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Abstract. Clustering algorithms for multidimensional numerical data must over-
come special difficulties due to the irregularities of data distribution. We present
a clustering algorithm for numerical data that combines ideas from random pro-
jection techniques and density-based clustering. The algorithm consists of two
phases: the first phase that entails the use of random projections to detect clus-
ters, and the second phase that consists of certain post-processing techniques of
clusters obtained by several random projections. Experiments were performed on
synthetic data consisting of randomly-generated points in Rn, synthetic images
containing colored regions randomly distributed, and, finally, real images. Our
results suggest the potential of our algorithm for image segmentation.

1 Introduction

Clustering is a central preoccupation in data mining and clustering algorithms impact a
multitude of data mining applications ([CUDW02,ZSD02,Dje03]), including multime-
dia data mining. The problem has been studied by several research communities ranging
from statistics to machine learning and the state of the art is exposed in surveys that ap-
peared with some regularity over the years (see [JMF99,JD88]). Clustering in spaces
with low dimensionality is relatively easy. For example, in a unidimensional space it
is easy to identify the regions of high density of points by a simple linear scan. With
increased dimensionality the problem grows in complexity. The notion of projected
clustering was introduced by Agrawal et al. in [AGGR98], who made the crucial obser-
vations that points may cluster better in subspaces of lower dimensionality than in the
entire space Rn. They developed the CLIQUE algorithm that works starting with low
dimensional subspaces towards higher dimensional subspaces. In [APW+99] Aggarwal
et al. focus on a technique to discover clusters in small dimensional subspaces, which is
the focus of their PROCLUS algorithm. The theoretical support of these techniques can
be found in Johnson-Lindenstrauss Lemma [JL84] which asserts that a set of points in
a high-dimensional Euclidean space can be projected into a low-dimensional Euclidean
such that the distance between any two points changes by only a factor of 1 ± ε for
ε ∈ (0, 1). Simplifications of the proof of this result have been obtained by Frankl and
Maehara [FM88] and by Dasgupta and Gupta [DG99]. An especially useful source is
the monograph [Vem04].

The number of clusters is a given parameter in PROCLUS and the algorithm iden-
tifies these clusters and a set of dimensions associated with each cluster such that the



points of the cluster are correlated with these dimensions. Another contribution to pro-
jective clustering is [AM04], where an objective function is introduced that takes into
account a tradeoff between the dimension of a subspace and the clustering error; an ex-
tension of k-means to projective clustering in arbitrary subspaces is introduced. Our ap-
proach is similar to the approach adopted in [AGGR98] in that we construct clusters in
low dimensional spaces and, then select those dimensions that can best help to identify
clusters in the original data set. Our main contribution consists in choosing a random
frame of reference for the data set and execute the projections on the subspaces that
correspond to this randomly chosen axes. We show that this process has a certain ad-
vantage over using the natural system of coordinates in that it diminishes the chance of
the occultation phenomenon, which occurs when the projections of two distinct clusters
of the data on a subspace are not disjoint. Static segmentation of images regarded as par-
titioning an image to a number of regions that represent a meaningful part of the image
can be helped, as we show, by applying clustering techniques (see [JF96]). Our clus-
tering algorithm combines ideas from random projection techniques and density-based
clustering. The distance between points in Rn is the Euclidean distance. The proposed
algorithm is applicable to numeric data, that is, to data inRn and involves projecting the
data on a randomly chosen base. Then, histograms of the uni-dimensional projections
are combined to yield the locations of clusters in Rn.

The paper begins with a probabilistic evaluation of the projection technique. Namely,
in Section 2 we evaluate the probability that the distance between random projections on
subspaces reproduces to a certain extent the distance between the original points in Rn

and the probabilities that random projections of separate clusters may have non-empty
intersection and, therefore, reduce the usefulness of certain projections. In Section 3 we
discuss the clustering algorithm including two important post-processing techniques
and we show that the time complexity is of the order of O(N log N) when the size of
the data set is large compared to the number of dimensions, comparable with density-
based clustering [SEKX98]. Section 4 presents our experimental work performed on
three types of data: synthetic data, data obtained from synthetic images, and data ob-
tained from real images. Experiments with groupings of pixels extracted from images,
particularly from real images show the potential of the algorithm as a segmentation
technique and provide a good criterion for validation of clusterings.

2 Clusters and Random Projections

Let S be a finite subset of Rn and let δ be a positive real number. Consider a measure
m : P(Rn) −→ R≥0. The value m(C) is, in general, the volume of the projection of
C on a subspace of Rn.

A δ-clustering of S is a family κ = {C1, . . . , Cp} of non-empty subsets of Rn

(referred to as the constituents of the clustering) that satisfy the following conditions:

1. the sets of κ that are pairwise disjoint;
2. for every i, 1 ≤ i ≤ p density of the points of S in any of the sets Ci exceeds δ,

that is, we have:
|S ∩ Ci|
m(Ci)

≥ δ.



The clusters of the clustering κ are the sets S ∩ Ci for 1 ≤ i ≤ p.
The set of points located outside the sets Ci, UNC(κ) = S −⋃p

i=1 Ci is the set of
unclassified points of S.

A clustering of S is a family κ = {C1, . . . , Cp} that is a δ-clustering of S for some
δ > 0.

The second condition of the above definition insures that the density of the points
in each of the sets Ci is sufficiently high.

Projections on the subspace of Rn determined by the coordinates i1, . . . , it are de-
noted by proji1···it

: Rn −→ Rt.
Let H be a random n× n-matrix that is orthogonal. Such a matrix can be obtained,

for example, by randomly choosing the components on an n × n-matrix using an uni-
form distribution on an interval and, then, applying the Gram-Schmidt technique to
produce an orthogonal matrix.

A random projection of Rn is a linear transformation ΦH : Rn −→ Rn defined
by ΦH(x) = Hx for x ∈ Rn. The set of rows u1, . . . , un of H is referred to an n-
dimensional random frame.

Identifying clusters in one-dimension is a relatively straightforward process using
an algorithm (described in Section 3) that builds histograms of the line coordinates
of the projections of the points. The inverse statement does not hold; if the projection
of a subset K of Rn on a lower dimension subspace is a cluster we cannot conclude
that the set K itself is a cluster. Another difficulty is that disjoint clusters in the n-
dimensional space may have non-disjoint projections on lower-dimensional subspaces
of Rn, a phenomenon that we refer to as occultation.

Let C, D be two clusters in Rn and let u be a unit vector in the same space. To
simplify the presentation assume that C and D are approximated by spheres of radius
r1 and r2, centered in the points c and d, respectively. The orthogonal projection of a
set K on a vector u is the set:

proju(K) = {u · x|x ∈ K}.

An u-occultation of the clusters C, D occurs if

proju(C) ∩ proju(D) 6= ∅,

a situation which is represented in Figure 1.
This is an inconvenient situation from our point of view since it fuses the two pro-

jections of C and D on the vector u.
We need to evaluate the probability that an u-occultation may occur for clusters

since we will use cluster uni-dimensional projections for the identification of these clus-
ters in Rn. As before, we assume that u is a unit random vector. The angle α between
u and the vector d − c is uniformly distributed in the interval [0, 2π]. The discussion
is essentially the same for projections on subspaces having an arbitrary dimensionality.
Under the previous assumptions an u-occultation of the clusters C, D occurs when the
length of the projection of the segment that joins c to d is inferior to r1 + r2; in other
words if |u · (d− c)| =‖ d− c ‖ | cos α| ≤ r1 + r2.



Fig. 1. Cluster Occultation

Consequently, the probability of an u-occultation of the clusters is the number:

P
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whenever ‖ d − c ‖≥ r1 + r2, which happens when the clusters are sufficiently tight.
Using the MacLaurin series expansion of arccos z,
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π
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+ · · ·

)
,

we can approximate this value by z = 2(r1+r2)
π‖d−c‖ .

Let Oi be the event that takes place when an occultation occurs on the i-th projection
of the random frame, for 1 ≤ i ≤ n. We need to evaluate the probability that there
is at least one projection that avoids the occultation, that is, P (O1 ∪ · · · ∪ On) =
1− P (O1 ∩ · · · ∩On). Assuming that the events O1, . . . , On are independent we have

P (O1 ∪ · · · ∪On) = 1−
(

2(r1 + r2)
π ‖ d− c ‖

)n

.

Of course, the independence supposition does not hold in reality. We adopt it here to
obtain an estimate that is plausible and is verified by experimental work.

Thus, the probability that there is a dimension that avoids occultation is increasing
quite rapidly with the number of dimensions and with the inter-cluster separation. This
shows the usefulness of the randomly chosen frame in separating, at least partially,
and with a degree of uncertainty, clusters that may not be differentiated through their
projections on the initial system of coordinates.



3 The Clustering Algorithm

Our algorithm has a heuristic nature. The input consists of a numerical n-dimensional
data set D and entails two phases: in the first phase we apply random projections to the
data set and we obtain the primary clusters; in the second phase we refine the clustering
by using two processes: bimodulation and cluster expansion.

The projection phase begins with a randomly chosen orthogonal n × n-matrix H
of real numbers whose rows are the u1, . . . , un. Then, the data set D is projected onto
each of the n dimensions of the newly chosen randomly chosen base, resulting in n
histograms. We begin by clustering the points of each of the selected uni-dimensional
projections.

Each i-th histogram contains a number of k bins of width `i and the choice of k
depends on the size of D. For example, for |D| = 104 we used k = 50. On each his-
togram we identify the peaks and the valleys. The peaks hi

1, . . . , h
i
mi

of this histograms
may correspond to n-dimensional clusters.

Suppose that the peak hi
j of the i-th projection is located between the lows lij and

lij+1. Then, the set Ci
j consists of the points that belong to the p bins located at the left

of hi
j whose heights vary between βhi

j + (1− β)lij and hi
j and the q bins located at the

right of hi
j whose heights vary between βhi

j + (1− β)lij′ and hi
j (see Figure 2). Here β

is a parameter chosen by the user that allows us to guarantee a certain cluster density.
Note that the density of the cluster proji(S) ∩ Ci

j is at least

hi
j + p[βhi

j + (1− β)lj ] + q[βhi
j + (1− β)lj+1]

(p + q + 1)`i
,

which is easily seen to be at least
hi

jβ

`i
. So, if we choose

β ≥ max{ δ1`i

min hi
j

|1 ≤ i ≤ n},

we guarantee that the uni-dimensional clusters have the minimal density δ1. The choice
of δ1 is determined, as we shall see by the parameter δ.

The quality of a projection is evaluated using the product between the average height
of peaks and the logarithm of the number of peaks of the histogram. Only a percentage
of the dimensions that correspond to these top histograms are retained for the next
phase. Initially we seek to obtain a clustering that corresponds to these projections. In
our experiments we used the top 10% of the histograms, a choice that is supported by
our experiments (see Section 4.2).

Suppose that the peaks of the i-th random projection correspond to the intervals
Ci

1, . . . , C
i
pi

. Let t be the number of top projections. We use a file F that contains
records having 1 + n + t components. Each record represents one of the points x =
(x1, . . . , xn) to be clustered and contains a point identifier, the original n coordinates
x1, . . . , xn, and, for each projection i, a number B(x, i) defined by:

B(x, i) =





j if the ith projection of
x belongs to Ci

j ,

0 otherwise.



Fig. 2. Intervals around peaks in a projection

F
Point x1 · · · xn B(1, x) · · · B(t, x)

id.
...

...
...

...
...

...
...

h a1 · · · an b1 · · · bt

...
...

...
...

...
...

...

Records containing at least one 0 are discarded since they contain points that at this
stage of the algorithm are not yet affiliated with any cluster. Then, the fileF is sorted on
the fields B(1, x), · · · , B(t, x). Each set of points that correspond to a vector (b1, . . . , bt)
corresponds to a set

Ci1···it

b1···bt
= Ci1

b1
× · · · × Cit

bt

which we regard as a constituent of the clustering. The condition

|proji1···it
(S) ∩ Ci1···it

b1···bt
|

m(Ci1···it

b1···bt
)

≥ δ

insures that the clusters
proji1···it

(S) ∩ Ci1···it

b1···bt
,

where proji1···it
(S) is the projection of S on the dimensions i1 · · · it of the random

frame of coordinates will have the minimum density δ provided by the user. In our
experiments we used δ = 0.01 which reflects our decision of regarding clusters that
contain less that 1% as consisting of outliers.

Note that
|proji1···it

(S) ∩ Ci1···it

b1···bt
| ≤ min

r
|projir

(S) ∩ Cir

br
|.

Therefore, the minima density condition imposed on the clusters implies that the uni-
dimensional density δ1 must be at least δ`t−1, where ` is the width of the bins defined
above.

The time required to compute the histograms is O(n2N), where n is the number of
dimensions and N is the number of points to be clustered. The cost of sorting the file



F is O(N log N), which brings the total cost of the algorithm to O(n2N + N log N).
Thus, the asymptotic cost of the algorithm is O(N log N); however, when the number
of dimensions is important relative to the logarithm of the number of points the O(n2N)
component is not negligible.

The post-processing of the clusters described below does not alter this asymptotic
evaluation.

Assigning points left outside the clusters, to the extent that this is possible, is achieved
using multiple random projections. Suppose that two random projections yield two clus-
terings:

κ = {C1, . . . , Cp} and µ = {D1, . . . , Dq}
and let Ui = UNC(µ) ∩ Ci for 1 ≤ i ≤ p and Vj = UNC(κ) ∩ Dj for 1 ≤ j ≤
q. Clusterings obtained by distinct random projections may be used to produce better
clusterings by a process that will be referred here as bimodulation.

Let PART(S) be the set of partitions of a set S and let CL(S) be the set of clus-
terings of same set S. Every clustering κ = {C1, . . . , Cp}, defines a partition πκ =
{C1, . . . , Cp, UNC(κ)} of the set S.

Let d : PART(S) × PART(S) −→ R be a distance defined on the set of partitions
of the set S. A d-bimodulation is a mapping: Ψ : CL(S)×CL(S) −→ CL(S)×CL(S)
such that if Ψ(κ, µ) = (κ′, µ′), then d(κ′, µ′) ≤ d(κ, µ). In other words, an application
of a bimodulation to a pair of clusterings results in a new pair of clusterings whose
partitions are closer to each other than the partitions associated to the initial pair of
clusterings. We can use as a distance between partitions the Barthélemy-Montjardet
distance introduced in [BL95]. If π, σ are two partitions in PART(S) given by:

π = {K1, . . . ,Km} and σ = {H1, . . . , Hn},
then the distance between π and σ is given by:

d(π, σ) =
m∑

i=1

|Ki|2 +
n∑

j=1

|Hj |2 − 2
m∑

i=1

n∑

j=1

|Ki ∪Hj |2.

It is possible to show that for any two clusterings κ = {C1, . . . , Cp} and µ = {D1, . . . , Dq}
a d-bimodulation can be defined by adding to each cluster Ci the set of objects located
in the cluster Dj that has the largest intersection with Ci and applying a similar expan-
sion to the clusters Dj .

The second method applied for cluster post-processing is using the minimum bound-
ing hyper-rectangle MBH(C) of a cluster C. Suppose that:

MBH(C) = [a1, b1]× · · · × [ar, br].

The density of C is defined as the number:

dens(C) =
|C|

vol(MBH(C))
.

An ε-expansion of C is the set Cε = C ∪ Lε, where

Lε = UNC(κ) ∩ ([a1 − |a1|ε, b1 + |b1|ε]× · · ·
· · · × [ar − |ar|ε, br + |br|ε]) .



If Cε
i ∩Cε

j 6= ∅, then we assign the points of Kε to the cluster that has the larger density
among the clusters Cε

i or to Cε
j .

Experimental results show that these post-processing techniques improve signifi-
cantly the quality of the clustering; this is clearly visualized by the improvement of the
quality of the image segmentation that we discuss in Section 4.3.

4 Experimental Results

We performed experimental work on three types of data: synthetic data consisting of
randomly-generated points in Rn, synthetic images containing colored regions ran-
domly distributed, and, finally, real images. The implementations of k-means [Mac67]
and DBSCAN [SEKX98] provided by the open-source WEKA package [WF05] were
used for performance comparisons.

To evaluate the extent to which the algorithm retrieves the original clusters we com-
puted several classification-oriented measure of cluster validity (see [TSK06], p. 549).
We assume that we start with r clusters K1, . . . ,Kr and the clusters retrieved by the
algorithm are Cj , where 1 ≤ j ≤ q. Also, the probability that an object of the cluster
Cj belongs to K` is the number pj` = |Cj∩K`|

|Dj | , which is also known as the precision of
Cj relative to K`.

4.1 Experiments on Synthetic Data

We tested our technique on a data set containing 10000 points in R30 distributed in
four clusters: K1,K2,K3,K4. We recaptured a major part of the data set, as shown in
Table 1.

Ci identified K1 K2 K3 K4

C1 0 54 0 0
C2 0 305 0 0
C3 0 272 0 0
C4 0 0 0 274
C5 0 0 0 1170
C6 2 0 74 0
C7 1103 0 0 0
C8 138 0 0 0

UNC(data) 2094 1083 712 2146

Table 1. Intersections between initial clusters
and retrieved clusters before postprocessing

Ci identified K1 K2 K3 K4

C1 0 514 2 0
C2 0 312 0 0
C3 0 801 9 0
C4 0 0 0 1189
C5 0 0 0 2930
C6 30 85 770 41
C7 1761 0 0 0
C8 1543 0 0 0

UNC(data) 3 2 5 5

Table 2. Intersections between initial clusters
and retrieved clusters after postprocessing

Table 1 represents the intersections between the original clusters K1, . . . , K4 (which
correspond to the columns of the table) with the clusters C1, . . . , C4 obtained by our
algorithm. The last row represents the points that the algorithm left outside the clusters.
Before the postprocessing phase a substantial fraction of the points of the initial clusters



are placed into clusters (almost 50%); however, many points are left unaffiliated with
any of the clusters. These points are classified using the second phase of the algorithm.

After bimodulation and a 5% expansion the data distribution looks as shown in
Table 2.

We further tested our algorithm using a similar data set (10000 points in R30) and
added 10% of noisy data. The results are shown in Table 3, which shows that the noise
has little effect on the clusters.

Clusters identified K1 K2 K3 K4 Noise
C1 0 2885 3 0 8
C2 0 2 803 0 3
C3 0 0 0 1929 10
C4 1056 0 0 0 14

Data outside clusters 328 1472 591 931 965

Table 3. Intersections between initial clusters and retrieved clusters after introduction of noise

We applied the k-means and the DBSCAN algorithms to the same data sets and
obtained similar results for synthetic data without noise containing four clusters. Then,
we tested these algorithms on a data set containing four clusters to which 10% noise was
added. Several runs using the k-means algorithm with k = 4 result sometimes in having
the noise distributed among each of the four clusters and, on occasions, producing 1 to
3 clusters with the remaining classes containing noise. The results of DBSCAN are
similar to those of k-means; however, the misclassifications are much less frequent and
the noise is well detected.

The application of the three algorithms to a database containing 11,000 objects in
with 30 dimensions results in computation times of 750s, 1700 s, and 9s for our al-
gorithm, the k-means algorithm and the DBSCAN algorithm, respectively. Our time is
less than half of the DBSCAN. The k-means algorithm is much faster, but, as we shall
see, has a rather bad precision and recall in experiments on synthetic images.

4.2 Experiments on Synthetic Images

In a second series of experiments we tested the algorithm on Mondrian-like images [Mon]
containing randomly distributed and randomly colored rectangles. The typical images
used in these experiments contained between 10 and 40 such regions and we show an
example of an image in Figure 3.

The objectives of this series of experiments were to demonstrate that the algorithm
can retrieve the original clusters and also, to test the behavior of the algorithm on data
with a larger number of dimensions. Starting from an image containing 240 × 320 =
76, 800 pixels represented as a set of points in R5 we grouped the pixels into 4 × 4
squares containing 16 pixels. Each square was represented as a vector in R80 and we
worked with sets of 9600 points in R80.



Fig. 3. Example of an image
Fig. 4. Terms used in algorithm evaluation

In a first phase we examined the capability of our algorithm to differentiate between
the colored regions which we treat as clusters) and the white pixels. We are using the
top five projections with an expansion factor of 5%. The terms used for this evaluation
are shown in Figure 4. The precision and recall for this type of evaluations are given by

Precision =
TP

TP + FP
= 0.99 and Recall =

TP
TP + FN

= 0.89,

respectively. The F1 measure that is the harmonic average of precision and recall is
0.94. These numbers indicate a high capability of our algorithm in identifying points
that belong to clusters.

The dependency of the precision, recall and F1 measures are shown in Figures 5-7,
respectively.

Fig. 5. Dependency of precision on ε Fig. 6. Dependency of recall on ε

By contemplating these figures it becomes apparent that there is no substantial im-
provement of the recall or of the F1 factor when expansion is greater than 6% and the
number of projections considered is greater than 6 (see Figures 7 and 6). This observa-
tion informs the experiments described in the next section.

The time requirements of the algorithm were validated in experiments including
data in R20 and in R80 (see Figure 8). The results shown represent averages over 4-



Fig. 7. Dependency of F1 on ε
Fig. 8. Dependency of time (sec.) on the
number of objects

fold complete applications of the algorithm including post-processing with different
random projection frames. They are consistent with our previous asymptotic estimate
of O(N log N).

In Table 4 we compare the precision, recall and F1 measure for k-means, DBSCAN,
and for our algorithm.

Algorithm
k-means DBSCAN Our algorithm

TP (%) 62 58 63.3
FP (%) 28 3 0.1
TN (%) 10 34 28.9
FN (%) 1 5 7.8

Precision 0.69 0.95 0.99
Recall 0.98 0.92 0.89

F1 0.81 0.94 0.94

Table 4. Time measures

For synthetic images the precision of the k-means algorithm is rather low even if
k is chosen to obtain the best results. On the other hand, the results of DBSCAN and
of our algorithm are comparable; we obtain a better precision but a lower recall which
results in similar values for the F1 measures.

The advantage of our algorithm over DBSCAN is a better time performance, which
is more evident with the increase in the size of the data set.

4.3 Experiments on Real Images

To contemplate possible applications of our algorithm to multimedia data set we used
the data set underlying the left picture shown in Figure 9. This data set contains 32,000
points in R5. The dimensions correspond to the two spatial coordinates and the three



color components of each pixel (red, green and blue). The two following images of
the same figure correspond to two clusterings obtained using our random projection
algorithm.

We have applied the bimodulation technique to the clusters contained in the second
and third images of Figure 9 which consist of 10 and 12 clusters, respectively; the im-
ages that correspond to the resulting clusterings are shown in the fourth and fifth images
of Figure 9. The clusterings shown in these two images consist of 11 and 13 clusters, re-
spectively. One can visually remark the improvement of certain features shown in these
clusters. However, an important fraction of the data points still remain unclassified;
these unclassified data correspond to the white spots of the illustrations.

Finally, we used the ε-expansion of the minimally bounding rectangles of the clus-
ters. The new clusters obtained by applying a 10% expansion are presented in the last
two images shown in Figure 9.

Fig. 9. Images obtained at different phases of our algorithm

The quality of the last two images is clearly improved over the others images. This
observation suggests that our clustering techniques have the potential of being helpful
in image segmentation .

5 Conclusions

We proposed a new method of clustering using random projections. The algorithm con-
sists in two phases: a projection phase (which creates uni-dimensional histograms and
aggregates these histograms to produce the initial clusters) and a post-processing phase
that improves the clusterings using two supplementary techniques: bimodulation and
ε-expansion. The time requirement of the algorithm is O(N log N), where N is the
number of objects subjected to clustering. The algorithm has a potential for being use-
ful for multimedia applications, which will be the focus of our future investigations.

We will investigate future directions of cluster post-processing as well as more re-
fined ways of combining projection histograms. Finding optimal values for the param-
eters chosen in the execution of the algorithm based on the statistical distribution of the
set of objects remains an open problem.
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