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Abstract. In this paper, we revisit the classic and well-studied longest
common subsequence (LCS) problem and study some new variants, first
introduced and studied by Rahman and Iliopoulos [Algorithms for Com-
puting Variants of the Longest Common Subsequence Problem, ISAAC
2006]. Here we define a generalization of these variants, the longest para-
meterized common subsequence (LPCS) problem, and show how to solve
it in O(n2) and O(n+R log n) time. Furthermore, we show how to com-
pute two variants of LCS, RELAG and RIFIG in O(n + R) time.

1 Introduction

This paper deals with some new interesting variants of the classic and well-
studied longest common subsequence (LCS) problem. The longest common sub-
sequence between strings can be defined as the maximum number of common
(identical) symbols between them, while preserving the order of those symbols.
Therefore, the LCS problem, can be seen as an investigation for the “closeness”
among strings. Apart from being interesting from pure theoretical point of view,
the LCS problem has extensive applications in diverse areas of computer science
and bioinformatics.

The LCS problem for k > 2 strings was first shown to be NP-hard [13] and
later proved to be hard to be approximated [11]. In fact, Jiang and Li, in [11],
showed that there exists a constant δ > 0, such that, if LCS problem for more
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than 2 strings has a polynomial time approximate algorithm with performance
ratio nδ, then P = NP . The restricted but probably the more studied problem
that deals with two strings has been studied extensively [7,8,9,14,16,15,17,19].
The classic dynamic programming solution to LCS problem (for two strings),
invented by Wagner and Fischer [19], has O(n2) worst case running time, where
each given string is of length n. Masek and Paterson [14] improved this algorithm
using the “Four-Russians” technique [1] to reduce the worst case running time1

to O(n2/ logn). Since then, not much improvement in terms of n can be found
in the literature. However, several algorithms exist with complexities depending
on other parameters. For example, Myers in [16] and Nakatsu et al. in [17] pre-
sented an O(nD) algorithm where the parameter D is the simple Levenshtein
distance between the two given strings [12]. Another interesting and perhaps
more relevant parameter for this problem is R, where R is the total number of
ordered pairs of positions at which the two strings match. Hunt and Szyman-
ski [9] presented an algorithm running in O((R + n) log n). They have also cited
applications where R ∼ n and thereby claimed that for these applications the
algorithm would run in O(n log n) time. For a comprehensive comparison of the
well-known algorithms for LCS problem and study of their behaviour in various
application environments the readers are referred to [4].

Very recently, Rahman and Iliopoulos [18,10] introduced the notion of
gap-constraints in LCS and presented efficient algorithms to solve the resulting
variants. The motivations and applications of their work basically come from
Computational Molecular Biology and are discussed in [10]. In this paper, we
revisit those variants of LCS and present improved algorithms to solve them.
The results we present in this paper are summarized in the following table.

PROBLEM INPUT Results in [18,10] Our Results
LPCS X, Y, K1, K2 and D −

O(min(n2, n + R log n))FIG X, Y and K O(n2 + R log log n)
ELAG X, Y, K1 and K2 O(n2 + R log log n)
RIFIG X, Y and K O(n2)

O(n + R)
RELAG X, Y, K1 and K2 O(n2 + R(K2 − K1))

The rest of the paper is organized as follows. In Section 2, we present all the
definitions and notations required to present the new algorithms. In Sections 3
to 5, we present new improved algorithms for all the variants discussed in this
paper. Finally, we briefly conclude in Section 6.

2 Preliminaries

Suppose we are given two sequences X [1] . . .X [n] and Y [1] . . . Y [n]. A subse-
quence S[1..r] = S[1] S[2] . . . S[r] of X is obtained by deleting [0, n − r] symbols
from X . A common subsequence of two strings X and Y , denoted CS(X, Y ), is

1 Employing different techniques, the same worst case bound was achieved in [6]. In
particular, for most texts, the achieved time complexity in [6] is O(hn2/ log n), where
h ≤ 1 is the entropy of the text.
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a subsequence common to both X and Y . The longest common subsequence of
X and Y , denoted LCS(X, Y ), is a common subsequence of maximum length.
In LCS problem, given two sequences, X and Y , we want to find out a longest
common subsequence of X and Y .

In [18,10], Rahman and Iliopoulos introduced a number of new variants of
the classical LCS problem, namely FIG, ELAG, RIFIG and RELAG problems.
These new variants were due to the introduction of the notion of gap constraints
in LCS problem. In this section we set up a new ‘parameterized’ model for the
LCS problem, giving us a more general way to incorporate all the variants of it.
In the rest of this section we define this new notion of parameterized common
subsequence and define the variants of LCS mentioned above in light of the new
framework. We remark that both the definitions of [18,10] and this paper are
equivalent.

Let X and Y be sequences of length n. We will say, that the sequence C is the
parameterized common subsequence PCS(X, Y, K1, K2, D) (for 1 ≤ K1 ≤ K2 ≤
n, 0 ≤ D ≤ n) if there exist such sequences P and Q, that:

– |C| = |P | = |Q|; we will denote the length of these sequences by l,
– P and Q are increasing sequences of indices from 1 to n, that is: 1 ≤

P [i], Q[i] ≤ n (for 1 ≤ i ≤ l), and P [i] < P [i + 1] and Q[i] < Q[i + 1]
(for 1 ≤ i < l),

– the sequence of elements from X indexed by P and the sequence of elements
from Y indexed by Q are both equal C, that is: C[i] = X [P [i]] = Y [Q[i]]
(for 1 ≤ i ≤ l),

– additionally, P and Q satisfy the following two constraints:
• K1 ≤ P [i + 1] − P [i], Q[i + 1] − Q[i] ≤ K2, and
• |(P [i + 1] − P [i]) − (Q[i + 1] − Q[i])| ≤ D, for 1 ≤ i < l.

By LPCS(X, Y, K1, K2, D) (longest parameterized common subsequence) we will
denote the problem of finding the maximum length of the common subsequence
C of X and Y 2. Now we can define the problems introduced in [18,10] using our
new framework as follows.

– FIG(X, Y, K) (LCS problem with fixed gap) denotes the problem
LPCS(X, Y, 1, K, n),

– ELAG(X, Y, K1, K2) (LCS problem with elastic gap) denotes the problem
LPCS(X, Y, K1, K2, n),

– RIFIG(X, Y, K) (LCS problem with rigid fixed gap) denotes the problem
LPCS(X, Y, 1, K, 0),

– RELAG(X, Y, K1, K2) (LCS problem with rigid elastic gap) denotes the
problem LPCS(X, Y, K1, K2, 0).

Let us denote by R the total number of ordered pairs of positions at which X
and Y match, that is the size of the set M = {(i, j) : X [i] = Y [j], 1 ≤ i, j ≤ n}.

2 The parameterization presented here should not be mistaken with one that can be
found in the parameterized edit distance problem [2,3].
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3 An O(n2) Algorithm for LPCS

The LPCS(X, Y, K1, K2, D) problem can be solved in polynomial time using
dynamic programming. Let us denote by T [i, j] maximum length of such a
PCS(X [1, . . . , i], Y [1, . . . , j], K1, K2, D), that ends at X [i] = Y [j]. Using the
problem definition, we can formulate the following equation:

T [i, j] =

{
0 if X [i] �= Y [j]
1 + max({0} ∪ {T [x, y] : (x, y) ∈ Zi−K1,j−K1}) if X [i] = Y [j]

where Zi,j denotes the set:

Zi,j = {(x, y) : 0 ≤ i − x, j − y ≤ K2 − K1, |(i − x) − (j − y)| ≤ D}

We will show, how to compute array T in O(n2) time using dynamic program-
ming. But first we have to introduce an auxiliary data-structure.

3.1 Max-Queue

Max-queue is a kind of priority queue that provides the maximum of the last L
elements put into the queue (for a fixed L). It provides the following operations:

– init(Q, L) initializes Q as the empty queue and fixes the parameter L,
– insert(Q, x) inserts x into Q,
– max(Q) is the maximum from the last L elements put into Q (assuming, that

Q is not empty).

Max-queue is implemented as a pair Q = (q, c), where q is a two-linked queue
of pairs, and c is a counter indexing consecutive insertions. Each element x
inserted into the queue is represented by pair (i, x), where i is its index. The
q contains only pairs containing these elements, that (at some moment) can be
returned as answer to max query. These elements form a decreasing sequence.
The empty queue is represented by (∅, 0). Insertion can be implemented as shown
in Algorithm 1.

Algorithm 1. insert(Q = (q, c), x)
/* Remove such pairs (i, val), that val ≤ x. */
while not empty(q) and q.tail.val ≤ x do RemoveLast(q)1

c + +2

Enqueue(q, {index = c, val = x})3

/* Remove such pairs (i, val), that i ≤ c − L. */
while q.head.index ≤ c − L do RemoveFirst(q)4

The amortized running time of insert is O(1). The max query simply returns
q.head.val (or 0 if the q is empty).
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Fig. 1. Set Zi−K1,j−K1 , for i = 14, j = 12, K1 = 3, K2 = 10, and D = 3

3.2 The Algorithm

The set Zi,j has a complicated shape. It is easier to view it as a sum of squares.
Let B = min(K2 − K1, D) + 1, C = K2 − K1 − B + 2, and Si,j = {(i − x, i − y) :
0 ≤ x, y < B}. Then, we can define Zi,j as:

Zi,j =
⋃

0≤k<C

Si−k,j−k

To compute T , we will use three auxiliary arrays:

– R[i, j] = maxk=0,...,B−1 T [i − k, j],
– S[i, j] = maxk=0,...,B−1 R[i, j − k] = max(x,y)∈Si,j

T [x, y],
– P [i, j] = maxk=0,...,C−1 S[i − k, j − k] = max(x,y)∈Zi,j

T [x, y].

Now, T [i, j] can be expressed as:

T [i, j] =

{
0 if X [i] �= Y [j]
1 + P [i − K1, j − K1] if X [i] = Y [j]

We will compute all the arrays using dynamic programming, filling them row
by row. We will also use max-queues to compute respective maxima — while
computing elements of these arrays indexed by i and j:

– QR is a max-queue containing information about T [i − B + 1 . . . i, j],
– QS [i] is a max-queue containing information about R[i, j − B + 1 . . . j],
– QP [i − j] is a max-queue containing information about S[i, j], . . . , S[i − C +

1, j − C + 1].

The value LPCS(X, Y, K1, K2, D) is computed in the GlobalMax variable.
Please note, that arrays R, S and P are introduced for the clarity of the algorithm
and can be removed.

The actual longest parameterized common subsequence can be reconstructed
in O(n) time. Since the operations on max-queues run in O(1) amortized time,
total time complexity of the above algorithm is O(n2).
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Algorithm 2. AlgLPCS-1
Initialize R[i, j] = S[i, j] = GlobalMax = 0;1

for i = 1 to n do Init(QS[i], B);2

for i = −n + 1 to n − 1 do Init(QP [i], C);3

for j = 1 to n do4

Init(QR, B);5

for i = 1 to n do6

if X[i] = Y [j] then7

T [i, j] = P [i − K1, j − K1] + 1;8

GlobalMax = max(GlobalMax, T [i, j])9

else10

T [i, j] = 011

insert(QR, T [i, j]); R[i, j] = max(QR);12

insert(QS[i], R[i, j]); S[i, j] = max(QS[i]);13

insert(QP [i − j], S[i, j]); P [i, j] = max(QP [i − j]);14

4 An O(n + R log n) Algorithm for FIG and ELAG

For special cases, where R = o(n2/ logn), we can solve ELAG (and FIG) prob-
lems more efficiently, namely in O(n + R log n) running time. In order to do it,
instead of computing the whole array T , we should compute only these entries
that correspond to matches from the set M . For (i, j) �∈ M we have T [i, j] = 0,
and for (i, j) ∈ M we have:

T [i, j] = 1 + max
(

{0} ∪
{

T [x, y] : (x, y) ∈ M, i − K2 ≤ x ≤ i − K1,
j − K2 ≤ y ≤ j − K1

})

We will require data structures D and Q providing the following operations:

– Insert(i, j, p) — inserts element (i, j) with priority p,
– Remove(i, j) — removes element (i, j),
– Priority(i, j) — returns priority of the element (i, j), or 0 if it is not present,
– Max(l, r) — returns maximum priority among such elements (i, j), that l ≤

i ≤ r (or 0 if there are no such elements).

We can implement the above operations in O(log n) time, using balanced search
trees (such, as AVL or Red-Black trees [5]) and enriching each node with a
maximum priority in the corresponding subtree.

Let M ′ = {(i − K1, j − K1) : (i, j) ∈ M} and B = K2 − K1 + 1. The
algorithm scans the consecutive rows of M and M ′. While scanning, we keep
in D information about elements from the last B rows of T [i, j]. Hence, when
processing row j, we have:

D.Max(i − B + 1, i) = max
(x,y)∈M,

i−K2+K1≤x≤i,

j−K2+K1≤y≤j

T [x, y]
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Algorithm 3. AlgELAG
Compute sets M and M ′ = {(i − K1, j − K1) : (i, j) ∈ M};1

Initialize D = ∅, Q = ∅, GlobalMax = 0, B = K2 − K1 + 1;2

for j=1 to n do3

// Remove row j − B from D. ;4

for (x, y = j − B) ∈ M do D.Remove(x, y);5

// Insert row j into D ;6

for (x, j) ∈ M do7

Len = 1 + Q.Priority(x − K1, j − K1);8

D.Insert(x, j, Len);9

GlobalMax = max(GlobalMax, Len);10

for (x, j) ∈ M ′ do11

Q.Insert((x, j), D.Max(x − B + 1, x));12

However, instead of storing values T [i, j] in an array, we store in Q pairs (i, j)
(for (i, j) ∈ M ′) with priorities max{T [x, y] : 0 ≤ i − x, j − x < B}.

The value ELAG(X, Y, K1, K2) is computed in the GlobalMax variable. The
actual longest common subsequence with elastic gap can be reconstructed in
O(n) time. Clearly, the overall time complexity of the above algorithm is O(n +
R log n).

The above algorithm can be extended to solve the LPCS problem in O(n +
R log n) running time.

5 An O(n + R) Algorithm for RIFIG and RELAG

To solve the RELAG and RIFIG problems, we need to observe, that they can be
reduced to O(n) independent 1-dimensional problems. Since RIFIG is a special
case of RELAG, for K1 = 1, we will focus on the latter one. Please recall, that
RELAG is equivalent to LPCS(X, Y, K1, K2, 0).

Let T [i, j] denote the maximum length of such a PCS(X [1, . . . , i], Y [1, . . . , j],
K1, K2, 0), that includes X [i] and Y [j]. T [i, j] can be computed using the fol-
lowing formula:

T [i, j] =

{
0 if X [i] �= Y [j]
1 + max{T [i − p, j − p] : K1 ≤ p ≤ K2} if X [i] = Y [j]

Let M ′ = {(i − K1, j − K1) : (i, j) ∈ M}, and R[i, j] = max{T [i − p, j − p] : 0 ≤
p ≤ K2 − K1}. It is enough to calculate values T [i, j] only for (i, j) ∈ M , and
they can be expressed as: T [i, j] = 1 + R[i − K1, j − K1]. Hence, it is enough to
calculate values R[i, j] only for (i, j) ∈ M ′.

We will use a slightly extended version of max-queue (cf. Section 3.1). Since
we process only indices (i, j) ∈ M ∪M ′, we must be able to insert elements with
specified indices. Let Q = (q, c) be a max-queue. Operation insert-ind(Q, x, i)
first sets the counter c to i − 1, and then calls insert(Q, x). The amortized
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running time of such an operation is still constant, since each element is inserted
and removed once.

We will process each diagonal separately. For each d = 1, . . . , 2n − 1 we scan
points (i, j) ∈ M ∪ M ′ laying on the d-th diagonal (i.e. such that n + i − j = d),
in order of increasing i. We will use a max-queue Q to compute values R[i, j],
but we will store them in a one dimensional vector P [i], P [i] = R[i, n + i − d].
When processing (i, j) ∈ M , we can compute T [i, j], as T [i, j] = R[i − K1, j −
K1] + 1 = P [i − K1] + 1. When processing (i, j) ∈ M ′ we can compute P [i], as
P [i] = R[i, j] = max(Q). The details are shown in Algorithm 4: AlgRELAG.

Algorithm 4. AlgRELAG
Compute sets M and M ′ = {(i − K1, j − K1) : (i, j) ∈ M};1

Initialize GlobalMax = 0, P [i] = 0, for 1 ≤ i ≤ n;2

for d=1 to 2n-1 do3

init(Q, K2 − K1 + 1) ; /* extended Max-Queue */4

;5

foreach (i, j) ∈ M ∪ M ′ and n + i − j = d (in order of increasing i) do6

if (i, j) ∈ M then7

Len = P [i − K1] + 1;8

insert-ind(Q, Len, i);9

GlobalMax = max(GlobalMax, Len);10

if (i, j) ∈ M ′ then11

insert-ind(Q, 0, i) ; /* phony insert, to clean up the Q */12

;13

P [i] = max(Q);14

// Clean modified cells of array P ;15

foreach (i, j) ∈ M ′ and n + i − j = d do P [i] = 0;16

Sets M and M ′ can be computed and sorted in O(n + R) time (assuming,
that the alphabet is composed of polynomially bounded integer numbers). While
scanning the diagonals, we have to process |M ∪ M ′| positions, each requiring
constant amortized time. Hence, the overall time complexity of the AlgRELAG
is O(n + R).

6 Conclusions

We have studied variants of the well-known LCS problem: FIG, ELAG, RIFIG
and RELAG, presented in [18,10]. These problems can be seen as special cases of
the more general LPCS problem, introduced here. We presented an algorithm for
solving the LPCS problem in O(n2) time, that improves the previously known
algorithms for FIG, ELAG and RELAG. For special cases, when R = o(n2),
we have also presented algorithms for RELAG and RIFIG problems running in
O(n + R) time, and for FIG and ELAG problems running in O(n + R log n)
time. The latter one can be extended to solve LPCS problem, without changing
its running time.
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