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Abstract. We survey several computational interpretations of classical linear
logic based on two-player one-move games. The moves of the games are higher-
order functionals in the language of finite types. All interpretations discussed treat
the exponential-free fragment of linear logic in a common way. They only differ
in how much advantage one of the players has in the exponentials games. We dis-
cuss how the several choices for the interpretation of the modalities correspond
to various well-known functional interpretations of intuitionistic logic, including
Gödel’s Dialectica interpretation and Kreisel’s modified realizability.

1 Introduction

This article surveys several interpretations [3,16,17,18] of classical linear logic based
on one-move two-player (Eloise and Abelard) games. As we will see, these are related
to functional interpretations of intuitionistic logic such as Gödel’s Dialectica interpre-
tations [11] and Kreisel’s modified realizability [14].

The intuition behind the interpretation is that each formula A defines an adjudication
relation between arguments pro (Eloise’s move) and against (Abelard’s move) the truth
of A. If the formula is in fact true, then Eloise should have no problem in winning the
game. The interpretation of each of the logical connectives, quantifiers and exponen-
tials corresponds to constructions that build new games out of given games. Given the
symmetry of the interpretation, the game corresponding to the linear negation of A is
simply the game A with the roles of the two players swapped. The simplest interpre-
tation of the exponential games view these as games where only one player needs to
make a move. For instance, in the game ?A, only Abelard makes a move, and Eloise
will win in case she has a winning move for the game A with the given Abelard’s move.
A symmetric situation occurs in the case of the game !A, only that Abelard now has the
advantage. The idea is that the exponentials ? and ! serve as trump cards for Eloise and
Abelard, respectively.

The paper is organised as follows. The basic interpretation of the exponential-free
fragment of classical linear logic is presented in Section 2, and soundness of the in-
terpretation is proved. Completeness of the interpretation is presented in Section 3. A
simple form of branching quantifier is used for the proof of completeness. In Section 4,
we discuss the various possibilities for the interpretation of the exponentials.
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For an introduction to modified realizability see chapter III of [20] or the book chap-
ter [21]. Background on Gödel’s Dialectica interpretation can be obtained in [1]. For an
introduction to linear logic see Girard’s original papers [9,10].

1.1 Classical Linear Logic LLω

We work with an extension of classical linear logic to the language of all finite types.
The set of finite types T is inductively defined as follows:

– o ∈ T ;
– if ρ, σ ∈ T then ρ → σ ∈ T .

For simplicity, we deal with only one basic finite type o.
We assume that the terms of LLω contain all typed λ-terms, i.e. variables xρ for each

finite type ρ; λ-abstractions (λxρ.tσ)ρ→σ; and term applications (tρ→σsρ)σ . Note that
we work with the standard typed λ-calculus, and not with a linear variant thereof. The
atomic formulas of LLω are Aat, Bat, . . . and A⊥

at, B
⊥
at , . . .. For simplicity, the standard

propositional constants 0, 1,⊥,� of linear logic have been omitted, since the realizabil-
ity interpretation of atomic formulas is trivial (see Definition 1).

Table 1. Structural rules

Aat, A
⊥
at (id)

Γ, A Δ, A⊥
(cut)

Γ, Δ

Γ
(per)

π{Γ}

Formulas are built out of atomic formulas Aat, Bat, . . . and A⊥
at, B

⊥
at , . . . via the con-

nectives A � B (par), A ⊗ B (tensor), A �z B (if-then-else), and quantifiers ∀xA and
∃xA (exponentials are treated in Section 4). The linear negation A⊥ of an arbitrary
formula A is an abbreviation as follows:

(Aat)⊥ ≡ A⊥
at (A⊥

at)⊥ ≡ Aat

(∃zA)⊥ ≡ ∀zA⊥ (∀zA)⊥ ≡ ∃zA⊥

(A � B)⊥ ≡ A⊥ ⊗ B⊥ (A ⊗ B)⊥ ≡ A⊥
� B⊥

(A �z B)⊥ ≡ A⊥ �z B⊥.

So, (A⊥)⊥ is syntactically equal to A.
The structural rules of linear logic (shown in Table 1) do not contain the usual rules

of weakening and contraction. These are added separately, in a controlled manner via
the use of modalities (cf. Section 4). The rules for the multiplicative connectives and
quantifiers are shown in Table 2, with the usual side condition in the rule (∀) that the
variable z must not appear free in Γ .

We will deviate from the standard formulation of linear logic, in the sense that
we will use the if-then-else logical constructor A �z B instead of standard additive
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Table 2. Rules for multiplicative connectives and quantifiers

Γ, A Δ, B
(⊗)

Γ, Δ, A ⊗ B

Γ, A, B
(� )

Γ, A � B

Γ, A
(∀)

Γ,∀zA

Γ, A[t/z]
(∃)

Γ,∃zA

conjunction and disjunction1. The logical rules for �z are shown in Table 3, where
(z)(γ0, γ1) denotes a conditional λ-term which reduces to either γ0 or γ1 depending
on whether the boolean variable z reduces to true or false, respectively. The standard
additives can be defined as

A ∧ B :≡ ∀z(A �z B)

A ∨ B :≡ ∃z(A �z B)

with the help of quantification over booleans.

Table 3. Rules for if-then-else connective

Γ [γ0], A Γ [γ1], B
(�z)

Γ [(z)(γ0, γ1)], A �z B

Γ, A
(�t)

Γ, A �t B

Γ, B
(�f)

Γ, A �f B

Notation. We use bold face variables f , g, . . . , x, y, . . . for tuples of variables, and
bold face terms a, b, . . . , γ, δ, . . . for tuples of terms. Given sequence of terms a and
b, by a(b), we mean the sequence of terms a0(b), . . . , an(b). Similarly for a[b/x].

2 Basic Interpretation

To each formula A of the exponential-free fragment of linear logic we associate a
quantifier-free formula |A|xy , where x, y are fresh-variables not appearing in A. The
variables x in the superscript are called the witnessing variables, while the subscript
variables y are called the challenge variables. Intuitively, the interpretation of a for-
mula A is a two-player (Eloise and Abelard) one-move game, where |A|xy is the adju-
dication relation. We want that Eloise has a winning move whenever A is provable in
LLω. Moreover, the linear logic proof of A will provide Eloise’s winning move a, i.e.
∀y|A|ay .

Definition 1 (Basic interpretation). Assume we have already defined |A|xy and |B|vw,
we define

1 See Girard’s comments in [9] (p13) and [10] (p73) on the relation between the additive con-
nectives and the if-then-else construct.
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|A � B|f ,g
v,w :≡ |A|fw

v � |B|gv
w

|A ⊗ B|x,v
f ,g :≡ |A|xfv ⊗ |B|vgx

|A �z B|x,v
y,w :≡ |A|xy �z |B|vw

|∃zA(z)|x,z
f :≡ |A(z)|xfz

|∀zA(z)|fy,z :≡ |A(z)|fz
y .

The interpretation of atomic formulas are the atomic formulas themselves, i.e.

|Aat| :≡ Aat

|A⊥
at| :≡ A⊥

at.

Notice that for atomic formulas the tuples of witnesses and challenges are both empty.

It is easy to see that |A⊥|yx ≡ (|A|xy)⊥. We now prove the soundness of the basic inter-
pretation, i.e. we show how Eloise’s winning move in the game |A|xy can be extracted
from a proof of A in classical linear logic (exponentials treated in Section 4).

Theorem 1 (Soundness). Let A0, . . . , An be formulas of LLω, with z as the only free-
variables. If

A0(z), . . . , An(z)

is provable in LLω then from this proof terms a0, . . . , an can be extracted such that

|A0(z)|a0
x0

, . . . , |An(z)|an
xn

is also provable in LLω, where FV(ai) ∈ {z, x0, . . . , xn}\{xi}.

Proof. The proof is by induction on the derivation of A0, . . . , An. The only relevant
rule where free-variables matter is the universal quantifier rule. Therefore, for all the
other rules we will assume the tuple of parameters z is empty. The cases of the axiom,
permutation rule and if-then-else are trivial. The other rules are treated as follows:

Multiplicativies.

|Γ |γ[x]
v , |A|ax

[fb
x ]

|Γ |γ[fb]
v , |A|afb

|Δ|δ[y]
w , |B|by

[ga
y ]

|Δ|δ[ga]
w , |B|bga (⊗)

|Γ |γ[fb]
v , |Δ|δ[ga]

w , |A|afb ⊗ |B|bga (D1)
|Γ |γ[fb]

v , |Δ|δ[ga]
w , |A ⊗ B|a,b

f ,g

|Γ |γv , |A|a[y]
x , |B|b[x]

y
(�)

|Γ |γv , |A|a[y]
x � |B|b[x]

y
(D1)

|Γ |γv , |A � B|λy.a[y],λx.b[x]
x,y

Cut.

|Γ |γ[x]
v , |A|ax

[a−
x ]

|Γ |γ[a−]
v , |A|aa−

|Δ|δ[x−]
w , |A⊥|a−

x−
[ a
x− ]

|Δ|δ[a]
w , |A⊥|a−

a

|Δ|δ[a]
w , (|A|aa−)⊥

(cut)
|Γ |γ[a−]

v , |Δ|δ[a]
w
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Note that the assumption that the tuple of variables x (respectively x−) does not appear
free in a (respectively a−) is used crucially in the soundness of the cut rule in order
remove any circularity in the two simultaneous substitutions.

Quantifiers.

|Γ |γ[z]
v , |A|a[z]

x
(D1)

|Γ |γ[z]
v , |∀zA|λz.a[z]

x,z

|Γ |γ[x]
v , |A(t)|ax

[gt
x ]

|Γ |γ[gt]
v , |A(t)|agt

(D1)
|Γ |γ[gt]

v , |∃zA(z)|a,t
g

This concludes the proof. �

3 Completeness

In this section we investigate the completeness of the interpretation given above. More
precisely, we ask the question: for which extension of classical linear logic LL� it is the
case that if there are terms a0, . . . , an such that |A0(z)|a0

x0
, . . . , |An(z)|an

xn
is provable

in LL� then the sequence A0, . . . , An is also provable in LL�? The idea that a formula
A is interpreted as a symmetric game |A|xy between two players suggests that A is
equivalent to

Æx
y |A|xy , using a simple form of branching quantifier to ensure that no

player has an advantage over the other. This simple branching quantifier (we will refer
to these as simultaneous quantifiers2) can be axiomatised with the rule:

A0(a0, y0), . . . , An(an, yn)
(

Æ

)Æx0
y0

A0(x0, y0), . . . ,

Æxn

yn
An(xn, yn)

with the side-condition: yi may only appear free in the terms aj , for j �= i. In particular,
we will have that each yi will not be free in the conclusion of the rule.

The standard quantifier rules can be obtained from this single rule. The rule (∀)
can be obtained in the case when only the tuple yn is non-empty. The rule (∃) can be
obtained in the case when only the tuple xn is non-empty. Hence, for the rest of this
section we will consider that standard quantifiers ∀xA and ∃xA are in fact abbreviations
for

Æ

xA and

ÆxA, respectively.
In terms of games, the new quantifier embodies the idea of the two players perform-

ing their moves simultaneously. The most interesting characteristic of this simultaneous
quantifier is with respect to linear negation, which is defined as

(

Æx
y A)⊥ ≡

Æy
x A⊥

and corresponds precisely to the switch of roles between the players. Let us refer to the
extension of LLω with the new simultaneous quantifier by LLω

q .

2 According to Hyland [13] (footnote 18) “the identification of a sufficiently simple tensor as
a Henkin quantifier is a common feature of a number of interpretations of linear logic”. The
simultaneous quantifier can be viewed as a simplification of Henkin’s (branching) quantifier
[4,12], in which no alternation of quantifiers is allowed on the two branches. See Bradfield [5]
as well, where this simple form of branching quantifier is also used.
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Theorem 2. Extend the interpretation (Definition 1) to the system LLω
q by defining

|

Æv
wA(v, w)|f ,v

g,w :≡ |A(v, w)|fw
gv .

Theorem 1 holds for the extended system LLω
q .

Proof. The rule for the simultaneous quantifier is handled as follows:

|A0(a0, w0)|b0
y0

, . . . , |An(an, wn)|bn
yn giai

yi|A0(a0, w0)|b
′
0

g0a0 , . . . , |An(an, wn)|b
′
n

gnan

(D1)
|

Æv0
w0

A0(v0, w0)|λw0.b′
0,a0

g0,w0 , . . . , |

Ævn

wn
An(vn, wn)|λwn.b′

n,an
gn,wn

where b′
j is the sequence of terms bj after the substitutions giai/yi, for i �= j. �

In fact, since the simultaneous quantifiers are eliminated, we obtain an interpretation of
LLω

q into LLω. Let us proceed now to define an extension of LLω
q which is complete with

respect to the interpretation of Section 2. First we need some simple facts about LLω
q .

Lemma 1. The following are derivable in LLω
q

Æf
y,zA(fz, y, z) � ∀z

Æx
y A(x, y, z)

Æx
y A(y) ⊗

Æv
wB(w) � Æx,v

f ,g (A(fv) ⊗ B(gx)).

Proof. These can be derived as

A⊥(fz, y, z), A(fz, y, z)
(

Æ
)Æy,z

f A⊥(fz, y, z),

Æx
y A(x, y, z)

(∀)Æy,z
f A⊥(fz, y, z), ∀z

Æx
y A(x, y, z)

and
A⊥(fv), A(fv) B⊥(gx), B(gx)

(⊗)
A⊥(fv), B⊥(gx), A(fv) ⊗ B(gx)

(

Æ

)Æy
x A⊥(y),

Æw
v B⊥(w),

Æx,v
f ,g (A(fv) ⊗ B(gx))

(�)Æy
x A⊥(y) �

Æw
v B⊥(w),

Æx,v
f ,g (A(fv) ⊗ B(gx))

respectively. �

The converse of the implications in Lemma 1, however, require extra logical principles.
Consider the following principles for the simultaneous quantifier

ACs : ∀z

Æx
y A(x, y, z) � Æf

y,zA(fz, y, z)

ACp :

Æx,v
f ,g (A(fv) ⊗ B(gx)) � Æx

y A(y) ⊗

Æv
wB(w)

for quantifier-free formula A and B. We refer to these as the sequential choice ACs and
parallel choice ACp. For those familiar with the modified realizability of intuitionistic
logic, the principle ACs corresponds to the standard (intentional) axiom of choice, while
ACp is a generalisation of the independence of premise principle (case when tuples x, v
and w are empty).
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Lemma 2. The principles ACs and ACp are sound for our interpretation, i.e. for any
instance P of these principles, there are terms t such that |P |ty is derivable in LLω.

Proof. Consider an instance of ACs

∀z

Æx
y A(x, y, z) � Æf

y,zA(fz, y, z).

Since A is quantifier-free, it is easy to see that premise and conclusion have the same
interpretation, namely

|∀z

Æx
y A(x, y, z)|fy,z ≡ A(fz, y, z)

|

Æf
y,zA(fz, y, z)|fy,z ≡ A(fz, y, z).

The same is true for the premise and conclusion of ACp. �

Let us denote by LLω
q+ the extension of LLω

q with these two extra schemata ACs and
ACp. The next lemma shows that, in fact, these extra principles are all one needs to
show the equivalence between A and its interpretation

Æx
y |A|xy .

Lemma 3. The equivalence between A and

Æx
y |A|xy can be derived in the system LLω

q .

Proof. By induction on the logical structure of A. Consider for instance the case of
A ⊗ B.

A ⊗ B
(IH)↔

Æx
y |A|xy ⊗

Æv
w|B|vw

(L1,ACp)↔

Æx,v
f ,g (|A|xfv ⊗ |B|vgx).

The other cases are treated similarly. �

Theorem 3. Let A be a formula in the language of LLω. Then A is derivable in LLω
q+

if and only if |A|ty is derivable in LLω, for some sequence of terms t.

Proof. The forward direction can be obtained with an extension of Theorem 1 given by
Lemma 2. The converse follows from Lemma 3. �

4 Possible Interpretations of Exponentials

The exponential-free fragment of LLω, despite its nice properties, bears little relation
to the standard logical systems of classical and intuitionistic logic. In order to recover
the full strength of classical logic, we need to add back contraction and weakening.
These are recovered in linear logic in a controlled manner, with the help of modalities
(exponentials) ?A and !A (cf. Table 4). The exponentials are dual to each other, i.e.

(?A)⊥ ≡ !A⊥ (!A)⊥ ≡ ?A⊥.

Girard’s points out in several places (cf. [10] (p84)) that these modalities, contrary
to the other connectives, are not canonical. More precisely, if we add new modalities
?′A and !′A with the same rules as shown in Table 4, we will not be able to derive the
equivalences ?A ↔ ?′A and !A ↔ !′A. This is reflected in the flexibility with which
we can interpret these modalities discussed below.
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Table 4. Rules for the exponentials

?Γ, A
(!)

?Γ, !A

Γ, A
(?)

Γ, ?A

Γ, ?A, ?A
(con)

Γ, ?A

Γ
(wkn)

Γ, ?A

4.1 Interpretation 1: Kreisel’s Modified Realizability

The first alternative for the interpretation of the exponentials we consider is one in
which the game ?A gives maximal advantage to Eloise, and game !A gives maximal
advantage to Abelard. The maximal advantage corresponds to the player in question
not needing to make any move, with their best possible move being played for them.
More precisely, the interpretation is defined as:

|!A|x :≡ !∀y|A|xy
|?A|y :≡ ?∃x|A|xy .

It is easy to see that Theorem 1 still holds when Definition 1 is extended in this way.
For instance, the soundness of the rules (!) and (con) are obtained as:

|?Γ |v, |A|ay
(∀)

|?Γ |v, ∀y|A|ay
(!)

|?Γ |v, !∀y|A|ay
|?Γ |v, |!A|a

|Γ |γ[y0,y1]
v , |?A|y0

, |?A|y1 [ y
y0

, y
y1

]
|Γ |γ[y,y]

v , |?A|y , |?A|y
(con)

|Γ |γ[y,y]
v , |?A|y

We have shown [16] that when combined with the embedding of intuitionistic logic
into linear logic, this choice for the interpretation of the exponentials corresponds to
Kreisel’s modified realizability interpretation [14] of intuitionistic logic.

Note that given this interpretation for the exponentials the relation |A|xy is no longer
quantifier-free. It is the case, however, that formulas in the image of the interpretation
(we call these fixed formulas) are also in the kernel of the interpretation. More, precisely,
if A is in the kernel of the interpretation then |A| ≡ A. The completeness result of
Section 3 needs to be calibrated, as the schemata ACs and ACp need to be taken for
all fixed-formulas (and not just quantifier-free formulas). Moreover, we need an extra
principle

TA : !

Æx
y A � ∃x!∀yA

called trump advantage, for fixed-formulas A, in order to obtain the equivalences in-
volving exponentials, i.e. equivalence between !

Æx
y A and ∃x!∀yA.

4.2 Interpretation 2: Diller-Nahm Interpretation

Another possibility for the interpretation is to give the player in question a restricted
advantage by simply allowing the player to see the opponent’s move, and then select
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a finite set of moves. If any of these is a good move the player wins. This leads to the
following interpretation of the exponentials:

|!A|xf :≡ !∀y∈fx |A|xy
|?A|fy :≡ ?∃x∈fy |A|xy .

Again, an extension of Definition 1 in this direction would also make the Soundness
Theorem 1 valid for the full classical linear logic. For instance, the soundness of the
contraction rule is obtained as:

|Γ |γ[y0,y1]
v , |?A|a0

y0
, |?A|a1

y1 (def)
|Γ |γ[y0,y1]

v , ?∃x0∈a0y0|A|x0
y0

, ?∃x1∈a1y1|A|x1
y1 [ y

y0
, y

y1
]

|Γ |γ[y,y]
v , ?∃x∈(a0y) ∪ (a1y)|A|xy ,

(con)
|Γ |γ[y,y]

v , |?A|λy((a0y)∪(a1y))
y

while the rules (!) is dealt with as follows:

|?Γ |γ[y]
v , |A|a[v]

y
(∀)

|?Γ |∪y∈f(a[v])(γ[y]v)
v , ∀y∈f (a[v]) |A|a[v]

y
(!)

|?Γ |λv.∪y∈f(a[v])(γ[y]v)
v , |!A|a[v]

f

It is clear in this case that enough term construction needs to be added to the verifying
system in order to deal with finite sets of arbitrary type. This choice for the treatment
of the exponentials corresponds to a variant of Gödel’s Dialectica interpretation due to
Diller and Nahm [6].

4.3 Interpretation 3: Stein’s Interpretation

A hybrid interpretation between options 1 and 2 can also be given for each parameter
n ∈ N. The natural number n dictates from which type level we should use option 2
(Diller-Nahm), and up to which level we should choose option 1 (modified realizabil-
ity). The slogan is “only higher-type objects are witnessed”. Given a tuple of variable
x, we will denote by x the sub-tuple containing the variables in x which have type level
≥ n, whereas x denotes the sub-tuple of the variables in x which have type level < n.
For each fixed type level n ∈ N we can define an interpretation of the exponentials as:

|!A|xf :≡ !∀y∈ rng(fx)∀y |A|xy
|?A|fy :≡ ?∃x∈ rng(fy)∃x |A|xy .

where ∀y∈ rng(b(n−1)→ρ)A[y] and ∃y∈ rng(b(n−1)→ρ)A[y] are used as an abbrevia-
tion for ∀in−1A[bi] and ∃in−1A[bi], respectively (n − 1 is the pure type of type level
n − 1).

This choice corresponds to Stein’s interpretation [19], and again leads to a sound
interpretation of full classical linear logic.
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4.4 Interpretation 4: Bounded Dialectica Interpretation

In [7,8], a “bounded” variant of Gödel’s Dialectica interpretation was developed in order
to deal with strong analytical principles in classical feasible analysis. The interpretation
makes use of Howard-Bezem’s strong majorizabilty relation ≤∗ between functionals
(cf. [2]). Using the majorizability relation, we can define well-behaved bounded sets
which can be used as moves in the treatment of the exponential games. More precisely,
the interpretation of the exponentials can also be given as:

|!A|xf :≡ !∀y≤∗fx |A|xy
|?A|fy :≡ ?∃x≤∗fy |A|xy .

As argued in [15], in this case we must first perform a relativisation of the quanti-
fiers to Bezem’s model M of strongly majorizable functionals. After that, all candidate
witnesses and challenges are monotone, and the soundness of the contraction rule can
be derived as

|Γ |γ[y0,y1]
v , |?A|a0

y0
, |?A|a1

y1 (def)
|Γ |γ[y0,y1]

v , ?∃x0≤∗a0y0|A|x0
y0

, ?∃x1≤∗a1y1|A|x1
y1 [ y

y0
, y

y1
]

|Γ |γ[y,y]
v , ?∃x≤∗max(a0y, a1y)|A|xy ,

(con)
|Γ |γ[y,y]

v , |?A|λy. max(a0y,a1y)
y

where max(xρ, yρ) is the pointwise maximum.
Besides being sound for the principles ACs, ACp of Section 3, and the principle TA of

Section 4.1, the Dialectica interpretation of LLω will also interpret the linear counterpart
of the bounded Markov principle

MPB : ∀z!∀x≤∗z A � !∀xA

for bounded formulas A. The completeness for the bounded interpretation can then be
extended to deal with the exponentials as

!

Æx
y A

TA�

�
LLω

q

∃x!∀yA

LLω

�

�
MPB

∃x∀z!∀y≤∗z A

LLω
q�

�
ACs

Æx
f !∀y≤∗fxA

MPB in particular implies the majorizability axiom by taking A(x, y) ≡ (x = y).
In fact, the principles ACs, ACp, TA, MPB can be viewed as refinements of the (linear
logic versions of) the extra principles used in the bounded functional interpretation [7].
For instance, the bounded Markov principle translates into linear logic as

(!∀yA � B) � ∃b(!∀y≤∗ b A � B)

for bounded formulas A and B. This can be derived as: By TA we get from !∀yA � B
to ∀b!∀y≤∗ b A � B. Then by ACp we get ∃b(!∀y≤∗ b A � B).
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4.5 Interpretation 5: Gödel’s Dialectica Interpretation

The most restricted interpretation is the one in which the player’s advantage in the ex-
ponential game is minimal. The only head-start will be to be able to see the opponents
move. Based on the opponent’s move the player will then have to make a single move.
This leads to an extension of the interpretation given in Definition 1 with the interpre-
tation of the exponentials as

|!A|xf :≡ !|A|xfx

|?A|fy :≡ ?|A|fy
y .

Note that in this case the target of the interpretation is again a quantifier-free calcu-
lus (as in the basic interpretation of Section 2). For the soundness, however, we must
assume that quantifier-free formulas are decidable (a usual requirement for Dialectica
interpretations) in order to satisfy the contraction rule

|Γ |γ[y0,y1]
v , |?A|a0

y0
, |?A|a1

y1 (def)
|Γ |γ[y0,y1]

v , ?|A|a0y0
y0

, ?|A|a1y1
y1 [ y

y0
, y

y1
]

|Γ |γ[y,y]
v , ?|A|ay

y ,
(con)

|Γ |γ[y,y]
v , |?A|ay

where

ay :=
{

a0y if ?|A|a0y
y

a1y otherwise.

The soundness of the weakening rule, and the rules (!) and (?) is trivial. This in-
terpretation corresponds to Gödel’s Dialectica interpretation [11] intuitionistic logic,
used in connection to a partial realisation of Hilbert’s consistency program (the consis-
tency of classical first-order arithmetic relative to the consistence of the quantifier-free
calculus T).

Besides being sound for the principles ACs, ACp (Section 3) and the principle TA
(Section 4.1) the Dialectica interpretation of LLω will also be sound for the following
principle

MPD : ∀x!A � !∀xA

for quantifier-free formulas A. This is the linear logic counterpart of the (semi) intu-
itionistic Markov principle. In fact, these are all the extra principles needed to show the
equivalence between A and its Dialectica interpretation

Æx
y |A|xy . For instance, in the

case of the exponentials we have

!

Æx
y A

TA �

�
LLω

q

∃x!∀yA

LLω

�

�
MPD

∃x∀y!A

LLω
q �

�
ACs

Æx
f !A[fx/y]
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