Skip to main content

Non-breaking Similarity of Genomes with Gene Repetitions

  • Conference paper
Combinatorial Pattern Matching (CPM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4580))

Included in the following conference series:

Abstract

In this paper we define a new similarity measure, the non-breaking similarity, which is the complement of the famous breakpoint distance between genomes (in general, between any two sequences drawn from the same alphabet). When the two input genomes \({\cal G}\) and \({\cal H}\), drawn from the same set of n gene families, contain gene repetitions, we consider the corresponding Exemplar Non-breaking Similarity problem (ENbS) in which we need to delete repeated genes in \({\cal G}\) and \({\cal H}\) such that the resulting genomes G and H have the maximum non-breaking similarity. We have the following results.

  • For the Exemplar Non-breaking Similarity problem, we prove that the Independent Set problem can be linearly reduced to this problem. Hence, ENbS does not admit any factor-n 1 − ε polynomial-time approximation unless P=NP. (Also, ENbS is W[1]-complete.)

  • We show that for several practically interesting cases of the Exemplar Non-breaking Similarity problem, there are polynomial time algorithms.

This research is supported by Louisiana Board of Regents under contract number LEQSF(2004-07)-RD-A-35, NSF grant CCF-0546509, NSERC grant 261290-03 and Montana EPSCOR’s Visiting Scholar’s Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families, pp. 207–212. Kluwer Acad. Pub. Boston, MA (2000)

    Google Scholar 

  2. Blin, G., Rizzi, R.: Conserved interval distance computation between non-trivial genomes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 22–31. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Chen, Z., Fu, B., Fowler, R., Zhu, B.: Lower bounds on the application of the exemplar conserved interval distance problem of genomes. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 245–254. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Chen, Z., Fu, B., Fowler, R., Zhu, B.: On the inapproximability of the exemplar conserved interval distance problem of genomes. J. Combinatorial Optimization (to appear)

    Google Scholar 

  5. Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Genomes containing duplicates are hard to compare. In: Proc. 2nd Intl. Workshop on Bioinformatics Research and Applications (IWBRA 2006), LNCS 3992, pp. 783–790 (2006)

    Google Scholar 

  6. Chen, Z., Fu, B., Zhu, B.: The approximability of the exemplar breakpoint distance problem. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 291–302. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Chen, J., Huang, X., Kanj, I., Xia, G.: Linear FPT reductions and computational lower bounds. In: Proc. 36th ACM Symp. on Theory Comput. (STOC 2004), pp. 212–221 (2004)

    Google Scholar 

  8. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  9. Hästad, J.: Clique is hard to approximate within n 1 − ε. Acta. Mathematica, 182, 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  10. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM, 46(1), 1–27 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gascuel, O. (ed.): Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford, UK (2004)

    Google Scholar 

  12. Nguyen, C.T., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar breakpoint distance. Bioinformatics 21(10), 2171–2176 (2005)

    Article  Google Scholar 

  13. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 16(11), 909–917 (1999)

    Article  Google Scholar 

  14. Sturtevant, A., Dobzhansky, T.: Inversions in the third chromosome of wild races of drosophila pseudoobscura, and their use in the study of the history of the species. In: Proc. Nat. Acad. Sci. USA, vol. 22 pp. 448–450 (1936)

    Google Scholar 

  15. Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion problem. J. Theoretical Biology 99, 1–7 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bin Ma Kaizhong Zhang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Z., Fu, B., Xu, J., Yang, B., Zhao, Z., Zhu, B. (2007). Non-breaking Similarity of Genomes with Gene Repetitions. In: Ma, B., Zhang, K. (eds) Combinatorial Pattern Matching. CPM 2007. Lecture Notes in Computer Science, vol 4580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73437-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73437-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73436-9

  • Online ISBN: 978-3-540-73437-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics