the Perron-Frobenius theorem and gives a criterion for the identification
of the flow type along the cyclic attractors.

2. We propose a scalable SAT-based algorithm for identification of the networks
with cyclic attractors.

Outline The paper is organized as follows. In Section 2, we extend a sufficient
condition for the identification of networks with cyclic attractors [13] to an al-
gebraic criterion (i.e., necessary and sufficient condition), which is derived from
properties of the state transition diagram of the networks. We also present an
application of the criterion to the analysis of structural stability of the phase flow
as an example, which is useful later on for the construction of the algorithm for
network identification. In Section 3, we introduce an algorithm based on SAT for
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the search for cyclic attractors in the state transition diagram. In Section 4, we
integrate the proposed criterion as a part of the algorithm for the identification
of Glass networks with periodic orbits along cyclic attractors. We also present
experimental results that indicate that the algorithm scales well in the network
dimension.

2 Algebraic Criterion for Flow Identification

The flow along cyclic attractors is known either to converge to the origin or to ad-
mit a unique stable 1-period orbit. The type of the flow is identified by analyzing
a Poincaré plane: the flow with periodic orbit has a unique fixed point, while the
Poincaré map for flows converging to the origin does not have fixed points. Thus,
a criterion for flow identification should distinguish between Poincaré maps with
and without fixed points.

Poincaré return maps of Glass networks can be represented by the compo-
sition of fractional linear maps M (k) : Rn → Rn [13]. Following the notation
in [12], the mapping can be presented as:

y(k+1) = M (k)y(k) = B(k)y(k)/(1 + 〈ψ(k),y(k)〉), (1)

where y(k) is the coordinate vector on the k-th orthant boundary crossed by the
trajectory, and the matrix B(k) is calculated as

B(k) = I − (f (k)eTj )/f (k)
j (2)

where I is the identity matrix. The focal point f (k) associated with the orthant
being entered is assumed not to lie in that orthant, ej denotes the standard
basis vector in Rn, and the vector ψ(k) is defined to equal −ej/f

(k)
j . The angular

brackets denote the Euclidean inner product. Thus, the return map for a cycle
restricted to the orthant boundary yi = 0 can be written as

My = Ay/(1 + 〈φ,y〉), (3)

where A = ||amp|| is the (n− 1)× (n− 1) matrix obtained by deleting the i-th
column and row of the composition of B(k), and φ is the same reduction of the
composition of ψ(k) [12].

The values of the matrix elements amp depend on the choice of the initial
orthant boundary as well as on the order of enumeration of the variables, and the
prescribed orientation of the basis vectors along the axes. The same N -node cycle
in the state diagram may be represented by N ·n!·2n different matrices. In case of
a cyclic attractor, the matrix can be obtained in such a way that all its elements
are positive [13]. Subsequently, the Perron-Frobenius theorem guarantees that
the flow admits a stable periodic orbit if the dominant eigenvalue r of the positive
matrix A is greater than one, and converges to the origin otherwise. Therefore,
if a cyclic attractor is represented by a positive matrix, the identification of
the flow type does not require the calculation of eigenvalues, but only reasoning
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about satisfiability of the inequality r > 1 for positive matrices. For this purpose,
we suggest to utilize a corollary to the Perron-Frobenius theorem. The corollary
asserts [22]:

Corollary 1. A real number λ is greater then the maximal characteristic value
r of the (non-negative) matrix A if and only if for this value λ all the successive
principal minors of the characteristic matrix λI −A are positive.

If we are only interested in testing r > 1, we need to check the signs of the
determinants of the k by k upper left matrices of A− I being (−1)k. Thus, the
following algebraic criterion for the identification of flows in cyclic attractors can
be used:

Criterion 1 The flow of an n-dimensional cyclic attractor converges to the ori-
gin if and only if the signs of the determinants of the k by k upper left matrices
of A− I are (−1)k for k = 1, 2, . . . , n− 2 and the sign of det(A− I) is (−1)n−1

or det(A − I) = 0, where A is the positive matrix that defines the return map
of the attractor by means of Eq. 3. Otherwise, the phase flow along the cyclic
attractor admits a unique stable 1-period orbit.

The analysis of the generic ways in which stable attractors undergo bifurca-
tions in Glass networks is an open question listed in [15]. As a simple example
of an application of Criterion 1 to bifurcation analysis, we can consider the
structural stability of phase flow along a cyclic attractor for the 3-dimensional
Boolean Glass network shown in Fig. 2.

First, we have to define the focal point coordinates of the network. Two
conditions are assumed throughout the paper: focal points lie inside orthants
and none of them on the orthant boundaries, and the i-th state variable does not
change in sign when crossing an orthant boundary in direction i. The conditions
ensure that the flow is unambiguous [12, 11]3. In this case, the focal point for
every orthant of the cycle lies inside the next cycle orthant.

Example 1. The attractor in Fig. 2 is represented by the orthant sequence

(111)→ (011)→ (001)→ (000)→ (100)→ (110)

Thus, the sequence of focal points is obtained by applying a one-step cyclic
shift to the sequence of orthants, and replacing all 0-s by −1, and is written as:

(−1, 1, 1)→ (−1,−1, 1)→ (−1,−1,−1)→ (1,−1,−1)→ (1, 1,−1)→ (1, 1, 1)

Let us consider the perturbations of the first focal point when it remains
inside the same orthant (011). The focal point sequence undergoing the pertur-
bations has the form:

(−ε1, ε2, ε3)→ (−1,−1, 1)→ (−1,−1,−1)→ (1,−1,−1)→ (1, 1,−1)→ (1, 1, 1),
3 The conditions can be relaxed using set-valued Filippov solutions. The application

of differential inclusions to PLDE is still a current research topic [10], and is not
considered in this paper.
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where ε1 > 0, ε2 > 0, and ε3 > 0 are free parameters of the network. The matrix
A = ||amp|| for the return map is calculated using Equations (1-3):( 8ε2

ε1
+ 5ε3

ε1
8

5ε2
ε1

+ 3ε3
ε1

4

)
.

All elements of the matrix are positive due to the definition of the perturba-
tion via positive ε-s. Thus, Criterion 1 is applicable to the matrix above, and it
asserts that the cyclic attractor admits the flow converging to the origin if and
only if

a11 < 0 ∧ (a11a22 − a21a12 > 0 ∨ a11a22 − a21a12 = 0) . (4)

The corresponding systems of inequalities are written as{
−ε1+8ε2+5ε3

ε1
< 0

4(ε1+2ε2+ε3)
ε1

> 0
or

{
−ε1+8ε2+5ε3

ε1
< 0

4(ε1+2ε2+ε3)
ε1

= 0

Both systems are inconsistent, and therefore, the flow admits a stable periodic
orbit, i.e., the network is stable under any perturbations of the first focal point
that leave the point inside the orthant y1 < 0, y2 > 0, y3 > 0.

The perturbations of any single focal point within the orthants have been
found to preserve the flow type along 3-and 4-dimensional cyclic attractors for
Boolean Glass networks. In contrast, simultaneous perturbation of two coordi-
nates of different focal points may change the flow from “periodic” to “converging
to the origin”. As an example, consider perturbations of the second coordinate
of the fifth focal point and the third coordinate of the sixth focal point.

Example 2. Let us consider the sequence of the focal points which is written as

(−1, 1, 1)→ (−1,−1, 1)→ (−1,−1,−1)→ (1,−1,−1)→ (1, ε1,−1)→ (1, 1, ε2)

The corresponding positive matrix A is( 5
ε1

+ 3
ε2

+ 5
ε1ε2

3
ε1

+ 2
ε2

+ 3
ε1ε2

3
ε2

+ 5
ε1ε2

2
ε2

+ 3
ε1ε2

)
The system (4) that represents the criterion is simplified by cylindrical de-

composition implemented in Mathematica. The sufficient condition for converg-
ing flow along the cyclic attractor and the bifurcation condition are written as:{

ε1 > 5
ε2 >

7+5ε1
−5+ε1

or
{
ε1 > 5
ε2 = 7+5ε1

−5+ε1

Any solution of this system defines a network with the flow converging to
the origin. As an example of one parametric bifurcation diagram we consider a
solution of the second system with ε1 = 6 and ε2 = 37. In this case, the dominant
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eigenvalue r is 1 and the phase flow converges to the origin. The sequence of focal
points with the bifurcation parameter µ is written as:

(−1, 1, 1)→ (−1,−1, 1)→ (−1,−1,−1)→ (1,−1,−1)→ (1, 6,−1)→ (1, 1, 37−µ)

If µ ≤ 0, the cyclic attractor admits the flow converging to the origin, and if
µ > 0, the location of the fixed point y∗(µ) on the Poincaré plane (y1 > 0, y2 >
0, y3 = 0) is computed as [12]:

y∗(µ) =
(r − 1)v
〈φ,v〉

,

where v is the eigenvector corresponding to the dominant eigenvalue r. The
characteristic polynomial for the matrix A is quadratic, and thus, a bifurcation
diagram that represents the fixed point coordinate y∗(µ) can be obtained in a
closed analytical form. The bifurcation diagram was found to be similar to a
Hopf supercritical bifurcation for non-linear ODE (see Fig. 5 in Appendix).

Criterion 1 relies on the condition that matrix A is positive, and thus, the
first step of any application of the criterion is to find the sequence of nodes in
the n-cube that determines the cyclic attractors with a positive matrix. Such
sequences have to satisfy condition (a) of Def. 1, and are called induced cycles.
The problem of finding longest induced paths in graphs is known to be NP -
complete [23], and the problem of detecting longest induced cycles in n-cubes
is open for dimensions greater than 7 [24]. We propose to encode the search for
induced cycles into a satisfiablity (SAT) problem for propositional logic. Thus,
the computationally demanding calculations can be handled by the state-of-the-
art SAT solvers, which are known to be very efficient for problems with large,
tightly constrained search spaces.

3 Computing Induced Cycles

The search for an induced cycle in the network state transition diagram relies
on the identification of a cycle with desired properties on n-cubes. The length
of the cycle N and the dimension n serve as input parameters. We propose to
apply propositional SAT to the search for the the attractors.

A state corresponds to a coordinate vector labeling the nodes on the n-cube,
i.e., an n-tuple of Boolean variables. Let si,j with i ∈ {1, . . . , N}, j ∈ {1, . . . , n}
denote the value of bit j in step i. The transitions on the n-cube correspond to
sequences of states that satisfy a Gray code condition: the Hamming distance
between two neighboring states equals one. We write Hα

k,l if the Hamming dis-
tance between the states sk and sl is α. The Gray code condition is then written
as the following conjunction:

Ψgray =
N−1∧
i=1

H1
i,i+1 ∧H1

1,N
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The constraints that eliminate the chords from the paths are represented by the
following formula:

Ψ cycle =
∧
i

∧
j

[H1
i,j ⇔ (H0

i−1,j ∨H0
i+1,j)]

The constraints guarantee that the Hamming distance for two of the cycle nodes
equals one if and only if one of the nodes is either the previous or the next in
the cycle with respect to the other one. A satisfying assignment to

Ψ ind = Ψgray ∧ Ψ cycle (5)

identifies an induced cycle of an n-cube. The set of all attractors is represented
by the set of all satisfying assignments of formula (5).

Due to the symmetries in the n-cube, the set of cycles that corresponds to the
solutions of (5) is highly redundant. Glass proposes equivalence classes that are
defined as sets of induced cycles such that all cycles in every set can be obtained
via n-cube symmetry transformations of any cycle in the set [2]. The classifica-
tion for 5-dimensional networks was obtained by Glass [2] using an enumeration
approach. We utilize (5) to extend the classification to 6-dimensional networks.

The computation of the equivalence classes utilizes coordinate and interval
sequences for Gray codes and paths on n-cubes. The coordinate sequence is a
listing of the coordinates that change as the cycle is traversed. The interval
sequence of a coordinate is a tuple giving the number of coordinates intervening
between each successive appearance of the coordinate in the coordinate sequence.
A necessary but not sufficient condition that two induced cycles are equivalent is
that the set of interval sequences for one cycle are in a one-to-one correspondence
with the set of interval sequences of the second cycle, where the interval sequence
for any one coordinate can be cyclically permuted [2]. We apply the condition
to compute lower bounds for the number of equivalence classes as follows:

1. We obtain the set of induced cycles of a given length N in the n-cube by
computing all satisfying assignments of (5). This is an all-SAT problem.

2. We construct the set of equivalence classes as follows: every satisfying assign-
ment is decoded back to the coordinates of the induced cycle on n-cube that
it represents; if this induced cycle does not belong to any of the computed
classes, it is added to the set as the representative.

The pseudocode for the computation is shown in the Appendix. The all-
SAT problem is solved using the blocking clause algorithm [25] for the MiniSAT
SAT-solver [26]. The algorithm computes a satisfying assignment of the given
formula, saves it, and constructs a clause that eliminates the assignment. The
clause is added to the formula as an additional constraint, and the previous step
is repeated until no satisfying assignment can be found. There are more efficient
algorithms available for the all-SAT problem, but these techniques are beyond
the scope of this paper.

We applied the algorithm to 5- and 6-dimensional cubes (see the results in
Table 1 in the Appendix). The lower bound for the total number of equivalence
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classes for six dimensions has been found to increase from 17 to 3007. The
computed bounds for 5-dimensional networks differ from the exact number of
the classes [2] by just one class. To the best of our knowledge, these lower bounds
for the number of equivalence classes for dimension 6 are presented for the first
time.

The network identification may require the evaluation of all induced cycles,
even if they belong to the same equivalence class (see the example in the Ap-
pendix). The results of the all-SAT computation indicate that the number of
induced cycles increases rapidly with the network dimension: the total num-
ber of cycles is 238 and 706336 for 5- and 6-dimensional networks, respectively.
Thus, the search over the set of cycles becomes computationally demanding with
increasing network dimension.

The size of the search space grows in the order of 2n·N , i.e., exponentially
in the network dimension and the length of the induced cycle. On the other
hand, the number of induced cycles decreases when the cycle length approaches
its maximum value. These opposite trends compromise the efficiency of any al-
gorithm if it identifies Glass networks by enumerating cyclic attractors and a
applying Criterion 1 defining the flow type. In the next section, we propose com-
bining the criterion for the flow detection and the search of induced cycles into
an identification algorithm that efficiently scales with the network dimension.

4 Algorithm for Network Identification

4.1 Implementation using SMT

An algorithm that simultaneously detects the flow type and identifies the cyclic
attractors is required to conduct a search over both the continuous and discrete
parts of the problem. We propose to utilize solvers for Satisfiability Modulo The-
ories for this problem. Sate-of-the-art solvers for Satisfiability Modulo Theories
(SMT) decide logical satisfiability (or dually, validity) with respect to a back-
ground theory expressed in classical first-order logic with equality. These theories
include real or integer arithmetic, which makes SMT solvers a successful tool for
the analysis of problems that include linear inequalities over reals [27]. We pro-
pose to encode the identification of networks by adding the inequalities that
represent the criterion for flow detection to the propositional formula (5). The
Boolean structure of the inequality system for the three-dimensional network
is defined by formula (4). In case of an arbitrary dimension n, the formula is
written as

Ψcon = Ψ suf ∨ Ψbif ,

where a sufficient condition for the converging flow is defined by

Ψ suf = (det(A− I)(1) < 0) ∧ (det(A− I)(2) > 0) ∧ (det(A− I)(3) < 0) ∧ . . .
∧(det(A− I)(n−1) ≷ 0),
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and the condition for the bifurcation point is

Ψbif = (det(A− I)(1) < 0) ∧ (det(A− I)(2) > 0) ∧ (det(A− I)(3) < 0) ∧ . . .
∧(det(A− I)(n−2) ≷ 0) ∧ (det(A− I)(n−1) = 0).

Here, det(A − I)(k) denotes the determinant of the upper left k × k matrix of
A− I and ≷ changes accordingly with the sign of (−1)k.

The criterion is applicable if A = ||amp|| is a positive matrix. The following
condition guarantees that the cyclic attractor induces a matrix with positive
entries:

Ψpos =
∧
m

∧
p

(amp > 0).

The matrix elements amp are calculated using (1-3) based on the prescribed
sequence of absolute values {|fki |} for the focal point coordinates and a satisfying
assignment s∗k,i of the propositional formula (5). The assignment defines the signs
in the sequence of focal coordinates {|fki |} such that the focal point for every
orthant of the induced cycle is located inside the next orthant along the cycle:

f
(k)
i =

{
−|f (k)

i | : if ¬s∗k−1,i

|f (k)
i | : otherwise

A Glass network with converging flow along the cyclic attractor is identified from
a satisfying assignment for the propositional formula

Ψ ind ∧ Ψpos ∧ Ψcon , (6)

and a network with stable periodic orbit is specified by a satisfying assignment
for the formula

Ψ ind ∧ Ψpos ∧ ¬Ψcon . (7)

An assignment for (6) or (7) solves the corresponding identification problem
if all coordinates {|f (k)

i |} are given as a sequence of positive real numbers. On the
other hand, the formulae allow for an analysis of the structural stability of the
network if one coordinate of the sequence is a positive parameter ε that undergoes
the perturbation. The periodic flow along the cyclic attractor is structurally
unstable if there is a satisfying assignment for the formula

Ψ ind ∧ Ψpos ∧ Ψcon ∧ (ε > 0). (8)

The perturbation of two or more focal coordinates causes the polynomial in-
equalities in the criterion to appear (see the examples in Section 2). Non-linear
inequalities are not supported by any of the existing SMT solvers, and thus, the
calculations are restricted to the case of one parameter. Additional constraints
may be added to limit the analysis of structural stability to a particular equiv-
alence class of the n-cube.
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4.2 Experiments

We evaluated the Yices and CVCL SMT solvers [28, 29]. Yices won the Satisfi-
ability Modulo Theories competition4 in 2006 in the relevant category. As first
step of the experimental evaluation, we compare the run-time of the search for
a single induced cycle, i.e., checking satisfiability of the purely propositional for-
mula (5) for various instances. The test cases include the search for the induced
cycles of different length in the networks of dimension 4, 5, and 6 (see Table 2
in the Appendix). A PC with a 1.4 GHz processor and 2 GB RAM was used for
the evaluation. We also recorded the run-time of MiniSAT on the same instance
as a reference point.

The difference between MiniSAT and the SMT solvers is that MiniSAT ac-
cepts conjunctive normal form (CNF) as input directly, while the SMT solvers
use rich input languages that include all Boolean logic operators. The results in-
dicate that a hand-tuned translation of the propositional formula (5) into CNF
may increase the speed of the SMT solver up to the efficiency of MiniSAT, which
is currently one of the fastest tools for satisfiability analysis of propositional for-
mulae (see Fig. 6 in Appendix).

We chose CVCL over Yices for the evaluation of the identification algorithm
because we found the CVCL language more convenient than that of Yices for
arithmetic expressions that define the elements of matrix A. The benchmark
problem is to identify a Glass model with converging phase flow along cyclic
attractors for the same networks as presented above. The satisfiability of formula
(6) was evaluated for the input sequence of focal points that were specified to
contain only unit coordinates. Such an input restricts the search to Boolean
Glass networks that are known not to have flow converging to the origin. Thus,
the instance is unsatisfiable, i.e., there is no Glass model satisfying the problem
specifications. In this case, the solution requires the evaluation of all induced
cycles of the instance and the run-time provides a conservative estimate of the
efficiency of the algorithm.

4 Computer-Aided Verification, SMT-COMP,
http://www.csl.sri.com/users/demoura/smt-comp/index.shtml
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The run-time of CVCL for the benchmark increases linearly with the number
of induced cycles in the network (see the solid line in Fig. 3). A linear increase
was also observed when MiniSAT was used to solve the corresponding all-SAT
problems (dashed line in Fig. 3). The same trend indicates that the proposed
network identification algorithm scales in the number of network cycles, just
as MiniSAT scales well for the problem of computing all induced cycles of this
network.

The scalability of the algorithm in the size of search space is estimated using
the least square interpolation of the run-time as a function of the number L
of Boolean variables in the instance. The interpolation using exponential trend
lines is depicted in Fig. 4 by a solid and a dashed line for CVCL and MiniSAT,
respectively. The run-time increases approximately as e0.1L, while the growth of
the size of the search space of a set of L Boolean variables is proportional to
2L = eln(2)L ≈ e0.7L. Thus, the experimental results indicate that the run-time
of our algorithm increases about 7 times more slowly than the volume of problem
search space.

5 Conclusion

The proposed algorithm belongs to the methods that utilize propositional logic
for reasoning about properties of ordinary differential equations. Such methods
are widely applied to the analysis of biological networks and hybrid systems. The
existing computational tools, developed for the propositional analysis of biolog-
ical networks, approximate the ODE trajectories using the numerical Runge-
Kutta procedure [30], Taylor series [31], or an approximate partitioning of phase
space of continuous variables [4]. The computation of the reachable states for
hybrid systems also relies on approximations of the PLDE solution [32, 33]. We
show that an exact algebraic algorithm can be applied for reasoning about the
phase flow in a subclass of PLDE that is utilized in the Glass model.

The algorithm is applicable in the case when the PLDE system is near a
bifurcation point, where the approximate methods may be inconclusive. We con-
ducted an analysis of the structural stability of the phase flow for Glass networks
with cyclic attractors. Cylindrical decomposition has been used for the evalu-
ation of the criterion for identification of the phase flow. The flow for Boolean
Glass models has been shown to be stable under the perturbations of any single
focal point along the cyclic attractor. The cylindrical decomposition is known
to be a powerful tool for evaluating the structural stability of partial and ordi-
nary differential equations [34–36]. To the best of our knowledge, the presented
stability analysis is a first attempt to apply cylindrical decomposition for the
identification of bifurcations in Glass networks.

The proposed algorithm has been found to benefit from the scalability of
Bounded Model Checking: new lower bounds for the number of equivalence
classes are calculated for cyclic attractors in 6-dimensional networks. Our ex-
perimental results also indicate that the run-time of our algorithm increases
slower than the size of the search space of the problem.
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6 Appendix

A. Bifurcation diagram The 3-dimensional network has a unique (up to
n-cube symmetry transformation) cyclic attractor [2]. We consider a following
sequence of focal points that defines the flow along the attractor:

(−1, 1, 1)→ (−1,−1, 1)→ (−1,−1,−1)→ (1,−1,−1)→ (1, 6,−1)→ (1, 1, 37−µ)

The initial quadrant is specified to be (+,+,+). In this case, the Poincare
plane is defined as y1 > 0, y2 > 0, y3 = 0. If the bifurcation parameter µ is less
than 37, the matrix A associated with the Poincare return map is positive. Thus,
the criterion is applicable and it guaranties that the flow converges to the origin
if µ 6 0 and the network has a unique stable periodic orbit if 0 < µ < 37. The
fixed point coordinate is calculated as y∗(µ) = (r − 1)v/(〈φ,v〉), where v is the
eigenvector corresponding to the dominant eigenvalue r [12]. The coordinates
(y∗1 , y

∗
2) are

y∗1 =
6(37− µ)

(
5

2(37−µ) −
5µ−
√

25µ2−2206µ+48841−223

12(µ−37)

)(
5µ−
√

25µ2−2206µ+48841−223

2(6µ−222) − 1
)

23
(
− 6

23

(
47
6 + 23

6(37−µ)

)
(37− µ)

(
5

2(37−µ) −
5µ−
√

25µ2−2206µ+48841−223

12(µ−37)

)
+ 5

2(37−µ) + 9
2

)

y∗2 =
5µ−
√

25µ2−2206µ+48841−223

2(6µ−222) − 1

− 6
23

(
47
6 + 23

6(37−µ)

)
(37− µ)

(
5

2(37−µ) −
5µ−
√

25µ2−2206µ+48841−223

12(µ−37)

)
+ 5

2(37−µ) + 9
2

Figure 5 shows the Euclidian norm |y∗| and the parametric plot (y∗1 , y
∗
2) as

functions of the bifurcation parameter µ.
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Fig. 5. Fixed point as function of perturbation parameter
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B. Computation of the equivalence classes The algorithm takes the set
of cycles calculated as a solution of the all-SAT problem as an input. The output
lists the equivalence classes with respect to a given equivalence relation. We write
C1 ∼ C2 if the coordinate sequences of two induced cycles satisfy the necessary
condition for equivalence of induced cycles [2].

Algorithm 1: Compute-Equivalence-Classes

Input: The set of induced cycles IC, and the equivalence rela-
tion ∼: induced cycle× induced cycle→ B

Output: The set of equivalence classes EC

1: EC := {}
2: for all ICj ∈ IC
3: do if @cycle ∈ EC . ICj ∼ cycle then EC ← EC ∪ {ICj}

Table 1. Lower bounds for equivalence classes of induced cycles.

Dimension, n Length, N #induced cycles #equivalence-classes

5 10 126 9
12 42 5
14 70 3

6 16 92436 385
18 247806 1066
20 220440 981
22 121572 465
24 23232 103
26 780 4

Without loss of generality [2], the first four nodes of the induced cycles are
prescribed to have the coordinate sequence (1,2,3). The results obtained for 5-
dimensional networks are the same as computed by Glass [2] except the number
of classes for the attractors of length 10 (denoted by bold font). The exact
number of the classes equals 10, while the computed lower bound is 9.

Example 3. As an example of different flow for the same equivalence class, we
considered two 4-dimensional networks, which are specified by the following se-
quences of focal points:

(−20, 1, 1, 1)→ (−1,−60, 1, 1)→ (−1,−1, 300,−1)→ (−1,−1,−1,−1)→
(1,−1,−1,−1)→ (1, 1,−1,−1)→ (1, 1,−1, 1)→ (1, 1, 1, 1)

and
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(−20, 1, 1, 1)→ (−1,−60, 1, 1)→ (−1,−1,−300, 1)→ (−1,−1,−1,−1)→
(1,−1,−1,−1)→ (1, 1,−1,−1)→ (1, 1, 1,−1)→ (1, 1, 1, 1)

The application of the criterion shows that the first network admits a stable
periodic trajectory, while the second one has the flow which converges to the ori-
gin. The coordinate sequences are written as the two different tuples (24512431)
and (23412341), but their interval sequences are the same: (33)(33)(33)(33). Both
the first and the second attractor belong to the same equivalence class [2].

Note, that the sequences of absolute values of focal coordinates are identical.
Thus, the network identification based on absolute values of the coordinates
requires conducting a search over all induced cycles within every equivalence
class.

Table 2. Test case parameters for the evaluation of the identification algorithm.

Case# Dimension, Length, #presribed nodes, # Boolean variables, #induced
n N p n · (N − p) cycles

1 3 6 1 15 6
2 4 8 1 28 168
3 5 10 6 20 29
4 5 10 5 25 53
5 5 10 4 30 125
6 5 12 6 30 5
7 5 12 5 35 14
8 5 12 4 40 42
9 5 12 2 50 504
10 5 14 6 40 5
11 5 14 5 45 25
12 5 14 4 50 70
13 5 14 3 55 210
14 6 16 7 54 1586
15 6 16 6 60 6557

C. Experimental evaluation of the algorithm Figure 6 shows run-time of
the search for a single induced cycle in test cases defined in Table 2. The data for
the SMT solvers (symbols 1, 3, and 4) are compared with the run-time obtained
with the SAT solver MiniSAT (data set 2). Closed triangles (data set 3) denote
the results when the input was written using the Yices input language while
opened symbols (data set 4) show the run-time when the input propositional
formula was converted into CNF as a pre-processing step.
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