
A Formal Calculus for Informal Equality
with Binding

Murdoch J. Gabbay and Aad Mathijssen

Abstract. In informal mathematical usage we often reason using lan-
guages with binding. We usually find ourselves placing capture-avoidance
constraints on where variables can and cannot occur free. We describe
a logical derivation system which allows a direct formalisation of such
assertions, along with a direct formalisation of their constraints. We base
our logic on equality, probably the simplest available judgement form. In
spite of this, we can axiomatise systems of logic and computation such
as first-order logic or the lambda-calculus in a very direct and natural
way. We investigate the theory of derivations, prove a suitable semantics
sound and complete, and discuss existing and future research.

1 Introduction

The theory of equalities t = u is perhaps the simplest of all foundational logical
theories. Informal specification of logic and computation often involves equalities
with binding and subject to conditions about freshness. For example:

• λ-calculus: λx.(tx) = t if x is fresh for t
• π-calculus: νx.(P | Q) = P | νx.Q if x is fresh for P
• First-order logic: ∀x.(φ ⊃ ψ) = φ ⊃ ∀x.ψ if x is fresh for φ

and for any binder ζ ∈ {λ, ν,∀}:

• Substitution: (ζy.u)[x 7→ t] = ζy.(u[x 7→ t]) if y is fresh for t

It is not hard to extend this short list with many more examples.
In the equalities above there are two levels of variable; x and y are variables

of the system being axiomatised, we call these object-level variables; t, u,
P , Q, φ, and ψ range over terms of that syntax, we call them meta-level
variables. Unfortunately these equalities are subject to freshness side-conditions
which make them something other than ‘just equalities’.

Ways have been developed to attain the simplicity and power of the theory
of equality between terms. For example we can work with combinators [1] or
combinatory logic [2], cylindric algebra [3], higher-order algebra [4] or higher-
order logic [5]. Roughly speaking: combinatory approaches reject object-level
variables entirely; cylindric approaches also reject them as independent syntactic
entities but enrich the language of term-formers to regain some lost expressivity;
higher-order approaches model the difference between the two using a hierarchy
of types. These approaches do not permit a direct representation of the two-level
structure which informal syntax displays in terms such as λx.t or ∀x.φ.

In this paper we describe Nominal Algebra. This is a logic based on equal-
ity which embraces the two-level variable structure by representing it directly in
its syntax. Informal equivalences can be represented as axioms almost symbol-
for-symbol. For example the equalities above are represented by:

• λ-calculus: a#X ` λ[a](Xa) = X
• π-calculus: a#X ` ν[a](X | Y) = X | ν[a]Y
• First-order logic: a#X ` ∀[a](X ⊃ Y) = X ⊃ ∀[a]Y
• Substitution: b#X ` (ζ[b]Y)[a 7→ X] = ζ[b](Y [a 7→ X])

Here a and b are distinct atoms representing object-level variables; X and Y
are unknowns representing meta-level variables. Each equality is equipped with
a freshness condition of the form a#X that guarantees that X can only be
instantiated to a term for which a is fresh. The rest of this paper makes this
formal.

In Sect. 2 we introduce the syntax of nominal algebra. In Sect. 3 we define a
notion of derivation. In Sect. 4 we define a notion of validity, and in Sect. 5 we
prove soundness and completeness. Sections 6 and 7 discuss related work and
draw conclusions.

2 Syntax

Fix a countably infinite collection of atoms a, b, c, . . . representing object-level
variables. We shall use a permutative convention that a, b, c, . . . range permuta-
tively over atoms, so that for example a and b are always distinct. Also, fix a
countably infinite collection of unknowns X,Y, Z, . . . representing meta-level
variables. Fix term-formers f to each of which is associated some unique arity
n which is a nonnegative number. Assume these collections are disjoint.

There is no proper sorting system so it will be possible to write ‘silly’ terms.
There is no problem in principle with extending the system with a sort or type
system if convenient, perhaps along the lines of other work [6, 7].

Let π range over (finitely supported) permutations. So π bijects atoms
with themselves and there is a finite set of atoms S such that π(a) = a for
all atoms not in S. Write Id for the identity permutation such that Id(a) = a
always. Write π ◦ π′ for functional composition and write π-1 for inverse. This
makes permutations into a group — write P for the set of all permutations.

Then nominal terms t, u, v are inductively defined by:

t ::= a | π ·X | [a]t | f(t1, . . . , tn)

We call [a]t an abstractor ; it uniformly represents the ‘x.t’ or x.φ’ part of ex-
pressions such as ‘λx.t’ or ‘∀x.φ’.

We call π ·X a moderated unknown. We write Id·X just as X, for brevity.
In π ·X, X will get substituted for a term and then π will permute the atoms
in that term; see Sect. 3. This notion is grounded in semantics [8] and permits
a succinct treatment of α-renaming atoms (see CORE below and [9]).

A signature Σ is some set of term-formers with their arities. For example:

– {lam : 1, app : 2} is a signature for the λ-calculus; we indicate arities with a
colon as a convenient shorthand. When we define axioms for the λ-calculus,
we shall extend this signature with a term-former for representing capture-
avoiding substitution.
We generally sugar lam([a]t) to λ[a]t and app(t, u) to tu.

– {⊃: 2,∀ : 1,≈: 2,⊥ : 0} is a signature for first-order logic with equality (the
symbol for equality inside the logic is ≈).
We sugar ⊃(φ, ψ) to φ ⊃ ψ, ∀([a]φ) to ∀[a]φ and ≈(t, u) to t ≈ u.

Write t ≡ u for syntactic identity of terms. There is no quotient by ab-
straction so for example [a]a 6≡ [b]b. Write a ∈ t for ‘a occurs in (the syntax
of) t’, Occurrence is literal, e.g. a ∈ [a]a and a ∈ π ·X when π(a) 6= a. Similarly
write a 6∈ t for ‘a does not occur in the syntax of t’.

A freshness (assertion) is a pair a#t of an atom a and a term t. An
equality (assertion) is a pair t = u where t and u are terms. Call a freshness
of the form a#X (so t ≡ X) primitive. Write ∆ for a finite set of primitive
freshnesses and call it a freshness context. We drop set brackets in freshness
contexts, e.g. writing a#X, b#Y for {a#X, b#Y }.

Nominal algebra has two judgement forms, a pair ∆ ` a#t of a freshness
context and a freshness assertion, and a pair ∆ ` t = u of a freshness context
and an equality assertion. We generally write ∆ ` A for an arbitrary judgement
form, i.e. A is an equality or freshness. We may write ∅ ` A as ` A.

A theory T = (Σ,Ax) is a pair of a signature Σ and a possibly infinite set
of equality judgement forms Ax in that signature; we call them the axioms.

Here are some nominal algebra theories:

– LAM has signature {lam : 1, app : 2, sub : 2} and two axioms

(β) ` (λ[a]Y)X = Y [a 7→ X]
(η) a#X ` λ[a](Xa) = X

where we sugar sub([a]t, u) to t[a 7→ u]. LAM on its own is not terribly useful
because we need to give sub the correct behaviour:

– SUB has axioms

(var 7→) ` a[a 7→ X] = X
(#7→) a#Y ` Y [a 7→ X] = Y
(f 7→) ` f(Y1, . . . , Yn)[a 7→ X] = f(Y1[a 7→ X], . . . , Yn[a 7→ X])
(abs7→) b#X ` ([b]Y)[a 7→ X] = [b](Y [a 7→ X])
(ren 7→) b#Y ` Y [a 7→ b] = (b a) · Y

Axiom (f 7→) represents three axioms, one for each of f ∈ {lam, app, sub}. A
theory of substitution for a different signature would have a suitable axiom
for each term-former f. Note the heavy use of freshness side-conditions to
manage the relationship between atoms and unknowns.
But there is one more axiom. We would like λ[a]a to be equal to λ[b]b. In
other words we want α-equivalence:

– CORE has just one axiom

(perm) a#X, b#X ` (b a) ·X = X

Lemma 3.2 below shows that this axiom with the derivation rules of nomi-
nal algebra give the native notion of α-equivalence on nominal terms from
previous work [9].

See [10] for an axiomatisation of first-order logic. Similar development for other
systems with binding, such as System F [11] and the π-calculus [12], should also
be possible.

3 A Derivation System

Now we need a notion of derivation which represents freshness assumptions on
meta-variables, and permits axioms involving abstraction and conditioned on
freshness assumptions, just like we do in informal reasoning.

We define a permutation action π · t by:

π · a ≡ π(a) π · (π′·X) ≡ (π ◦ π′) ·X π · [a]t ≡ [π(a)](π · t)
π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)

A substitution σ is a finitely supported function from unknowns to terms.
Here, finite support means: for some finite set of unknowns σ(X) 6≡ X, and for
all other unknowns σ(X) ≡ X. Write [t1/X1, . . . , tn/Xn] for the substitution σ
such that σ(Xi) ≡ ti and σ(Y) ≡ Y , for all Y 6≡ Xi, 1 ≤ i ≤ n.

We can define a substitution action tσ on terms by:

aσ ≡ a (π ·X)σ ≡ π · σ(X) ([a]t)σ ≡ [a](tσ)

f(t1, . . . , tn)σ ≡ f(t1σ, . . . , tnσ)

Substitution for an unknown does not avoid capture with abstraction, for ex-
ample ([a]X)[a/X] ≡ [a]a. This is designed to mirror informal practice, where
instantiation of meta-variables does not avoid capture with binding.

Extend notation for permutation and substitution action to freshness con-
texts ∆ pointwise to the terms it contains. It reduces parentheses to give sub-
stitution a higher priority than permutation and abstraction, so we do. The
following commutation is easy to prove [9, 6]:

Lemma 3.1. π · tσ ≡ (π · t)σ.

Define derivability on freshnesses (in some signature Σ) by the rules in
Fig. 1. Here f ranges over the term-formers of Σ, and in accordance with our
permutative convention a and b range over distinct atoms. Write ∆ ` a#t when
a#t may be derived from ∆.

Define derivability on equalities (between terms in the signature of T) by
the rules in Fig. 2. Here (fr) is subject to a condition that a 6∈ t, u,∆ and the

square brackets denote discharge of assumptions in natural deduction style [13].
Write ∆ `

T
t = u when we may derive t = u from ∆, using the signature from

theory T and admitting only the axioms it contains. We write ∆ `
T
A as a

convenient shorthand for ∆ `
T
t = u when A is t = u and ∆ ` a#t when A is

a#t (subscript T disappears in the freshness case).

(#ab)
a#b

π-1(a)#X
(#X)

a#π ·X
(#[]a)

a#[a]t

a#t
(#[]b)

a#[b]t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

Fig. 1. Derivation rules for freshness

(refl)
t = t

t = u
(symm)

u = t

t = u u = v
(tran)

t = v

π ·∆σ
(ax∆`t=u)

π · tσ = π · uσ

t = u
(cong[])

[a]t = [a]u

t = u
(congf)

f(. . . , t, . . .) = f(. . . , u, . . .)

[a#X1, . . . , a#Xn] ∆
···

t = u
(fr)

t = u

Fig. 2. Derivation rules for equality

(ax∆`t=u) allows us to permutatively rename atoms and to instantiate un-
knowns. This gives the effect that atoms in axioms can be understood to range
over any (distinct) atoms, and unknowns can be understood to range over any
terms. So these derivations

(axβ)
(λ[b]a)b = a[b 7→ b]

(axβ)
(λ[b]b)a = b[b 7→ a]

are valid in theory LAM. The right derivation also shows that substitution of
terms for unknowns does not avoid capture, reflecting informal practice.

The use of the (ax∆`t=u) rule introduces new proof obligations on the fresh-
ness side-conditions in ∆, as the following derivations show:

(#ab)
a#b

(axη)
λ[a](ba) = b

a#a
(axη)

λ[a](aa) = a

The left derivation is valid but the right one is not, because a#a is not derivable.

Note that we cannot conclude ([c]Y)[c 7→ X] = [c](Y [c 7→ X]) by an appli-
cation of (ax# 7→) (even if c#X is derivable), since permutations are bijective:
there is no π such that both π(a) = c and π(b) = c.

We conclude these examples with two derivations in theory CORE:

(#ab)
a#b

(#[]b)
a#[b]b

(#[]a)
b#[b]b

(axperm)
[a]a = [b]b

a#X
(#[]b)

a#[b]X
(#[]a)

b#[b]X
(axperm)

[a](b a) ·X = [b]X

So `
CORE

[a]a = [b]b and a#X `
CORE

[a](b a) ·X = [b]X. To see that the instances
of (perm) are valid, we note that [a]a ≡ (b a) · [b]b and [a](b a) ·X ≡ (b a) · [b]X.

CORE is a novel and pleasingly succinct way to algebraically express the
syntax-directed equality given to nominal terms [9]:

Lemma 3.2. ∆ `
CORE

t = u if and only if ∆ ` t = u holds in the sense of [9, 6].

Proof. By induction on derivations of ∆ `
CORE

and ∆ ` t = u. ut

We will always assume that theories contain the axiom (perm) from theory
CORE.1

The rule (fr) introduces a fresh atom into the derivation. To illustrate the
extra power this gives, we show that X[a 7→ a] = X is derivable in SUB:

(#[]a)
a#[a]X

[b#X]1
(#[]b)

b#[a]X
(perm)

[b](b a) ·X = [a]X
(symm)

[a]X = [b](b a) ·X
(congf)

X[a 7→ a] = ((b a) ·X)[b 7→ a]

[b#X]1
(#X)

a#(b a) ·X
(axren7→)

((b a) ·X)[b 7→ a] = X
(tran)

X[a 7→ a] = X
(fr)1

X[a 7→ a] = X

In the above derivation, the superscript number one 1 is an annotation asso-
ciating the instance of the rule (fr) with the assumption it discharges in the
derivation. Furthermore, the instance of axiom (ren7→) is valid since we have
used the fact that X ≡ (a b) · (b a) ·X in the right-hand side of the equation.

We cannot derive X[a 7→ a] = X without (fr); intuitively this is because to
α-rename a so that we can use (ren7→), we need an atom fresh for X. The tools
to make this argument formal are elsewhere [14].

Note that (fr) mirrors the generation of a fresh name in rules such as the ∀
right-introduction rule ‘from Γ ` φ derive Γ ` ∀x.φ provided x is not free in Γ ’.

We conclude this section with some proof-theoretical results. We can permute
atoms in freshnesses and equations without changing the freshness contexts:

Theorem 3.3. For any permutation π′, if ∆ `
T
A then ∆ `

T
π′ ·A.

1 Equivalently we could add (axperm) as a derivation rule
a#t b#t

(a b) · t = t
.

Proof. By induction on derivations. For (#X) we note that permutations are
bijective and π′(a)#π′ ◦ π ·X if and only if π-1(a)#X. For (fr) we might have
to rename the freshly chosen atom a if π′(a) 6= a.2 ut

We can substitute terms for unknowns provided those terms violate no fresh-
ness assumptions made on the unknowns:

Theorem 3.4. If ∆ `
T
A then ∆′ `

T
Aσ for all ∆′ such that ∆′ `

T
∆σ.

Proof. Natural deduction derivations are such that the conclusion of one deriva-
tion may be ‘plugged in’ to an assumption in another derivation. For (#X) we
use Theorem 3.3. For (fr) we might have to rename the freshly chosen atom a if
it is mentioned by σ (see footnote 2). ut

4 Semantics

A model of a nominal algebra theory T is a nominal set which interprets the
term-formers so as to make the axioms valid. We use nominal sets [8] because
they permit a direct semantic interpretation of freshness judgements a#x and
permutations π · x, an interpretation which is not conveniently definable on
‘ordinary’ sets.

A nominal set is a pair (X, ·) of a(n ordinary) set X with a group action by P
such that each x ∈ X has finite support.3 This means that there is some finite
set of atoms {a1, . . . , an} such that for any π if π(ai) = ai for each 1 ≤ i ≤ n,
then π · x = x. It is a fact ([8, Proposition 3.4]) that a unique least such set of
atoms exists, we call it the support of x. We write a#x when a is not in the
support of x, and call a fresh for x. For example:

– The set A = {a, b, c, . . .} of atoms with action π · a = π(a) is a nominal set;
the support of a ∈ A is {a}, so b#a but not a#a.

– The powerset P(A) = {U | U ⊆ A} of A with action π · U = {π · u | u ∈ U},
is not a nominal set; {a1, a3, a5, . . .} ∈ P(A) does not have finite support,
since for no finite set of atoms is it the case that all permutations fixing that
set map {a1, a3, a5, . . .} to itself. Note that the support of A ∈ P(A) is ∅, so
a#A for any a.

– If X and Y are nominal sets write X× Y for {(x, y) | x ∈ X, y ∈ Y} with
action π · (x, y) = (π · x, π · y). This is also a nominal set; the support of
(x, y) ∈ X× Y is the union of the supports of x and y.

It is useful to write Xn for

n︷ ︸︸ ︷
X× · · · × X, so we do.

2 It is easy to prove that the resulting ‘name-clash-avoiding’ derivation is a deriva-
tion, and we can use induction on depth of derivations to preserve the inductive
hypothesis. However, we have used the principle of meta-level Fraenkel-Mostowksi
equivariance [8], which lets us rename atoms permutatively without losing structural
inductive properties, so our structural induction is actually perfectly valid.

3 · is a function P× X→ X such that Id · x = x and π · (π′ · x) = (π ◦ π′) · x.

We assume these permutation actions on these sets henceforth.

Lemma 4.1. For any nominal set X and element x ∈ X, if a#x and b#x then
(a b) · x = x.

Proof. Since a, b 6∈ supp(x), (a b)(c) = c for every c ∈ supp(x). ut

Functions f ∈ X→ Y (on the underlying sets) have a natural conjugation
permutation action given by (π · f)(x) = π · (f(π-1 · x)). Call f equivariant if
π · (f(x)) = f(π · x) always.

Lemma 4.2. For any nominal sets X,Y, equivariant function f ∈ X → Y and
x ∈ X, if a#x then a#f(x).

Proof. By an elementary calculation using the fact that π · (f(x)) = f(π · x). ut

We can now give a semantics to nominal algebra theories. An interpretation
J K of a signature is a nominal set T with equivariant functions

– J KT ∈ A→ T to interpret atoms;
– [] ∈ A× T→ T such that a#[a]x always, to interpret abstraction;
– JfK ∈ Tn → T for each term-former f : n, to interpret term-formers.

A valuation ς maps unknowns X to elements ς(X) ∈ T. The pair of an inter-
pretation and a valuation extend easily to terms JtKς :

JaKς = JaKT Jπ·XKς = π·ς(X) J[a]tKς = [a]JtKς
Jf(t1, . . . , tn)Kς = JfK(Jt1Kς , . . . , JtnKς)

This extends to a notion of validity for our judgement forms:

Ja#tKς (is valid) when a#JtKς Jt = uKς when JtKς = JuKς
J∆Kς when a#ς(X) for each a#X ∈ ∆ J∆ ` AKς when J∆Kς implies JAKς

J∆ ` AK when J∆ ` AKς for all valuations ς

A model of a theory T is an interpretation J K such that J∆ ` t = uK for all
axioms ∆ ` t = u of T — we say the model validates the axioms.

Write ∆ |=
T
A when J∆ ` AK for all models J K of T.

5 Soundness and Completeness

Derivability of freshness and equality is sound for the semantics presented in the
previous section.

Theorem 5.1 (Soundness). If ∆ `
T
A then ∆ |=

T
A.

Proof. Let J K be a model of T. We must show that if A is derived from ∆ then
J∆Kς implies JAKς for any valuation ς. We work by induction on derivation rules.

– (#ab). By definition, Ja#bKς when a#JbKT. By Lemma 4.2 this follows
from a#b, which is a standard property of (semantic) freshness.

– (#X). By properties of the group of permutations, a#π · x when π-1(a)#x.
– (#[]a). a#[a]x for any x ∈ T by construction.
– (#[]b). By Lemma 4.2, a#x implies a#[b]x.
– (#f). Take any f : n. If a#JtiKς for 1 ≤ i ≤ n then a#JfK(Jt1Kς , . . . , JtnKς)

follows using Lemma 4.2.
– (refl), (symm), (tran), (cong[]), (congf). By properties of equality.
– (ax∆′`t=u). This follows from the definition of what it is to be a model,

and the fact that Jπ · tσKς = π · JtKς′ where ς ′(X) = Jσ(X)Kς .
– (fr). Suppose there is a derivation of t = u from ∆, a#X1, . . . , a#Xn, and

suppose that a 6∈ t, u,∆. If a is amongst the atoms in the support of ς(Xi)
for any Xi, rename a in the derivation to avoid this. By inductive hypothesis
JtKς = JuKς follows from J∆, a#X1, . . . , a#XnKς . So JtKς = JuKς as required.

ut

In order to show completeness of derivability of equality, we need some tech-
nical machinery. Given a theory T we construct a term model J KT of T as
follows:

– For each n > 0 introduce a term-former dn : n.
– Take as T the set of closed terms of sort T (terms without unknowns) in the

enriched signature, quotiented by provable equality, with the permutation
action given pointwise.

– Take JaKT = {t | `
T
t = a, t closed}, [a]x = {t | `

T
t = [a]u, t closed, u ∈ x},

and for each term-former f : n take as JfKT the function defined by

JfKT (x1, . . . , xn) = {t | `
T
t = f(t1, . . . , tn), t closed, ti ∈ xi}.

We have to enrich the signature with the dn to ensure the term model has
enough elements; term-formers must be interpreted by equivariant functions so
the usual method of adding constants c (0-ary term-formers) would add only
elements such that `

T
π · c = c always, and this does not suffice. This idea goes

back to [15].
It is possible to prove by some elementary calculations that the definition

above is well-defined and an interpretation; that is, that T is a nominal set, that
J KT, [] , and all JfKT are equivariant, and that a#J[a]tKT always.

Lemma 5.2. If a#JtKTς then there is some t′ ∈ JtKTς such that `
T
a#t′.

Proof. Take b fresh (so b does not occur in t or ς). Then b#JtKTς . Since also
a#JtKTς we obtain (b a) ·JtKTς = JtKTς by Lemma 4.1. But then also `

T
(b a) ·t = t,

by construction. Take t′ ≡ (b a) · t. ut

To show why Lemma 5.2 is not trivial, consider a theory IOTA with one axiom
` a = b. It is easy to verify that a#JaKTς (since JaKTς = A) but a#a is not deriv-
able. Of course a = b and a#b are derivable. Similarly in LAM it is a fact that
a#J(λ[a]b)aKTς but a#(λ[a]b)a is not derivable; of course (λ[a]b)a = b and a#b
are derivable.

Theorem 5.3. The term model J KT of T is a model.

Proof. We show that if ∆ ` t = u is an axiom of T then J∆ ` t = uKTς is valid
for any ς. By definition, we must show that if a#ς(X) for each a#X ∈ ∆, then
JtKTς = JuKTς . Use Lemma 5.2 to choose a term t′ ∈ ς(X) such that ` a#t′ for
each a#X ∈ ∆. By (ax∆`t=u), taking π = Id and σ(X) ≡ t′ for each a#X ∈ ∆
we obtain `

T
tσ = uσ, since ` a#σ(X). Then JtσKTς = JuσKTς by Theorem 5.1.

By construction JtKTς = JtσKTς and JuKTς = JuσKTς , so JtKTς = JuKTς as required.
ut

A certain amount of technical subtlety is hidden in Theorem 5.4 and in
particular in its use of the extra term-formers d:

Theorem 5.4 (Completeness). If ∆ |=
T
t = u then ∆ `

T
t = u.

Proof. By assumption J∆ ` t = uKς is valid for any model J K of T and any
valuation ς. Let J K be J KT , the term model of T. In order to choose a suitable
ς, we introduce the following:

– Let S be the set of atoms mentioned anywhere in ∆, t, and u.
– Let X1, . . . , Xn be the set of unknowns mentioned anywhere in ∆, t, or u,

(not just in ∆!) in some arbitrary order.
– For each 1 ≤ i ≤ n let Si be the set of all atoms a ∈ S such that a#Xi 6∈ ∆.
– For each 1 ≤ i ≤ n let σ(Xi) ≡ di(a1, . . . , ani) where Si = {a1, . . . , ani}.

Here we extend the signature with distinct term-formers di. Let ς map Xi to
Jσ(Xi)KTς , for 1 ≤ i ≤ n. By construction J∆KTς , so by assumption JtKTς = JuKTς ,
and by definition this means that tσ = uσ is derivable. This derivation can be
transformed rule by rule into a derivation of ∆ `

T
t = u, since the only fresh-

nesses and equalities we can assert of the di are those we can also assert of the
Xi. The only complication is when perhaps for some fresh b we use a freshness
derivation to derive b#vσ for some fresh b; then we modify the derivation to use
(fr) instead. ut

5.1 The Status of Freshness Derivations

Completeness holds for equalities — but not for freshnesses. That is, ∆ |=
T
b#t

does not imply ∆ ` b#t necessarily; for counterexamples see the discussion in-
volving theories IOTA and LAM just after Lemma 5.2.

To understand why this is desirable we must draw a distinction between the
intension and the extension of a term.

‘` a#(λ[a]b)a’ has the status of ‘x is fresh for (λx.y)x’; both are false. Yet
(λx.y)x is β-convertible to y and x is fresh for y. A freshness judgement ∆ ` a#t
is a(n intensional) judgement on concrete syntax; call this syntactic freshness.4

All the capture-avoidance side-conditions we know of are in accordance with the
slogan ‘ε away from informal practice’, this is what ∆ ` a#t models.

4 The reader familiar with a theorem-prover such as Isabelle [16] might like to imagine
that # maps to Prop and = maps to o.

Nominal sets is unusual amongst semantics in that it has a(n extensional)
semantic notion of freshness a#x. In fact, semantic freshness is hiding in nominal
algebra — but in a slightly unexpected place; in the theory of equality.

Theorem 5.5. Suppose {X1, . . . , Xn} and {a1, . . . , am} are the unknowns and
atoms mentioned in ∆ and t. Suppose that b is fresh (so b 6∈ {a1, . . . , am}).

∆ |=
T
a#t if and only if ∆, b#X1, . . . , b#Xn `T

(b a) · t = t.

Proof. Choose a model and any ς such that b#ς(X1), . . . , b#ς(Xn); it follows
by an induction on syntax that b#JtKς . It is a fact that a#JtKς if and only if
(b a) · JtKς = JtKς (see [8] for details). Also, since term-formers are interpreted by
equivariant functions, we rewrite (b a) · JtKς as J(b a) · tKς .

Now suppose ∆ |=
T
a#t. By definition a#JtKς for any J-K and ς such that

J∆Kς . By the arguments above J(b a) · tKς = JtKς if b#ς(X1), . . . , b#ς(Xn). By
Theorem 5.4 it follows that ∆, b#X1, . . . , b#Xn `T

(b a) · t = t. The reverse im-
plication is similar. ut

Recall the examples we used just after Lemma 5.2. Theorem 5.5 tells us that
|=

IOTA
a#a if and only if `

IOTA
b = a (which follows by the axiom ` a = b), and

that |=
LAM

a#(λ[a]b)a if and only if `
LAM

(λ[a]b)a = (λ[c]b)c (which follows since
both sides are derivably equal to b).

So the semantic freshness ∆ |=
T
a#t can be expressed as an equality axiom.

Any undecidability or algorithmic complexity is isolated in the equality judge-
ment form.

6 Related Work

Nominal algebra is derived from Fraenkel-Mostowski set theory. This provided
a semantics for names and gave an unexpected set-theoretic semantics for parse
trees (abstract syntax trees) with α-equivalence [8]. Existing technology included
De Bruijn indexes [17], higher-order abstract syntax [18], the theory of con-
texts [19], TWELF [20], and other approaches. In this crowded arena approaches
based on Fraenkel-Mostowski sets were catchily labelled ‘nominal’ by Pitts. The
derivation rules expressed in this paper by the theory CORE are from this se-
mantics. The name ‘nominal algebra’ acknowledges this debt.

Nominal unification considers the computational aspects of unifying trees-
with-binding [9]. Nominal logic describes inductive programming and reasoning
principles for trees-with-binding [21]. FreshML is a programming language... for
trees-with-binding [22] in ML [23] style.

Aside from applications to trees-with-binding, ideas from nominal techniques
have been used in logic [24] (this was still reasoning on trees, since the logic had
a fixed syntactic model) and recently in semantics [25].

Nominal rewriting considers equalities between terms not directly to do with
an underlying model of trees [6]. α-prolog [26] takes a similar tack but in logic
programming. Still, the emphasis is squarely on the computational benefits com-
pared to those of other approaches.

Nominal algebra champions nominal techniques as a logical framework to
represent and reason about semantic structures — i.e. functions, sets, and other
mathematical structures. That is new, and this paper sets it on a sound seman-
tic/logical basis.

The full case for nominal algebra as a framework for applications in which
higher-order logic can be used [27] remains to be made. However we can make
some remarks:

Unification of nominal terms is decidable whereas higher-order unification is
not [28]. (First-order) logic can be axiomatised [10] and the treatment of quan-
tification is very smooth. In particular it closely models the informal specification
of quantification; the ∀-intro rule in Isabelle is∧

x.[P =⇒ ∀x.P]

(see [16]) and this is not like the usual rule used by logicians

‘from Γ ` P deduce Γ ` ∀x.P if x is fresh for Γ ’.

We believe (though we have not yet checked this in detail) that treatments of
substructural logics are possible in nominal algebra; they are not necessarily so in
higher-order logic because structural properties of the framework’s connectives
‘infect’ those of the logic being axiomatised.

Since the conception of nominal algebra, Pitts and Clouston have derived
nominal equational logic [29]. Nominal equational logic makes some slightly
different design decisions, notably it cannot express syntactic freshness (see
Sect. 5.1).

Higher-order algebra [4] uses typed λ-calculus up to αβ-equivalence and can
serve as a foundational framework. The simply-typed λ-calculus itself [16, Fig-
ures 6 and 7] can also be used. Other algebraic systems, such as Sun’s exten-
sional binding algebras [30, Definition 2.2.3] introduce dedicated systems based
on functional semantics.

A host of ‘cylindric’ algebraic techniques exist. These embrace meta-variables
and reject object-level variables, preferring to encode their expressive power
in the term-formers. Examples are lambda-abstraction algebras [31] for the λ-
calculus and cylindric algebras [32, 33] for first-order logic. Polyadic algebras
have a slightly more general treatment, for a brief but clear discussion of the de-
sign of these and related systems is in [34, Appendix C]. Combinators [1] reject
object-level variables altogether. Algebras over (untyped) combinators can then
express first-order predicate logic [35]. These systems are effective for their ap-
plications but there are things that nominal algebra allows us to say particularly
naturally, because of the way it isolates abstraction, has explicit meta-variables,
and permits freshness side-conditions on equalities.

7 Conclusions

Nominal terms embrace the difference between the object-level and the meta-
level; there are two classes of variables, atoms a and unknowns X. Substitution

for X does not avoid capture in abstraction by a. Freshness side-conditions of the
form a#X manage the interaction between the two levels and ‘recover’ capture-
avoidance where this is required.

Previous ‘nominal’ work has considered reasoning on datatypes of syntax up
to α-equivalence. In this paper we use nominal terms as a foundational syntax
for mathematics, and we have constructed a logic for them using a suitable
theory of equality. The two-level variable structure permits the framework to
get exceptionally close to informal practice; see the end of the Introduction for
examples.

Nominal algebra could be suitable to specify and reason algebraically on
languages with binding; we have in mind particularly process calculi such as
those derived from the π-calculus, which often feature quite complex binding
side-conditions and for which algebraic reasoning principles are frequently de-
veloped [36, 37, 38].

It is possible to extend nominal algebra with abstractions of the form [t]u,
and freshness judgements of the form t#u. Other extensions are possible and
case studies will tell which of them are most important.

We see nominal algebra as the first of a family of two-level logics as yet to
be created. We intend to begin by creating a first-order logic with two levels of
variable. For example we would like to be able to write an expression like

∀[X]∀[a]
(
a#X ⊃ (X ⇔ ∀[a]X)

)
.

We made a start in that direction by designing one-and-a-halfth order logic [10].
However that system does not allow quantification of unknowns, and we are now
working on lifting that restriction.

In our semantics object-level variables are first-class entities in the deno-
tation; a represents an object-level variable symbol in the syntax and in the
semantics of nominal algebra. Yet we may impose equalities, such as theory SUB
from Sect. 2. If we can substitute for a then it has the flavour of a variable ‘rang-
ing over’ denotational elements; so SUB is a theory of ‘variables in denotation’.
Nominal algebra is the beginning of an intriguing investigation into what this
enrichment of the denotation does to the theory of validity and proof.

We are also interested in developing logics with hierarchies of variables. Since
nominal algebra offers two levels of variable, why not extend this to allow an infi-
nite hierarchy of variables, by analogy with type hierarchies in the λ-calculus [1],
or stratification in set theory [39]? The first author has considered this extension
of nominal terms in other publications [40, 41] but introducing such a hierarchy
in a logical context poses unique challenges, and in particular, we have not yet
obtained a satisfactory notion of model. This too is current research.

References

[1] Barendregt, H.P.: The Lambda Calculus: its Syntax and Semantics (revised ed.).
North-Holland (1984)

[2] Curry, H.B., Feys, R.: Combinatory Logic. Volume 1. North Holland (1958)
[3] Henkin, L., Monk, J.D., Tarski, A.: Cylindric Algebras. North Holland (1971 and

1985) Parts I and II.
[4] Meinke, K.: Universal algebra in higher types. Theoretical Computer Science

100(2) (1992) 385–417
[5] Leivant, D.: Higher order logic. In Gabbay, D., Hogger, C., Robinson, J., eds.:

Handbook of Logic in Artificial Intelligence and Logic Programming. Volume 2.
Oxford University Press (1994) 229–322

[6] Fernández, M., Gabbay, M.J.: Nominal rewriting. Information and Computation
(2005) In press.

[7] Fernández, M., Gabbay, M.J.: Curry-style types for nominal rewriting. TYPES’06
(2006)

[8] Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable
binding. Formal Aspects of Computing 13(3–5) (2001) 341–363

[9] Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theoretical Computer
Science 323(1–3) (2004) 473–497

[10] Gabbay, M.J., Mathijssen, A.: One-and-a-halfth-order logic. In: PPDP ’06: Proc.
of the 8th ACM SIGPLAN symposium on Principles and Practice of Declarative
Programming, ACM Press (2006) 189–200

[11] Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and types. Cambridge University
Press (1989)

[12] Parrow, J.: An introduction to the pi-calculus. In Bergstra, J., Ponse, A., Smolka,
S., eds.: Handbook of Process Algebra, Elsevier Science (2001) 479–543

[13] Hodges, W.: Elementary predicate logic. In Gabbay, D., Guenthner, F., eds.:
Handbook of Philosophical Logic, 2nd Edition. Volume 1. Kluwer (2001) 1–131

[14] Gabbay, M.J., Mathijssen, A.: Capture-avoiding substitution as a nominal alge-
bra. In: ICTAC’2006: 3rd Int’l Colloquium on Theoretical Aspects of Computing.
(2006) 198–212

[15] Gabbay, M.J.: Fresh logic. Journal of Logic and Computation (2006) In press.
[16] Paulson, L.C.: The foundation of a generic theorem prover. Journal of Automated

Reasoning 5(3) (1989) 363–397
[17] de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the church-rosser theorem.
Indagationes Mathematicae 5(34) (1972) 381–392

[18] Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: PLDI ’88: Proc. of the
ACM SIGPLAN 1988 conf. on Programming Language design and Implementa-
tion, ACM Press (1988) 199–208

[19] Miculan, M.: Developing (meta)theory of lambda-calculus in the theory of con-
texts. ENTCS 1(58) (2001)

[20] Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical frame-
work for deductive systems. In Ganzinger, H., ed.: CADE-16, 16th Int’l Conf. on
Automated Deduction, Springer (1999) 202–206

[21] Pitts, A.M.: Nominal logic, a first order theory of names and binding. Information
and Computation 186(2) (2003) 165–193

[22] Shinwell, M.R., Pitts, A.M., Gabbay, M.J.: FreshML: Programming with binders
made simple. In: Eighth ACM SIGPLAN Int’l Conf. on Functional Programming
(ICFP 2003), Uppsala, Sweden, ACM Press (2003) 263–274

[23] Paulson, L.C.: ML for the working programmer (2nd ed.). Cambridge University
Press (1996)

[24] Lúıs Caires, L.C.: A spatial logic for concurrency (part II). Theoretical Computer
Science 322(3) (2004) 517–565

[25] Benton, N., Leperchey, B.: Relational reasoning in a nominal semantics for stor-
age. In: Proc. of the 7th Int’l Conf. on Typed Lambda Calculi and Applications
(TLCA). Volume 3461 of LNCS. (2005) 86–101

[26] Cheney, J., Urban, C.: System description: Alpha-Prolog, a fresh approach to
logic programming modulo alpha-equivalence. In: Proc. 17th Int. Workshop on
Unification, UNIF’03, Universidad Politecnica de Valencia (2003) 15–19

[27] Paulson, L.C.: Isabelle: the next 700 theorem provers. In Odifreddi, P., ed.: Logic
and Computer Science. Academic Press (1990) 361–386

[28] Huet, G.: Higher order unification 30 years later. In: TPHOL 2002. Number 2410
in LNCS (2002) 3–12

[29] Clouston, R.A., Pitts, A.M.: Nominal equational logic. ENTCS 172 (2007) 223–
257

[30] Sun, Y.: An algebraic generalization of frege structures - binding algebras. The-
oretical Computer Science 211 (1999) 189–232

[31] Salibra, A.: On the algebraic models of lambda calculus. Theoretical Computer
Science 249(1) (2000) 197–240

[32] Burris, S., Sankappanavar, H.: A Course in Universal Algebra. Springer (1981)
[33] Andréka, H., Németi, I., Sain, I.: Algebraic logic. In Gabbay, D., Guenthner, F.,

eds.: Handbook of Philosophical Logic, 2nd Edition. Volume 2. Kluwer (2001)
133–249

[34] Blok, W.J., Pigozzi, D.: Algebraizable logics. Memoirs of the AMS 77(396) (1989)
[35] Barendregt, H., Dekkers, W., Bunder, M.: Completeness of two systems of illative

combinatory logic for first-order propositional and predicate calculus. Archive für
Mathematische Logik 37 (1998) 327–341

[36] Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi calculus.
In: CCS ’97: Proc. of the 4th ACM conf. on Computer and Communications
Security, ACM Press (1997) 36–47

[37] Luttik, B.: Choice Quantification in Process Algebra. PhD thesis, University of
Amsterdam (2002)

[38] Katoen, J.P., D’Argenio, P.R.: General distributions in process algebra. In: Lec-
tures on formal methods and performance analysis: first EEF/Euro summer school
on trends in computer science, Springer (2002) 375–429

[39] Forster, T.: Quine’s NF, 60 years on. American Mathematical Monthly 104(9)
(1997) 838–845

[40] Gabbay, M.J.: A new calculus of contexts. In: PPDP ’05: Proc. of the 7th ACM
SIGPLAN int’l conf. on Principles and Practice of Declarative Programming,
ACM Press (2005) 94–105

[41] Gabbay, M.J.: Hierarchical nominal rewriting. In: LFMTP’06: Logical Frame-
works and Meta-Languages: Theory and Practice. (2006) 32–47

