On the Completeness of Context-Sensitive
Order-sorted Specifications

Joe Hendrix and José Meseguer

University of Illinois at Urbana-Champaign
{jhendrix,meseguer}@uiuc.edu

Abstract. We propose three different notions of completeness for term
rewrite specifications supporting order-sorted signatures, deduction mod-
ulo axioms, and context-sensitive rewriting relative to a replacement map
w. Our three notions are: (1) an appropriate definition of u-sufficient
completeness with respect to a set of constructor symbols; (2) a defi-
nition of p-canonical completeness under which p-canonical forms co-
incide with canonical forms; and (3) a definition of semantic complete-
ness that guarantees that the p-operational semantics and standard ini-
tial algebra semantics are isomorphic. Based on these notions, we use
equational tree automata techniques to obtain decision procedures for
checking these three kinds of completeness for equational specifications
satisfying appropriate requirements such as ground confluence, ground
sort-decreasingness, weakly normalization, and left-linearity. Although
the general equational tree automata problems are undecidable, our al-
gorithms work modulo any combination of associativity, commutativity,
and identity axioms. For all combinations of these axioms except asso-
ciativity without commutativity, our algorithms are decision procedures.
For the associativity without commutativity case, which is undecidable
in general, our algorithms use learning techniques that are effective in
all practical examples we have considered. We have implemented these
algorithms as an extension of the Maude sufficient completeness checker.

1 Introduction

In equational programming there is a relentless drive to increase the expressive-
ness and generality of programs. This provides a much easier and elegant way of
mapping many applications into such languages. For example, the use of sorts,
subsorts, and matching modulo axioms like associativity and/or commutativity,
makes equational programming much easier and allows very elegant and succinct
programming solutions.

Another important dimension, along which program expressiveness can be
substantially increased is that of user-programmable evaluation strategies based
on context-sensitive (CS) rewriting (see, for example [14, 16, 21]). They allow
very fine-grained control (at the level of each individual function symbol) on
how the rewriting evaluation is performed. Their value and practical importance
has been recognized in many equational languages. OBJ2 [6] was the first such
language supporting them; and they are, for example, supported in all languages
in the OBJ family, including CafeOBJ [5] and Maude [2]. In practice, CS rewriting
can be used for two somewhat different purposes:

1. to increase the efficiency of a standard equational program without changing
its meaning: for example by restricting the evaluation of an if-then-else sym-
bol to its first, boolean argument to avoid wasteful or even nonterminating
computations; and

2. as a way to compute with infinite data structures such as, for example, the
infinite stream of all prime numbers, in a lazy way; in this second case, CS
rewriting provides an elegant, finitary way of computing with infinite objects.

Expressiveness is substantially increased in both of these ways, since the user
can both control the efficiency of program execution and map into the language
new applications involving infinite data structures.

This is all very well. However, there are a number of open research questions
about how to reason formally about equational programs supporting CS rewrit-
ing for verification purposes. Two areas where important progress has been made
are in methods for proving termination, e.g., [7, 18, 21] and confluence [14] of
CS equational programs. But other important questions remain unexplored.

Imagine, for example, that you want to use an inductive theorem prover
to verify some property about a CS equational program. No inductive theorem
prover that we are aware of allows reasoning about CS programs. Is it ok to ignore
the CS information and just reason about the underlying equational theory? We
think that, in general, the answer is: definitely not! Why not? Because the model
on which the inductive reasoning principles are sound and that of the CS program
may be quite different.

What models are we talking about? Well, that is, indeed, one of the inter-
esting research questions. For an equational theory (X, E), the model on which
inductive reasoning is sound is obvious, namely, the initial algebra T’/ . In fact,
initial algebra semantics is the standard mathematical semantics of equational
programs in languages such as OBJ, CafeOBJ, and Maude. Furthermore, pro-
vided that the equational program is weakly normalizing and ground confluent,
the initial algebra semantics fully agrees with the operational semantics, in the
precise, mathematical sense that the initial algebra T's;,p and the canonical term
algebra Cany;, i obtained by rewriting are isomorphic. For CS rewriting the mat-
ter is less obvious, since we only have an operational semantics provided by the
CS rewriting relation, but as far as we know no mathematical models in the form
of algebras have been put forward. Therefore, the first thing we do in this work
is to put forward such an algebra, namely, the algebra Can’g /E of p-canonical
forms, for p the replacement map of the given CS program. We do so not just
for vanilla-flavored, untyped CS programs, but for the more general and expres-
sive CS programs with other features such as order-sorting and rewriting module
axioms that one encounters in actual languages.

The importance of the algebra Canl, /E is that it makes possible articulating
and providing proof methods for three important CS completeness problems,
namely:

1. p-canonical completeness, which means satisfying the set-theoretic equality
Can’g/E ;= Cany/p , for each sort s in the specification;

2. p-semantic completeness, which model-theoretically corresponds to the case
where the surjective X-homomorphism gq : Can‘é /B T's; /g, which we show
always exists under minimal assumptions, is an isomorphism, and proof-
theoretically means that the sound way of proving ground F-equalities by
CS rewriting is also complete;

3. p-sufficient completeness, which is in fact a new notion generalizing to the CS
case the usual sufficient completeness of equational function definitions with
respect to a signature of constructors. The subtlety here is that in general it
would be too strong to require that constructors appear in all positions of a
term ¢ in p-canonical form: we only make such a requirement for replacing
positions in ¢.

Our goal is not only to articulate these notions, but also to provide proof
methods for them in the form of decision procedures under mild assumptions
about the given CS program. Given that the CS programs we consider perform
rewriting modulo axioms and are order-sorted, our methods are based on Propo-
sitional Tree Automata [12], a kind of equational tree automata, that can take
into account both sort information and reasoning modulo axioms. These decision
procedures have been implemented in an extension of Maude’s Sufficient Com-
pleteness Checker (SCC) [10], and we use several Maude programs to illustrate
both the basic ideas and the use of SCC in verifying CS completeness properties.

The paper is organized as follows. In Section 2, we review basic concepts from
order-sorted algebra, and introduce the precise class of CS term-rewrite systems
we are considering. In Section 3, we define the canonical term algebra for a CS
specification. In Section 4, we define the three notions of CS completeness, and
in Section 5 we show how one can use PTA to check these completeness notions
under appropriate assumptions. Finally, we discuss related work and suggest
future avenues of research in Section 6. Full proofs are in the Appendix.

2 Preliminaries
2.1 Order-Sorted Algebra

Order-sorted algebras are an extension of many-sorted algebras where a partial
order < is associated to the sorts in order to build a notion of subtype and
supertype into the algebra and operators can be overloaded and then must agree
on common data.

Definition 1. An order-sorted signature is a tuple X' = (S, F, <) where
— (5,<) is a poset; and
— F ={Fys}ws)esxs is a family of operator symbols such that if f € Fy, 4N
Fu ¢ then w =< w' and s =< s' where =< denotes the equivalence relation
generated by < extended to sequences in the usual way.

We assume the existence of an S-sorted family of variables X = {X};es
distinct from the operators F, where each set X, is a countably infinite and
X, N Xy = @ for distinct sorts s, s’ € S. We write z, if x is a variable in Xj.
When the signature X' = (S, F, <) is clear, we sometimes write f : s1...8, —

for f € Fy,. s, s Given a signature X, Tx(X)s denotes the set of terms with
sort s formed by the operators in X and variables in X, and Tz ; denotes the
set of ground terms with sort s. A substitution § : X — Tx(X) is a mapping
such that 0(xs) € T, (X)s for each x5 € X,

Definition 2. An order-sorted theory is a pair £ = (X, E) where X = (S, F, <)
is an order-sorted signature, and E is a set of equations of the form l=1r with
l,r € Tx(X) terms having sorts in the same equivalence class in S/ =<.

There are various inference systems in order-sorted logic for deriving equa-
tions of the form ¢t =wu. We use the sound and complete inference system pre-
sented in [19]. We also use the definition for order-sorted algebras and homo-
morphisms found in [19]. See [9, 19] for surveys on order-sorted algebra.

Definition 3. A X-algebra A for an order-sorted signature X = (S, F, <) con-
sists of:

— a set Ay for each sort s € S such that Ay, C Ay for s < s';
— a function Aj.y—s : Ay — A for each symbol f € F,, s where w = 51... 5y,
Ay =A% A, and Aj.y—5(a) = Ap—s (@) for each f € Fy s NFyy o
anda € Ay, N Ay .
A ¥-homomorphism h : A — B is a family of functions {hs : A; — B }ses such
that: if s=< s’ and a € A;N Ay, then hs(a) = hy(a); and for f e Fy, . 5, s and
a1 € Asy, ..., an € As,, we have hs(As(al,...,an)) = By(hs, (a1), ..., hs, (an)).

Given an order-sorted theory £ = (X, F), an £-algebra is a X-algebra satis-
fying the equations in E. We let Ts; denote the term algebra for X, and T’z g
denote the E-algebra such that T's/p, = {[t]p | t € T s} for each sort s € S,
where [t|g denotes the equivalence class of ¢t under =g. Both Ty, and T's; /E are
initial for the categories of Y-algebras and £-algebras respectively, so there is
a unique homomorphism from 7Tsx to any X-algebra, and a unique homomor-
phism from T/ to any £-algebra. For a Y-algebra A and term t € Tx, we
let A(t) denote the value of ¢ in the unique homomorphism A : Tx, — A, i.e.,
A(f(tr, ... tn)) = Ap(A(tr), ..., A(ty)).

2.2 Context-sensitive Order-sorted Term Rewrite Systems

In order to execute an equational theory, one typically treats the equations
l=r € E as rewrite rules [— r and simplifies expressions from left to right.
The most advanced rewrite engines today have matching algorithms capable of
matching modulo specific equational axioms such as associativity and commuta-
tivity, and with such systems we treat those specific axioms as equations while
treating the other axioms as rules. When rewriting modulo axioms, the variables
in the axioms are typically constrained at the level of the connected component
rather than of individual sorts. We include this restriction in the definition below:

Definition 4. An Order-sorted Term Rewrite System (TRS) is a tuple R =
(X, A, R) where:

— Y = (S, F,<) is an order-sorted signature where each connected component
[s] € S/ =< contains a mazimal sort denoted by ks;

— A is a set of unconditional X-equations where the variables in each equation
are only constrained with the mazximal sorts; and

— R is a set of rewrite rules of the form | —r with I,r € Tx(X)y, for some
ks € S, and vars(r) C vars(l);

Given a TRS R = (X, A, R), lhs(R) denotes the left-hand sides of the rules in
R,ie., lhs(R) ={l|l—r € R}. We say that an order-sorted TRS R = (X, A, R)
is left-linear if each | € lhs(R) is linear. Due to the restrictions on the signatures
and equations in our term rewrite system we are able to treat our order-sorted
axioms as many-sorted axioms for the purposes of matching modulo.

Definition 5. Given an order-sorted TRSR = (X, A, R) with X = (S, F, <), we
let £F = (SK FK) denote the many-sorted signature where S contains exactly
the maximal sorts ks € S, and FX contains an operator f ks, ... ks, — ks for
each f € Fs, 5, s

Due to our restrictions on the equations in our term-rewrite theories, we can
essentially use =4 to denote =(x 4) and = g« 4) interchangeably on ground
terms, as justified by the following lemma Wthh can be easily shown:

Lemma 1. Given a order-sorted TRS R = (X, A, R), for all terms t,u € Tx,
we have t=(x ayu iff t=xn 4y u.

We are interested in studying and analyzing CS rewriting for order-sorted
term rewrite systems. In CS rewriting, there is a function u : F — P(N), called
the replacement map, which maps each function symbol f € F to a set of re-
placing positions u(f) C {1,...,arity(f)}. The replacement map p is used for
restricting rewriting so that in rewriting a term f(t1,...,¢,) € Tx(X), the term
t; can only be rewritten if ¢ € u(f). A CS term rewrite system is a pair (R, u)
where p is a replacement map for the signature used in R.

Given a replacement map u, the set of positions that may be rewritten are
called the p-replacing positions and denoted by pos#(t). Formally, we have:

pos(x) = {e} and pos”(f(t1,...,tn)) = {e} U U {iw | w € pos*(t;)}.
iep(f)
A context C'is u-replacing when [J appears in a p-replacing position.

We write t =g , u if ¢ rewrites to u using the rules in R and replacement map
i in a single rewrite step, i.e., there is a rule { — r in I" such that ¢t =4 C[l0] and
u=4 C[rd] for some p-replacing context C' and substitution 6 : X — Tx(X).
The reflexive and transitive of closure of — u 18 =%, - We write tlpuift
and u can be rewritten to the same term, i.e., there is a "term v € Ts(X) such
that ¢ —% , v and UHR,ﬂ"

A term t € Tx(X) is (R, p)-reducible iff there is a v € Tx(X) such that
t—g,, u, and (R, u)-irreducible otherwise. We also say that a p-irreducible term
t € T (X) is in p-canonical form. We write tHR wift =% ,uand uis (R, p)-
irreducible. R is p-weakly- normalzzmg when for each term t € Tx(X) there
is a term u € Tx(X) such that t—>RHu R is p-terminating if the relation

— g, 18 Noetherian. R is p-confluent if for all t,u,v € Ts(X), t =% ,u and
t—% v implies wllyv. R is p-sort-decreasing if for all terms ¢ € T (X), and

u € Ts(X)g,, t =%, u implies that there is a term v € T'w(X), such that
u—% ,v- When R is p-weakly normalizing, pi-confluent, or pi-sort-decreasing on
ground terms, we say that it is ground p-weakly normalizing, ground p-confluent,
or ground p-sort-decreasing, respectively.

When the replacement map p allows rewriting at every subterm position, this
inference system specializes to rewriting in the ordinary sense. Let ut be the re-
placement map f — {1,...,arity(f)}. We writet —5 uwiff ¢ —Rropur Wandt—Ru
iff t =R e U Additionally, we will say that a system R is weakly-normalizing
iff it is pr-weakly-normalizing. More generally, we extend this convention to
all other properties. For example, we will say that R is confluent iff it is pr-
confluent.

3 Context-Sensitive Canonical Term Algebras

When R = (X, A, R) is ground p-weakly-normalizing and ground p-confluent,
for each term ¢ € T'x;, there is a (R, p)-irreducible term, denoted by ¢ !5 such that
t—>!R’ ut %5, which is unique up to A. When R is additionally sort-decreasing,
we can use this uniqueness to define a (X, A)-algebra of (R, 1) canonical forms
as follows:

Definition 6. Let R = (¥, A, R) be a TRS with X = (S, F, <) that is ground
w-weakly-normalizing, ground p-confluent and ground p-sort-decreasing. The ca-
nonical term algebra for (R, p) is the X-algebra Cany such that:

— for each sort s € S, Cang , = {[t'g]a | Fu € [tIR]aNTy}; and

— for each f € Fy s, Cang ;.. ([t1]a, .-, [ta]a) = [f(u1, ... un) 1R]a where
u; € [ti]lanNTy s for1 <i<n.

Note that Canfy has a strong computation meaning: it is exactly the algebra

of values (p-normal forms) that a user interacting with a system that evaluates
(R, i) obtains by reduction.! It provides, therefore, the perfect algebra for the
operational semantics of (R,). This model is in a sense situated between the
initial algebra T’s;, and the model for the mathematical semantics of R as an
equational theory, namely, the initial algebra T’s;/4ur. On the one hand, by ini-
tiality we have a unique homomorphism Cank : Tx, — Cang which, as shown
below, may not be surjective. On the other hand, Can is more concrete than
Ts;/aur, and therefore a sound, but not necessarily complete, model for equa-
tional computation with R. That is, we have:
Proposition 1. If R = (X, A, R) with X = (S, F, <) is ground p-weakly nor-
malizing, ground p-confluent, and ground p-sort-decreasing, then the family of
functions {qs : Can%ys — T's/AUR,s }ses With qs : [t]a — [t]aur defines a surjec-
tive X-homomorphism ¢ : Canfy, — Ts/AuR-

One typically constructs ground terminating and confluent specifications in

order to reason about the equivalence of two terms algebraically, and it is im-
portant to be able to reduce the equality problem ¢ =4,z u to the convergence

Lt (R, p) is p-terminating, this is exactly true; if it is only p-weakly normalizing, this
requires either a y-normalizing strategy, or the use of breadth-first search.

problem ¢ | % u. When considering ordinary (not context-sensitive) rewriting, we
have t=augu iff t [gu iff t!g =a4u!lg for terms ¢t,u € Tx when R is ground
weakly-normalizing, ground confluent, and ground sort-decreasing. In this case,
we are guaranteed that Cang = Can/y' is isomorphic to T's;/aug, thus obtaining
a perfect agreement between the operational semantics of R and the mathemat-
ical, initial algebra semantics. In general, as we show below, this is not the case
for CS rewriting, even if R is ground p-terminating, ground p-confluent, and
ground p-sort-decreasing. That is Canjy is sound, since ¢ |55 u implies t =aup u,
but in general is not complete, i.e., t=auru # t | 5 u.

Consider the specification R with single sort s, symbols a:— s, b: — s, and
f:s— s, and replacement map p where p(f) = @ with the rules: a — f(a) and
b — f(a). This specification is clearly p-weakly normalizing, p-confluent, and
p-sort-decreasing. However, T's/aur,s = {[a]aur} whereas Can%s is the infinite
set {{F(@)}, @)} U@} O b

The algebra Canf, differs from Cang in several other properties as well.
In general, it is not the case that Canf(t) = ¢!%. In the specification above,
Canf (f(a)) = f(Cang(a)) % = f(f(a)), whereas f(a)!% = f(a). Additionally,
the unique homomorphism Cank : T’x;/4 — Canj is neither surjective nor idem-
potent. For example, there is no canonical term ¢ € T, such that Canf ({t}) =

{f(b)}, while Cang ({a}) = {f(a)} and Cany ({f(a)}) = {f(f(a))}.
4 Completeness in Context Sensitive Rewriting

We have now shown that the usual requirements of u-termination, u-confluence,
and p-sort-decreasingness are insufficient to guarantee that the operational se-
mantics of CS term rewriting corresponds to the mathematical semantics of the
equational specification. One of the goals of this section is investigating what
additional conditions we need to impose to guarantee that CS rewriting serves
as a sound and complete technique to deduce ground equalities, i.e., when is the
canonical term algebra Cany isomorphic to the initial algebra T's; JAUR-

In this section, we introduce three notions of completeness for CS term rewrite
systems (R, p): (1) p-canonical completeness; (2) py-semantic completeness; and
(3) p-sufficient completeness. The first two notions of completeness are used to
characterize the deductive power of CS rewriting. The third is used to analyze
specifications that may not be complete in the first two senses, but may never-
theless represent useful applications of CS rewriting, such as specifying infinite
data-structures. Later, in Section 5, we will show how these three completeness
properties can be checked for specifications satisfying appropriate requirements
such as left-linearity, ground p-weak normalization, ground p-confluence, and
ground p-sort-decreasingness.

4.1 p-Canonical Completeness

The first property we consider is whether the canonical forms of CS rewriting
and ordinary rewriting agree:

Definition 7. A TRS R = (X, A, R) is p-canonically complete if every (R, u)-
irreducible term t € T, is R-irreducible.

The theorem below shows that, for specifications that are ground p-weakly
normalizing and ground confluent, canonical completeness is enough to imply
that CS and ordinary rewriting agree on convergence relations.

Theorem 1. If a TRS R is ground p-weakly normalizing, p-canonically com-
plete, and ground confluent, then for t,u € Tx, t |gu iff t | 5 u.

As a corollary, we observe that this class of specifications is u-confluent.

Corollary 1. If R is ground p-weakly normalizing, p-canonically complete, and
ground confluent, then R is ground p-confluent.

In a similar vein, we can show ground p-sort-decreasingness of R by showing
that R is ground p-normalizing, p-canonically complete, and sort-decreasing.

Theorem 2. IfR is ground p-normalizing, p-canonically complete, and ground
sort-decreasing, then R is ground p-sort-decreasing.

Together, Corollary 1 and Theorem 2 provide a means to check p-confluence
and p-sort-decreasingness for pu-weakly normalizing, py-canonically complete, con-
fluent, and sort-decreasing specifications. Since one can prove p-termination with
existing tools [4, 8, 17|, and check u-canonical completeness of left-linear spec-
ifications with the decision procedure in Section 5.2, this eliminates the need
for specialized CS-aware checking procedures for this class of specifications. The
case of ground weak-normalizing and ground p-normalization for p-canonically
complete specification yields a relation in the other direction.

Theorem 3. If R is ground p-weakly normalizing and p-canonically complete,
then R is ground weakly-normalizing.

On the other hand, if R is ground weakly normalizing and p-canonically
complete, it may not be ground p-weakly-normalizing. Let R have the rules:
f(z)— f(z),a— b,and f(b) — b. R is ground weakly-normalizing, because every
term can reduce to the R-irreducible term b. Given the replacement map p with
p(f) = @, R is p-canonically complete, because b is the only (R, u)-irreducible
term as well. However, R is not p-weakly normalizing, because f(a) /% , b.

As an example of a u-canonically complete specification, we present a Maude
module below for computing the factorial of a natural number.

fmod FACTORIAL is protecting NAT .

var X Y Z : Nat .

op p : Nat -> Nat . eq p(s(X)) =X . eqp(0) =0.

op if0 : Nat Nat Nat -> Nat [strat(1 0)].

eq if0(0, Y, Z) = Y . eq if0(s(X), Y, Z) = Z .

op fact : Nat -> Nat .

eq fact(X) = if0(X, s(0), X * fact(p(X))) .

endfm

This specification protects the built-in NAT specification, which contains con-
structor operators 0 and s for for zero and successor respectively, along with
defined operators for plus and times. Predecessor p is defined as usual, and the
operator if0 is annotated with a strategy strat(1 0), indicating that only the
first argument should be evaluated. Since the other operators are not given a

strategy, Maude uses its default strategy, which evaluates every argument. In
effect, these declarations define a replacement map p where p(if0) = {1} and
w(f)={1,...,arity(f)} for f # if0. Using if0, factorial can be defined with a
single equation.

Without the strategy declaration on if0, this specification is not terminat-
ing, and evaluating fact(0) quickly leads to a segmentation fault in the Maude
interpreter. However, with the given replacement map p, the specification is
p-terminating. Moreover, it is p-canonically complete, ground p-confluent, and
ground p-sort-decreasing. Since there is only one sort, p-sort-decreasingness is
obvious. As the specification is left-linear, the decision procedure we introduce in
Section 5.2 will allow us to automatically check its u-canonically completeness.
To see that it is ground p-confluent one can just observe that it is confluent
(indeed, orthogonal), and use Corollary 1.

4.2 p-Semantic Completeness

Canonical completeness means that Cang s = Can;‘zys for each sort s € S. By
itself, this is not enough to immediately imply that Canf and T's JAUR are iso-
morphic. This is implied by another notion of completeness, called p-semantic
completeness, which we define below.

Definition 8. A TRSR = (X, A, R) is u-semantically complete iff for all t,u €
Ts, tlguiff t=aur u.

This definition at the syntactic level of terms captures the agreement be-
tween operational semantics and mathematical semantics that we want when
the canonical algebra Canly is well-defined.

Theorem 4. If R is ground p-weakly normalizing, ground p-confluent, and
ground fi-sort-decreasing, then p-semantically complete iff Canly is isomorphic

to TE/AUR~

The next question that we address is how to check that a specification is
p-semantically complete. The results in the previous section on p-canonical com-
pleteness lead to the following result:

Theorem 5. A TRS R that is ground p-weakly normalizing, p-canonically com-
plete, ground confluent, and ground sort-decreasing is p-semantically complete.

As a corollary, we can easily obtain checkable conditions under which all
three of the algebras Canl, Cang and Ts; a4, are isomorphic.

Corollary 2. If R is ground p-weakly normalizing, ground p-canonically com-
plete, ground confluent, and ground sort-decreasing, then Canfy and Cang are
both well-defined and isomorphic to T's/aur-

When the specification R is ground p-weakly normalizing, ground confluent,
and ground sort-decreasing, p-canonical completeness is a sufficient condition to
show p-semantic completeness, but it turns out not to be a necessary condition.
For example, let R have the rules: f(f(z)) — f(x), a — b, and f(b) — f(a), and
let 1 be the replacement map with p(f) = &. The initial algebra contains two

equivalence classes: one with the constants a and b, the other with terms contain-
ing f. The (R, p)-canonical terms are b and f(a), and it is easy to that Can/y and
Ts; aur are isomorphic. Since R is also ground p-weakly normalizing, ground
p-confluent and ground p-sort decreasing, R is p-semantically complete by The-
orem 4. However, f(a) is R-reducible, leaving b the only R-irreducible term,
and so R is not p-canonically complete. In addition to not being p-canonically
complete, R is not ground weakly-normalizing. It turns out that if R is ground
weakly-normalizing, py-semantic completeness implies p-canonical completeness.

Theorem 6. Let R be a TRS that is ground weakly-normalizing, if R is p-se-
mantically complete, then R is p-canonically complete.

It then follows that if R is weakly-normalizing and not p-canonically com-
plete, it is not u-semantically complete either.

4.3 p-Sufficient Completeness

Although p-canonical completeness and p-semantic completeness are useful no-
tions of completeness in CS rewriting, there are many interesting applications
of CS rewriting, especially those involving infinite data structures, that are not
p-semantically complete. As an example, we present a typed version of a speci-
fication of infinite lists from [16] in Maude syntax:

fmod INF-LIST is protecting NAT .

sorts Nat? List . subsort Nat < Nat? .

op none : -> Nat? [ctor].

op [1 : -> List [ctor].

op _:_ : Nat List -> List [ctor strat(1 0)].

vars M N : Nat . var L : List .

op sel : Nat List -> Nat? .

eq sel(0, N : L) =N . eq sel(s(M), N : L) = sel(M, L)
op from : Nat -> List .

eq from(M) = M : from(s(M))

op first : Nat List -> List .

eq first(0, L) = [] . eq first(s(M), N : L) = N : first(M, L)
endfm
The term from(M) represents the infinite list “M: M+ 1:...”, and there are

functions for obtaining the ith element in a list and the first n elements in the list.
This specification is an interesting use of CS rewriting to obtain a terminating
method to execute a non-terminating rewrite system. Although the equation for
from is non-terminating, it is p-terminating because of the strategy on “:”.

The specification INF-LIST is not u-canonically complete, and its canonical
algebra is not isomorphic to the initial algebra of the equational theory given by
its axioms. For example 0 : from(s(0)) and 0 : s(0) : from(s(s(0))) are distinct
p-canonical terms, but 0:from(s(0)) =r—_r1st 0:8(0): from(s(s(0))). In order
to check properties of specifications like INF-LIST that are not p-semantically
complete, we therefore need techniques that analyze CS specifications directly.
The case of u-termination is well understood [7, 18, 21], and the case of u-con-
fluence has already been studied in [14].

10

Another interesting property that seems not to have been studied for CS
specifications is sufficient completeness. Sufficient completeness in term-rewriting
specifications means that enough equations have been defined so that all terms
reduce to constructor terms. For example, a sufficiently-complete specification
involving arithmetic over the natural numbers should reduce every term con-
taining plus and times to a term containing only zero and successor.

Although simple, this definition of sufficient completeness seems too strong
in the context of CS specifications. The reason is that the non-replacing po-
sitions of a symbol intentionally do not reduce their arguments. Accordingly,
our definition of p-sufficient completeness allows defined symbols in the non-
replacing positions of canonical terms, provided that all replacing positions have
constructor symbols.

Definition 9. Let R be a ground p-weakly-normalizing and ground pi-sort-de-
creasing TRS R = (X, A, R) with X = (S, F, <) equipped with a indexed family
of constructor symbols C = {Cuy s }(w,s)esxs with each Cy s C Fy 5. We say
that R is p-sufficiently complete relative to C iff for all (R, u)-irreducible terms
t € Ty, post(t) C posq(t) where

posc(t) = {i € pos(t) [t;; = c(t) Ac€Cp s NEETS w}.

Note that our definition of u-sufficient completeness reduces to the usual
definition of sufficient completeness when every position is a replacing position,
i.e., p = p1. Therefore, we say in this paper that a specification R is sufficiently
complete relative to C' iff it is pr-sufficiently complete relative to C.

Theorem 7. If R is ground p-weakly normalizing, p-canonically complete, and
ground sort-decreasing, then R is p-sufficiently complete relative to C' iff it is
sufficiently complete relative to C.

5 Checking p-Completeness Properties

In the left-linear case, we are able to reduce the p-canonical completeness and
p-sufficient completeness properties to an emptiness problem for Propositional
Tree Automata, a class of tree automata introduced in [12] which is closed under
Boolean operations and an equational theory. We are further able to use the
results of Theorem 5 to have sufficient conditions for showing the p-semantic
completeness of R when R is left-linear, u-weakly normalizing, p-canonically
complete, ground confluent, and ground sort-decreasing.

5.1 Propositional Tree Automata

We now define Propositional Tree Automata, first introduced in [12]. We extend
the definition of [12] from unsorted signatures to many-sorted signatures. We also
use production rules o := f(81,...,3,) in lieu of rewrite rules f(f51,...,0,) —
« in the definition to reflect a change in how the rules are interpreted. The
definition using rewrite rules in [12] and the definition below are equivalent when
the equations in the signature are linear. They are not equivalent, in general,
when considering non-linear equations such as idempotence f(z,z) = z. We
think that the definition given below is more useful in applications involving
non-linear equations, and if we did not use this formalization, we would have to
restrict later results in this paper involving tree automata to the linear case.

11

Definition 10. A Propositional Tree Automaton (PTA) is a tuple (€,Q,®, A)
in which:

— & = (X, E) is an many-sorted equational theory with X = (S, F);

— Q ={Qs}ses is a S-indexed family of sets of states disjoint from the func-
tion symbols in F';

— & = {¢ps}tses is a S-indexed family of propositional formulae where the
atomic propositions in ¢s are states in Qs; and

— A contains transition rules, each with one of the following forms: (1) « :=
F(Brs--. s Bn) where f € Fyy .4, 0 € Qs, and each B € Q, for 1 <i <n;
or (2) a := [where a, f € Q.

For a term t € Tx, and state B € Q, we write =4t iff (1) t=pg f(u1,...,upn)
and there is a rule o :=4 f(B1,...,0n) in A such that B; :=4 u; for 1 <i<mn,
or (2) there is a rule v ;.= B in A and f:=4t. A termt € Tx, ; is accepted by
A if the complete set of states that generate t, gen4(t) = {a € Qs | a:=4 1},
is a model of ¢s, i.e. gen 4(t) = ¢s. Boolean formulae are evaluated using their
standard interpretations:

PEqifqe P, PEd 1 Vo if PE¢ or PEE¢e, and Pl —¢ if P~ ¢.

The language accepted by A is the S-index family L(A) = {L;(A)}scs of set of
terms accepted by A, i.e., Ls(A) ={t € Tx | geny(t) = ¢s}.

Given a PTA A = (£,Q, P, A) with £ = (X, E), we let Ay denote the same
PTA formed over the free theory with symbols in X, i.e., Ay = (¥, 2),Q, ®, A).
By using grammar rules instead of rewrite rules in the definition of PTA, we are
able to show the following for arbitrary equational theories that may be non-
linear. This was proven for equational tree automata by Verma in [20] — the
proof in this case is identical.

Lemma 2. Given a PTA A = (£,Q,P,A) with &€ = (X, E), if a :=4 t, then
there must be a term u € T, such that t=pu and o := 4, u.

The languages recognized by PTA over a theory £ recognize precisely those
languages that are in the Boolean closure of regular equational tree automata
languages sharing the same theory £. This is an important property, because in
general, equational tree automata are not closed under Boolean operations [12].

We can use PTA to check the CS completeness properties for a TRS R =
(X, A, R) into the emptiness test for a PTA with the same axioms A. When A
consists of any combination of associativity, commutativity, and identity axioms,
the techniques from [12] can be used to check the emptiness of the corresponding
PTA. It is know that the emptiness problem for PTA is decidable A contains any
combination of associativity, commutativity, and identity and every associative
symbol is also commutative. If however, the PTA does contain an associative
symbol that is not commutative, there is a semi-algorithm in [12] that can always
show non-emptiness and can often show emptiness using some techniques from
machine learning. The algorithms in [12] have been integrated into Maude as
part of the Maude Sufficient Completeness Checker (SCC) [10].

12

5.2 Checking p-Canonical Completeness

From the definition of p-canonical completeness, we know that R is not pu-
canonically complete iff there is a term t € T that is R-reducible and (R, p)-
irreducible. Therefore, we can reduce the problem of p-canonical completeness
to an emptiness problem of a PTA A4 by constructing an automaton that accepts
precisely those terms ¢ € T, that are counterexamples.

Theorem 8. Given a left-linear TRS R = (X, A, R), one can effectively con-
struct a PTA Acc such that R is p-canonically complete iff L(Agc) = @.

Proof. (Sketch) Let X = (S, F, <). Agc is a PTA with signature X% = (S% FK)
as defined in Definition 5. For each sort s € S, Acc contains a state « such that
for each t € T'yx, a5 :=4, tiff t € Ty 5. For each k € K, Aqc contains states
Tk, T for recognizing R-reducible and (R, u) reducible terms respectively. The
acceptance formula for each k € S&, then just becomes ¢y, = o A 15 A =l The
full construction and correctness proof of A is in the Appendix. a

We have implemented an algorithm for constructing the tree automaton Acc
in Maude automatically from a Maude specification, and have integrated it into
the Maude Sufficient Completeness Checker [10]. If we ask the tool to check the
p-canonical completeness of the specification FACTORIAL given in Section 4.1, we
are able to verify that it is p-canonically complete:

Maude> (ccc FACTORIAL .)

Checking canonical completeness of FACTORIAL ...

Success: FACTORIAL is canonically complete.
If we ask the tool to check the INF-LIST specification, the tool generates a
counterexample showing that the specification is not p-canonically complete:
Maude> (ccc INF-LIST .)

Checking canonical completeness of INF-LIST ...

Failure: The term O : first(0,[]) is a counterexample that is

mu-irreducible, but reducible under ordinary rewriting.

5.3 Checking p-Semantic Completeness

Since we were able to check the p-canonical completeness of a left-linear specifica-
tion R using the results in the previous section, using the results in Theorem 5,
the p-semantic completeness of specifications can be mechanically checked by
showing: (1) p-canonical completeness with the checker in the previous section;
(2) p-terminating with a CS termination tool such as [4, 8, 17]; and (3) con-
fluence and sort-decreasingness with a tool such as the Maude Church-Rosser
checker. This allows us to show that, for example, the FACTORIAL specification
is p-semantically complete.

5.4 Checking p-Sufficient Completeness

Using our definition of p-sufficient completeness, we are able to extend the Maude
Sufficient Completeness Checker in [11] to the CS case.

13

Theorem 9. Given a left-linear TRS R that is ground p-weakly normalizing
and ground p-sort-decreasing, one can construct a PTA Agc such that R is ji-
sufficiently complete relative to C iff L(Asc) = .

We have also implemented an algorithm for constructing the automaton Agc
from a CS Maude specification automatically. In this case, the checker succeeds
on the FACTORIAL example, as expected:

Maude> (mu-scc FACTORIAL .)
Checking the mu-sufficient completeness of FACTORIAL ...
Success: FACTORIAL is mu-sufficiently complete assuming that it is
ground mu-weakly normalizing and ground mu-sort-decreasing.
Running the checker on the INF-LIST example yields an error:
Maude> (mu-scc INF-LIST .)
Checking the mu-sufficient completeness of INF-LIST ...
Failure: The term sel(0,[]) is an mu-irreducible term with sort
Nat? in INF-LIST with defined symbols in replacement positionms.

It turns out that the rewrite system given in [16] was missing equations for
defining sel and first when the second argument was the empty list. If we add
the equations “sel(M, []) = none” and “first(M, []1) = [1” to the Maude
specification, the p-sufficient completeness check succeeds.

6 Related Work and Conclusions

An earlier paper by Lucas [14] has a section on relating the R and (R, u)-
canonical forms. In one of the results, a replacement map ,ug is constructed from
R and the subset of symbols B C F', and results show that R is p-canonically
complete if the (R, u)-irreducible terms are in Tx, and p 2 pB. This condition
is sufficient to show that the FACTORIAL example is p-canonically complete.
However it is easy to give examples where R is p-canonically complete, but
p 2 puB. One aspect of our results is that, since we have a decision procedure
for p-canonical completeness, by varying the replacement map p, one can find
all minimal replacement maps p for which R is p-canonically complete.

It would be useful to investigate the relationships between the work we have
presented here and infinite rewriting and infinite normal forms, e.g., [1, 3], which
has been extended to the CS in [15]. In particular, it seems interesting to investi-
gate the relations between algebras of finite and infinite terms, and the extension
of sufficient completeness to infinite normal forms.

We have proposed a new model-theoretic semantics for order-sorted CS spec-
ifications in the form of the p-canonical term algebra Canf. And we have in-
vestigated three notions of CS completeness: (1) canonical p-completeness with
respect to canonical forms; (2) semantic p-completeness with respect to equa-
tional deduction; and (3) sufficient y-completeness with respect to constructors.
We have also proposed and implemented decision procedures based on proposi-
tional tree automata that, under reasonable assumptions on the CS specification
(which can be discharged by other existing tools), ensure that it satisfies the
different p-completeness properties. These results provide new ways of reason-
ing formally about CS equational programs, not only to allow a programmer

14

to check that his/her program behaves as desired, but also to prove properties:
for example it is sound to use an inductive theorem prover to reason about a
p-semantically complete CS program, whereas in general such reasoning may be
unsound, since Cank may not satisfy the equations of R and may have “junk”
data outside the image from the initial algebra.

We think that it would be useful to extend the concepts and results presented
here to: (1) more general conditional CS specifications in membership equational
logic [19]; (2) CS specifications with non-left-linear rules, for which the tree
automata techniques proposed in [13] could be quite useful; and (3) infinite u-
normal forms and infinitary rewriting, as discussed above.

References

[1] G.Boudol. Computational semantics of term rewriting systems. Algebraic methods
in semantics, pages 169-236, 1986.

[2] M. Clavel, F. Duran, S. Eker, J. Meseguer, P. Lincoln, N. Marti-Oliet, and C. Tal-
cott. All About Maude. Springer LNCS Vol. 4350, 2007. To appear.

[3] N. Dershowitz, S. Kaplan, and D. A. Plaisted. Rewrite, rewrite, rewrite, rewrite,
rewrite, Theor. Comput. Sci., 83(1):71-96, 1991.

[4] F. Duran, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving termination
of membership equational programs. In Proc. of PEPM, pages 147-158. ACM,
2004.

[5] K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific, AMAST
Series, 1998.

[6] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2.
In Proc. of POPL 1985, pages 52—66. ACM, 1985.

[7] J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive
rewrite systems. J. Funct. Program., 14(4):379-427, 2004.

[8] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termi-
nation proofs in the dependency pair framework. In Proc. of IJCAR, volume 4130
of LNCS, pages 281-286. Springer, 2006.

[9] J. Goguen and R. Diaconescu. An oxford survey of order sorted algebra. Mathe-
matical Structures in Computer Science, 4(3):363-392, 1994.

[10] J. Hendrix, J. Meseguer, and H. Ohsaki. A sufficient completeness checker for
linear order-sorted specifications modulo axioms. In Proc. of IJCAR, volume
4130 of LNCS, pages 151-155. Springer, 2006.

[11] J. Hendrix, H. Ohsaki, and J. Meseguer. Sufficient completeness checking with
propositional tree automata. Technical Report UITUCDCS-R-2005-2635, Univer-
sity of Illinois, 2005. Available at: http://maude.cs.uiuc.edu/tools/scc/.

[12] J. Hendrix, H. Ohsaki, and M. Viswanathan. Propositional tree automata. In
Proc. of RTA, volume 4098 of LNCS, pages 165-174. Springer, 2006.

[13] F. Jacquemard, M. Rusinowitch, and L. Vigneron. Tree automata with equality
constraints modulo equational theories. In Proc. of IJCAR, volume 4130 of LNCS,
pages 557-571. Springer, 2006.

[14] S. Lucas. Context-sensitive computations in functionnal and functional logic pro-
grams. Journal of Functional and Logic Programming, 1998(1), 1998.

[15] S. Lucas. Transfinite rewriting semantics for term rewriting systems. In Proc. of
RTA, volume 2051 of LNCS, pages 216-230. Springer, 2001.

[16] S. Lucas. Context-sensitive rewriting strategies. Information and Computation,
178(1):294-343, 2002.

15

[17] S. Lucas. mu-term: A tool for proving termination of context-sensitive rewriting.
In Proc. of RTA, volume 3091 of LNCS, pages 200-209. Springer, 2004.

[18] S. Lucas. Proving termination of context-sensitive rewriting by transformation.
Information and Computation, 204(12):1782-1846, 2006.

[19] J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In Proc. of WADT, volume 1376 of LNCS, pages 18-61. Springer, 1997.

[20] K. N. Verma. Two-way equational tree automata for AC-like theories: Decidability
and closure properties. In Proc. of RTA, volume 2706 of LNCS, pages 180-196.
Springer, 2003.

[21] H. Zantema. Termination of context-sensitive rewriting. In Proc. of RTA, volume
1232 of LNCS, pages 172-186. Springer, 1997.

16

Appendix

Proofs for Section 3

Proposition 1. If R = (X, A, R) with X = (S, F,<) is ground p-weakly nor-
malizing, ground p-confluent, and ground p-sort-decreasing, then the family of
functions {qs : Can%’s — Ts/aUR,s }ses With qs : [t]a = [tlaur defines a surjec-
tive X-homomorphism q : Canly — Ts/AuR-

Proof. The mapping ¢ is a Y-homomorphism, because for each f € F§, s, s

and [ti]4 € Cang _ ,...,[taJa € Cang _ , we can choose u; € [t;]a N Ty, for
i €{1,...,n}, and then we have,

Tsjaur,p(a([ti]a),-- -, a([ta]a))
= [f(u17 R ’un)]AUR = Q(Can%,f([tl]f\v REE) [tn]A))

as Can%’f([tl],q, oy [te]a) € [f(ui, ..., un)]aur by the soundness of —z ,. O

Theorem 3. If R is ground p-weakly normalizing and p-canonically complete,
then R is ground weakly-normalizing.

Proof. If R = (X, A, R) is ground p-weakly normalizing, then for each term
t € Ty, there is a (R, p)-irreducible term u € T’ such that t—>IR’M u. Since R is

p-canonically complete it follows that u is R-irreducible as well, so t—>!R u. O

Proofs for Section 4.1

Theorem 1. A TRS R that is ground p-weakly normalizing, p-canonically com-
plete, and ground confluent, then for t,u € Tx, t |gu iff t | 5 u.

Proof. Of course t | s u = t |gu. To see t |[gu = t | u, since R = (X, A, R)
is p-weakly normalizing, there must be (R, u)-irreducible terms ¢', v’ € T such
that ¢ _’!R,u t" and u _’!R,u u’. R is p-canonically complete, so both ¢’ and u’ must

be R-irreducible as well. This implies that ' =4 u’ by the ground confluence of
R. ad

Corollary 1. If R is ground p-weakly normalizing, p-canonically complete, and
ground confluent, then R is ground p-confluent.

Proof. 1t =% ,uand t —% , v, we have u | v by the ground confluence of R.
Thus, u | v by Theorem 1. O

17

Theorem 2. If R is ground p-normalizing, p-canonically complete, and ground
sort-decreasing, then R is ground p-sort-decreasing.

Proof. Assume ¢ € Ty and ¢t =% ,u with u ¢ Ty . Since R is ground -
normalizing and u—canomcally complete there is an R-irreducible term v’ € T's;
such that u —% , u’. Because R is ground sort-decreasing, there must be a term
v € T s such that v’ —% v. However, v’ is R-irreducible, so u’ =4 v. It follows
that u —% , v, and R is ground p-sort-decreasing. a

Proofs for Section 4.2

Theorem 4. If R is ground p-weakly normalizing, ground p-confluent, and
ground p-sort-decreasing, then p-semantically complete iff Cangy is isomorphic
to TE/AUR-

Proof. Let R = (¥, A, R) with X = (S, F, <). If Canl is isomorphic to T/ aur,
they must satisfy the same equations, so R is p-semantically complete. On the
other hand, the equivalences t =aupu <= t|kru <= t!g =4 u!l imply that
the surjective map ¢ : [t]a — [t]aur is injective for each s € S, and therefore
bijective. To see that ¢ : Canfy — T's; /AuR s an Y-isomorphism, we should check
that ¢! is also a ¥-homomorphism. Consider [t aur, then ¢~ ([t]aur) = [t %] 4,
and for any f :s1...s, — sin X, given [t;] € T'x/aur,s, for 1 <i < n, we can
choose a term ¢; % € [t1]aur N T s, for 1 <14 < mn, so that

¢ (Teaor ([t [ta]) = a7 ([f (1 'Ry - tn 'R aUR)
= [f(tl '7%7 R |#) '%]A = CanR f (qil([tl])’) qil([tn})) :

Theorem 5. A TRS R that is ground p-weakly normalizing, p-canonically com-
plete, ground confluent, and ground sort-decreasing is p-semantically complete.

Proof. By Theorem 3, R is ground weakly-normalizing. It follows that t =gy u
iff t | g u since R is ground confluent and sort-decreasing as well. By Theorem 1,
we have that ¢ |z u iff ¢ |5 u. So R is p-semantically complete. O

Corollary 2. If R is ground p-weakly normalizing, ground p-canonically com-
plete, ground confluent, and ground sort-decreasing, then Canly and Cang are
both well-defined and isomorphic to T's/aur-

Proof. We know that Cang is well-defined and isomorphic to T’/ aur since R
is weakly normalizing by Theorem 3. We also know by Theorems 5 and 4, that
Can/, is isomorphic to T's; /Aur- Therefore, all three algebras are isomorphic. O

18

Theorem 6. Let R be a TRS that is ground weakly-normalizing, if R is u-
semantically complete, then R is p-canonically complete.

Proof. Let R = (X, A, R). Let t € T, be a (R, u)-irreducible term. Because R is
weakly-normalizing, there is a R-irreducible term u € T'x; such that t —% u. We
know that t =4y g u by the soundness of rewriting, and since R is p-semantically
complete, we have t |75 u. However, both ¢ and u are (R, p)-irreducible, so t =4 u.
Since w is R-irreducible as well, it follows that ¢ is R-irreducible. a

Proofs for Section 4.3

Theorem 7. If R is ground p-weakly normalizing, p-canonically complete, and
ground sort-decreasing, then R is p-sufficiently complete relative to C' iff it is
sufficiently complete relative to C.

Proof. First, it should be noted that our definition of u-sufficiently completness
only applies if R is p-sort decreasing. However, given the conditions, we know
that it is p-sort-decreasing by Theorem 2.

If R is p-canonically complete, then the R-canonical forms and (R, u)-canon-
ical forms are the same. It easily follows then that if R is sufficiently complete
relative to C'; R must be p-sufficiently complete. On the other hand, suppose
that R is p-sufficiently complete relative to C'. The characterization of sufficient
completeness given by Theorem 5 of [11] shows that R is sufficiently complete iff
each term ¢ € T's; ; with a defined symbol at the root and constructor subterms is
R-reducible. However, since R is p-sufficiently complete and the root must be a
replacing position, we know that each (R, p)-irreducible term ¢ € Ts; must have
a constructor at the root. So any term with a defined symbol at the root must be
(R, u)-reducible, and consequentally, R-reducible due to R being p-canonically
complete. a

Proofs for Section 5

In order to recognize ground terms that are R and (R, pu)-reducible in a tree
automata framework, we will additionally need to recognize terms that match
subterms appearing in the left-hand side of rules in R.

Definition 11. Given an order-sorted and left-linear TRS R = (£, R), the in-
termediate terms Ix denote the set of quantified non-variable strict subterms
appearing in the left-hand side of a rule in R along with the sort-constraints on
the variables in the terms, i.e.,

In ={t|Clf] e lhs(R) At & X AC #0O0}.

We now give the construction of Agc:

19

Theorem 8. Given a left-linear TRS R = (X, A, R), one can effectively con-
struct a PTA Agc such that R is p-canonically complete iff L(Agc) = @.

Proof. Let X = (S, F, <) The basic idea behind the automaton Acc, is that it
contains states that recognize terms with a particular sort in T, /A, terms that
match subterms in Iz, and R-reducible and R-reducible terms. To simplify the
full definition of Acc, we let a,. = a. Formally, Agc = (Y5, Q, P, A) where:

— YK = (8K FK) is defined as in Definition 5;

Q = {Qutresx with Qr = {re,r} U{as | s € S}U{au |u € Ir N Tk}
D = {Prtresx With ¢ = ag ArpA-rl;

The rules in A are defined as follows:

A= {as = f(asl7- .. 70557,,) | f € Esl...sn,s}
Ufay :=as|s,s e SAs<s'}
U {af(tl """" tn) ‘= f(Oétl, .. .,Oét") | f(tl, A ,tn) S IR}
U{ry = flag,...,ae,) | f(t1,...,tn) € Ty pNlhs(R)}

U{rk o= flan,.rh,aw) | fFeFE o o niep(f)}
U{rr:= f(ay,- Ty -an,) | f € F,ffmkmk/\i e{1,...,n}}.

By induction on t € Tz, we have oy := 4, t for each term ¢t € Tz ;. A similar
inductive argument allows us to show that o, =4, t iff there is a substitution
0 such that ¢t =wuf. This, in turn, allows us to show that r} :=4., t iff there is
a p-replacing YX-context C, Y-substitution #, and rule I — r in R such that
t = C[l0], and to show that 7 := 4, t iff there is a context C, substitution 6,
and rule [— 7 in R such that ¢ = C[l6]. It then follows from Lemmas 1 and 2
that ¢ € Li(A) iff ¢ is a R-reducible and (R, pt)-irreducible term in ¢ € Ty . O

Theorem 9. Given a left-linear TRS R = (X, A, R) that is ground p-weakly
normalizing and ground p-sort-decreasing, one can construct a PTA Agc such
that R is p-sufficiently complete relative to C iff L(Agc) = @.

Proof. Let X = (S, F,<). We construct £(Asc) so that it accepts a (R, p)-
irreducible term ¢ € Ty with a replacement position ¢ € pos#(t) that is not in
posc(t). Specifically, Agc = (X5, Q, ®, A) where

— YK = (8K FX) is defined as in Definition 5;
— Q ={Qi}resx with Qr = {ri,} U{as,cs | s € St U{aw |ue Ir NTx i};

— & = {¢r}rex with ¢ = —\rf: A \/ as A —cg; and
s€[K<

20

— The rules in A are defined as follows:

A={as:= flas,...,as,) | f € Fs s, .}
U{es = c(repfil(sl), cooyrept (sp)) [€ Cgys,)
U{ay == as,co i =cs | 5,8 € SAs < s}
U{afey,.) = flag,ooae,) | [t .. tn) € IR}
U{ry == flag,...,o,) | ft1,...,tn) € Ty pN1hs(R)}
u{ry = f(akl,...,rﬁi,...,akn) | fe kaf___kmk/\i e u(f)}

where rep;(s) equals ¢ if i € pu(c), and a, otherwise.

The rest of our proof is similar to that used in Theorem 8. By induction on
t € Tyx, we have a, :=4,, t for each term ¢t € T ;. This allows us to show
that for t € Txx, we have a, =4, t iff there is a substitution 6 such that
t=wuf. This, in turn, allows us to show that r} :=4, ¢ iff there is a p-replacing
YK _context C, Y-substitution @, and rule [— r in R such that ¢t = C[lf]. An
inductive argument also allows us to show that for t € Twx, c¢; :=tiff t € T's 5
and pos*(t) C posq(t). It follows that ¢ € L(A) iff t is a (R, p)-irreducible term
in for T's;/ 4, with pos*(t) € poss(t). O

21

