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Abstract. We derive a new algorithm for computing the Tate pairing
on an elliptic curve over a finite field. The algorithm uses a generali-
sation of elliptic divisibility sequences known as elliptic nets, which are
maps from Zn to a ring that satisfy a certain recurrence relation. We
explain how an elliptic net is associated to an elliptic curve and reflects
its group structure. Then we give a formula for the Tate pairing in terms
of values of the net. Using the recurrence relation we can calculate these
values in linear time. Computing the Tate pairing is the bottleneck to
efficient pairing-based cryptography. The new algorithm has time com-
plexity comparable to Miller’s algorithm, and should yield to further
optimisation.
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1 Introduction

The use of pairings in elliptic curve cryptography was originally suggested as
a means of reducing the discrete logarithm problem on an elliptic curve to the
discrete logarithm problem on a finite field [1, 2], but considerable excitement
and research has since been generated by public-key cryptographic applications
such as Sakai, Ohgishi and Kasahara’s key agreement and signature schemes
[3], Joux’s tri-partite Diffie-Hellman key exchange [4], and Boneh and Franklin’s
identity-based encryption scheme [5]. Good overviews of the research include
[6, 7], while a very up-to-date research bibliography can be found at [8].

The bottleneck to pairing-based cryptographic implementations is the costly
computation of the pairing, which is most frequently the Tate or Weil pairing,
the former usually being more efficient. Currently, the only polynomial time
algorithm is due to Victor Miller [9] (for an overview of implementions, see
[10, 11]).

In this paper, we propose a new method of computing of the Tate pairing,
arising from the theory of elliptic nets.

Elliptic nets are a generalisation of elliptic divisibility sequences, which were
first studied by Morgan Ward in 1948 [12]. These are integer sequences h0, h1,
h2, . . ., hn, . . . satisfying the following two properties:

1. For all positive integers m > n,

hm+nhm−n = hm+1hm−1h
2
n − hn+1hn−1h

2
m . (1)



2. hn divides hm whenever n divides m.

Ward demonstrates that an elliptic divisibility sequence arises from any choice
of elliptic curve and rational point on that curve.

Theorem 1 (M. Ward, 1948, [12]). Suppose E is an elliptic curve defined
over Q, σ : C → C is its Weierstrass sigma function, and u ∈ C corresponds to
a rational point on E. Then there exists an integer k such that the sequence

hn := kn2−1 σ(nu)
σ(u)n2

forms an elliptic divisibility sequence.

For an overview of research on elliptic divisibility sequences, see [13].
Given an integral domain R and a finitely generated free abelian group A,

an elliptic net is a map W : A → R satisfying the following recurrence relation
for p, q, r, s ∈ A:

W (p + q + s)W (p− q)W (r + s)W (r)
+ W (q + r + s)W (q − r)W (p + s)W (p)

+ W (r + p + s)W (r − p)W (q + s)W (q) = 0 .

When A = R = Z and W (1) = 1, the positive terms of an elliptic net satisfy
Ward’s equation (1) above. Under the further conditions that W (2)|W (4) and
W (0) = 0, these terms form an elliptic divisibility sequence.

Theorem 2 in Sect. 2 relates elliptic nets over R = C to elliptic curves,
generalising Theorem 1. However, for cryptographic applications it is desired to
work over finite fields: Theorem 3 allows results over C to be carried over to the
finite field case. Theorem 4 is the statement of the curve-net relationship over
finite fields.

According to these results, we can associate to any choice of curve E defined
over a finite field K and n points Pi ∈ E(K) an elliptic net

WE,P1,...,Pn
: Zn → K .

This net can then be used to compute the Tate pairing: the main result can be
stated as follows.

Theorem (Introductory Version of Theorem 6). Fix a positive m ∈ Z.
Let E be an elliptic curve defined over a finite field K containing the m-th roots
of unity. Let P , Q ∈ E(K), with [m]P = O. Choose S ∈ E(K) such that
S /∈ {O,−Q}. Then there exists an elliptic net W : Zn → K and p,q, s ∈ Zn

such that the quantity

Tm(P,Q) =
W (s + mp + q)W (s)
W (s + mp)W (s + q)

is exactly the Tate pairing Tm = τm : E(K)[m]× E(K)/mE(K) → K∗/(K∗)m.



From Theorem 6, to calculate the Tate pairing efficiently only requires an
efficient method of calculating the terms of an elliptic net. Rachel Shipsey’s
thesis provides a double-and-add method of calculating the n-th term of an
elliptic divisibility sequence in log n time [14]. We generalise her algorithm to
elliptic nets in Sect. 4.

This application is an example of doing arithmetic on elliptic curves via the
arithmetic of elliptic nets. Rachel Shipsey’s work made use of this approach to
solve the elliptic curve discrete logarithm problem in certain cases. Her paradigm
may have many other fruitful applications.

The Elliptic Net Algorithm and Miller’s algorithm are both log(n) algo-
rithms; the difference is in the constants. In this nascent form, the Elliptic Net
Algorithm is only somewhat slower than an optimised Miller’s, especially at
higher embedding degrees. This note should be considered a call to further re-
search.

Guide to the Reader. I give substantial mathematical background in Sect.
2, which is currently unavailable elsewhere, and will be necessary for any im-
provements and new applications. The entirely theory-averse can skip the pre-
liminaries. For most, a suggested path is Sect. 2.2 with reference to Definition
1, followed by Sect. 2.4 and 2.5. The proof of Theorem 3 is omitted for lack of
space: for this and more details, see [15].

In Sect. 3, we prove Theorem 6 and a corollary relating elliptic nets and the
Tate pairing. In Sect. 4, we describe the algorithms necessary to compute elliptic
nets, and therefore the Tate pairing, efficiently. In Sect. 5, we make some brief
remarks on optimisation of the algorithms and the efficiency as compared with
Miller’s algorithm. Finally, we make some concluding remarks in Sect. 6.

2 Mathematical Preliminaries

2.1 Elliptic Functions Ψv

Elliptic Curves over C. We begin with some complex function theory which
will be necessary for the definition of elliptic nets over C. This material is covered
in, for example, [16, 17]. For a complex lattice Λ, define the Weierstrass sigma
function σ : C → C by

σ(z;Λ) = z
∏
ω∈Λ
ω 6=0

(
1− z

ω

)
ez/ω+(1/2)(z/ω)2 ,

and the Weierstrass zeta function ζ : C → C by

ζ(z;Λ) =
1
z2

+
∑
ω∈Λ
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
.



Recall that the quantity
ζ(z + ω;Λ)− ζ(z;Λ)

is independent of z, and we call this η(ω). The map η : Λ → C is called the
quasi-period homomorphism. Define λ : Λ → {±1} by

λ(ω) =
{

1 if ω ∈ 2Λ ,
−1 if ω /∈ 2Λ .

Recall that the Weierstrass sigma function σ : C → C satisfies the following
transformation formula for all z ∈ C and ω ∈ Λ:

σ(z + ω;Λ) = λ(ω)eη(ω)(z+ 1
2 ω)σ(z;Λ) . (2)

Functions Ψv. We now define the functions which will be used to obtain an
elliptic net from an elliptic curve, and collect a few basic results for later refer-
ence.

Definition 1. Fix a lattice Λ ∈ C corresponding to an elliptic curve E. For
v = (v1, . . . , vn) ∈ Zn, define a function Ψv on Cn in variables z = (z1, . . . , zn)
as follows:

Ψv(z;Λ) =
σ(v1z1 + . . . + vnzn;Λ)

n∏
i=1

σ(zi;Λ)2v2
i−

∑n
j=1 vivj

∏
1≤i<j≤n

σ(zi + zj ;Λ)vivj

.

In particular, we have for each n ∈ Z, a function Ψn on C in the variable z:

Ψn(z;Λ) =
σ(nz;Λ)
σ(z;Λ)n2 ,

and for each pair (m,n) ∈ Z× Z, a function Ψm,n on C× C in variables z and
w:

Ψm,n(z, w;Λ) =
σ(mz + nw;Λ)

σ(z;Λ)m2−mnσ(z + w;Λ)mnσ(w;Λ)n2−mn
.

From the general theory of elliptic functions, the divisor of Ψv as a function of
z1 is  n∑

j=2

[−vj ]zj

−
n∑

j=2

v1vj(−zj)−

v2
1 −

n∑
j=2

v1vj

 (0) . (3)

Proposition 1. The functions Ψv are elliptic functions in each variable.

Proof. Let ω ∈ Λ. We show the function is elliptic in the first variable. Let
v = (v1, . . . , vn) ∈ Zn and z = (z1, . . . , zn),w = (ω, 0, . . . , 0) ∈ Cn. Using (2),
we calculate

F =
Ψv(z + w;Λ)

Ψv(z;Λ)
=

λ(v1ω)
λ(ω)v2

1
.



If ω, v1ω /∈ 2Λ, then v1 is odd, and F = 1. If ω /∈ 2Λ but v1ω ∈ 2Λ, then v1 must
be even, and so F = 1 again. Finally, if ω ∈ 2Λ, then v1ω ∈ 2Λ, and F = 1.
Thus Ψv is invariant under adding a period to the variable z1. Similarly Ψv is
elliptic in each variable on Cn. ut

In view of this proposition, we will use the same notation Ψv for the associated
map En → C, and write, for example, Ψm,n(P1, P2;E).

Proposition 2. Fix a lattice Λ ⊂ C corresponding to an elliptic curve. Let
v ∈ Zn and z ∈ Cn. Let T be an n × n matrix with entries in Z and transpose
T tr. Then

Ψv(T tr(z);Λ) =
ΨT (v)(z;Λ)

n∏
i=1

ΨT (ei)(z;Λ)2v2
i−

∑n
j=1 vivj

∏
1≤i<j≤n

ΨT (ei+ej)(z;Λ)vivj

. (4)

Proof. A straightforward calculation using (2). ut

2.2 Elliptic Nets from Elliptic Curves

Definition 2. Let A be a finitely generated free abelian group, and R be an
integral domain. An elliptic net is any map W : A → R such that the following
recurrence holds for all p, q, r, s ∈ A:

W (p + q + s)W (p− q)W (r + s)W (r)
+ W (q + r + s)W (q − r)W (p + s)W (p)

+ W (r + p + s)W (r − p)W (q + s)W (q) = 0 . (5)

The set of such nets is denoted EN(A,R). If B is a subgroup of A, then W
restricted to B is also an elliptic net and is called an elliptic subnet of A.

Proposition 3. Let W : A → R be an elliptic net. Then W (−z) = −W (z) for
any z ∈ A. In particular W (0) = 0.

Proof. If W (−z) = W (z) = 0, we are done. If not, then without loss of generality,
assume W (z) 6= 0. Then setting p = q = z, r = s = 0 in (5), we obtain 0 +
W (z)4 + W (z)3W (−z) = 0, whence W (−z) = −W (z). ut

Work of Christine Swart [18] and van der Poorten [19] on translated elliptic
divisibility sequences provided the clues that the theory of elliptic nets existed.
It has recently come to my attention that the possibility of such a definition was
briefly discussed in correspondence by Noam Elkies, James Propp and Michael
Somos in 2001 [20].

We will now see that the Ψv form an elliptic net as a function of v ∈ Zn

when the curve E and points P1, . . . , Pn are fixed. Let the standard basis of Zn be
denoted e1, . . . , en. As a means of fixing n points Pi, we specify a homomorphism
φ : Zn → E.



Definition 3. Fix an elliptic curve E. Suppose φ : Zn → E is a homomorphism
such that the images of ±ei under φ are all distinct and nonzero. Define Wφ :
Zn → C by

Wφ(v) = Ψv(φ(e1), φ(e2), . . . , φ(en);E) .

Theorem 2. Wφ is an elliptic net.

We will prove Theorem 2 in the next section.
Suppose we choose n points Pi of an elliptic curve E, such that the ±Pi are all

distinct and nonzero. Define φ : Zn → E by φ(ei) = Pi. We call Wφ ∈ EN(Zn, C)
the elliptic net associated to E,P1, . . . , Pn. In fact, Wφ ∈ EN(Zn, L) where L is
the field of definition of the Pi. Part of the first quadrant of such an example net
is shown in Fig. 1 at left. In this example, E : y2 + y = x3 + x2 − 2x, P = (0, 0),
Q = (1, 0), and L = Q. For example, W (3, 2) = −13.

P →
Q

↑
0 1 1 -3 11 38 249

1 1 2 -5 7 89 -149

1 3 -1 -13 -36 181 -1535

-5 8 -19 -41 -151 989 -1466

-31 53 -33 -350 493 6627 48191

94 479 919 -2591 13751 68428 424345

4335 5959 12016 -55287 23921 1587077 -7159461

P →
Q

↑

over F5over Q

0 1 1 2 1 3 4

1 1 2 0 2 4 1

1 3 4 2 4 1 0

0 3 1 4 4 4 4

4 3 2 0 3 2 1

4 4 4 4 1 3 0

0 4 4 3 1 2 4

Fig. 1. Portion of the elliptic net of E : y2 + y = x3 + x2 − 2x, P = (0, 0), Q = (1, 0)

Let E be an elliptic curve defined over Q, and P ∈ E(Q). Then if the positive
terms of the elliptic net associated to E,P are integers, they form an elliptic
divisibility sequence as described by Ward. In particular, the recurrence relation
(5) implies Ward’s relation (1). For example, in Fig. 1, the bottom row is the
elliptic divisibility sequence associated to P : 0, 1, 1, -3, 11, 38, 249, . . . .

A word of caution: it is not appropriate to think of elliptic nets as maps on
the points of the curve. This can lead to two misconceptions. First, although
it is tempting in this example to think of −13 as the “number associated to
3P +2Q”, this depends on the choice of “basis” P,Q of the net. That is to say, if
we consider instead the net W ′ associated to E,P + Q,P , then W ′(2, 1) is not
equal to W (3, 2). The relationship between the nets relative to different bases on
a single curve is the content of Proposition 2. Further, even having restricted our
attention to exactly one net we may be surprised. Suppose W is an elliptic net
associated to E,P where P is an m-torsion point. We cannot expect W (m + k)
to equal W (k) in general. We will address these crucial issues in Sect. 2.5.



2.3 Proof of Theorem 2

Proof. We will make use of the well-known elliptic function identity

℘(a)− ℘(b) = −σ(a + b)σ(a− b)
σ(a)2σ(b)2

. (6)

First, we show that

ζ(x + a)− ζ(a)− ζ(x + b) + ζ(b) =
σ(x + a + b)σ(x)σ(a− b)
σ(x + a)σ(x + b)σ(a)σ(b)

. (7)

Denote by f and g the left and right side of (7) respectively. Suppose that
a, b /∈ Λ. The functions f and g are elliptic in x. Both f and g have single poles
at −a and −b only. The zeroes of g are at −a − b and 0. These are also zeroes
of f , since ζ is an odd function. Hence we have f = cg for some c not depending
on x. Now define instead

F = (ζ(x + a)− ζ(a)− ζ(x + b) + ζ(b))σ(x + a)σ(x + b) ,

G = σ(x + a + b)σ(x) .

We have F = c′G for some constant c′ independent of x. Taking derivatives and
evaluating at x = 0, we have

(℘(a)− ℘(b))σ(a)σ(b) = c′σ(a + b)σ′(0) .

We have σ′(0) = 1. By (6),

c′ = − σ(a− b)
σ(a)σ(b)

.

which proves (7).
Fix z ∈ Cn. We will show that the values Ψv(z;Λ) for v ∈ Zn form an elliptic

net. For notational simplicity, we drop the arguments (z;Λ) and also write σ(v),
℘(v) and ζ(v) for σ(v · z), ℘(v · z) and ζ(v · z). We observe that v = 0 if and
only if Ψv ≡ 0.

If any of p, q, r, p + s, q + s, or r + s are zero, then the recurrence relation
(5) holds trivially. So we may assume none of Ψp, Ψq, Ψr, Ψp+s, Ψq+s, or Ψr+s is
identically zero.

For any quadratic form f defined on Zn, we have the following relation for
all p,q, s ∈ Zn:

f(p + q + s) + f(p− q) + f(s)− f(p + s)− f(p)− f(q + s)− f(q) = 0 . (8)

Suppose that s 6= 0 and so Ψs 6≡ 0. By (8) and (7),

Ψp+q+sΨp−qΨs

Ψp+sΨpΨq+sΨq
=

σ(p + q + s)σ(p− q)σ(s)
σ(p + s)σ(p)σ(q + s)σ(q)

= ζ(p+s)−ζ(p)−ζ(q+s)+ζ(q) .



Therefore, we have

Ψp+q+sΨp−qΨs

Ψp+sΨpΨq+sΨq
+

Ψq+r+sΨq−rΨs

Ψq+sΨqΨr+sΨr
+

Ψr+p+sΨr−pΨs

Ψr+sΨrΨp+sΨp
= 0 ,

or, more simply,

Ψp+q+sΨp−qΨr+sΨr + Ψq+r+sΨq−rΨp+sΨp + Ψr+p+sΨr−pΨq+sΨq = 0 ,

which is what was required to prove.
The case s = 0 is done similarly, using

Ψp+qΨp−q

Ψ2
pΨ2

q

=
σ(p + q)σ(p− q)

σ(p)2σ(q)2
= ℘(q)− ℘(p) .

ut

2.4 Moving to Finite Fields

Some Notation Now is a good moment to collect the relevant notation for the
next section and the remainder of the paper.

L number field contained in C
EL elliptic curve defined over L
R ring of integers of L
p prime of R of good reduction for EL

kp residue field of p
Ekp EL reduced modulo p
δ : EL(L) → Ekp(kp) reduction map modulo p
δ : P1(L) → P1(kp) reduction map modulo p

Reduction Modulo p We wish to extend the relationship between nets and
curves to finite fields, but we can no longer use Weierstrass’ sigma function to
define appropriate functions. The following theorem allows us to push results on
number fields L over to residue fields kp. It says that we can find the appropriate
functions Ωv for Ekp by simply considering the net Ψv modulo p. These Ωv will
also form an elliptic net.

Theorem 3. Consider points P1, . . . , Pn ∈ EL(L) such that the reductions mod-
ulo p of the ±Pi are all distinct and nonzero. Then for each v ∈ Zn there exists
a function Ωv such that the following diagram commutes:

En
L(L)

Ψv //

δ

��

P1(L)

δ

��
En

kp
(kp)

Ωv // P1(kp)

Furthermore div(Ωv) = δ∗ div(Ψv).



Proof (Sketch). Consider En as a scheme over Spec R. The proof requires ex-
tending the function on the generic fibre to the special fibres. The difficulty lies
in showing that the resulting function does not have any vertical fibres in the
support of its divisor. This reduces to a statement about the form of the Ψv as
polynomials in the structure sheaf. It relies on a number of nested and compli-
cated inductive proofs. See [15]. ut

In light of this, we extend Definition 3 and Theorem 2.

Definition 4. Let φ : Zn → Ekp be a homomorphism such that the images of
±ei under φ are all distinct and nonzero. Let Ωv be defined according to Theorem
3. Define Wφ : Zn → kp by

Wφ(v) = Ωv(φ(e1), φ(e2), . . . , φ(en)) .

Theorem 4. Suppose K is either a number field or a finite field, and E is an
elliptic curve defined over K. Let φ : Zn → E(K) be a homomorphism. Then
Wφ is an elliptic net.

Proof. If K is a number field, this is Theorem 2. If K is a finite field, then
this statement follows from Theorem 3: an elliptic net postcomposed with a
homomorphism is still an elliptic net. ut

Figure 1 illustrates the relationship between an example elliptic net associ-
ated to E,P,Q over Q and the elliptic net associated to their reductions modulo
5.

2.5 Equivalence of Nets

In this section, we restrict ourselves to finite fields.

Definition 5. Let W1,W2 ∈ EN(A,K). Suppose α, β ∈ K∗, and f : A → Z is
a quadratic form. If

W1(v) = αβf(v)W2(v)

for all v, then we say W1 is equivalent to W2 and write W1 ∼ W2.

Clearly this definition gives an equivalence relation, and it is easily verified
that an equivalence applied to an elliptic net gives another elliptic net. We write

EN0(A,K) = EN(A,K)/ ∼ .

If W1 is a subnet of W2, then we may, by abuse of language, say that the
equivalence class [W1] is a subnet of the equivalence class [W2], since then any
W ′

1 ∈ [W1] will be equivalent to some subnet of any W ′
2 ∈ [W2].

Recall the discussion at the end of Sect. 2.2. There, we encountered two
reasons that we cannot consider an elliptic net W to be a map on the group
E(K) itself. The first is that a basis must be chosen, and the second is that the



net may take different values at two vectors v1,v2 ∈ Zn even when φ(v1) =
φ(v2) ∈ E(K).1

All is not lost, however. We can define elliptic nets on a free abelian cover
of E(K), and we shall see that, at least up to equivalence, we can do this in a
canonical way.

Proposition 2 gives a “basis transformation formula” for elliptic nets. This
formula holds in the finite field case by Theorem 3. We will see that it provides
an equivalence of nets. This allows us to define a net on a free abelian cover of
E(K) whose equivalence class is unique.

Choose a free abelian group of finite rank with a quotient map

π : ÊK → EK(K) .

Let Γ̂ ∼= Zn be a subgroup of ÊK . Let Γ = π(Γ̂ ). For any surjective homo-
morphism φ : Zn → Γ there exists a lift φ̂ : Zn → Γ̂ which is an isomorphism.

We define
Vφ = Wφ ◦ φ̂−1 .

Theorem 5. Vφ ∈ EN(Γ̂ , K) and the equivalence class of Vφ is independent of
the choice of the surjective map φ : Zn → Γ .

Proof. The linearity of φ−1 shows that Vφ is an elliptic net.
Suppose T : Zn → Zn is a homomorphism. Then a restatement of Proposition

2 translated to finite fields via Theorem 3 is that Wφ◦T ∼ Wφ ◦ T (note that
every finite field has a primitive element).

Now choose another surjective φ′ : Zn → Γ . Then there exists an isomor-
phism T : Zn → Zn such that φ̂ ◦ T = φ̂′ and φ ◦ T = φ′. Then

Vφ′ = Wφ′ ◦ φ̂′−1 = Wφ◦T ◦ T−1 ◦ φ̂−1 ∼ Wφ ◦ φ̂−1 = Vφ .

The equivalence holds since T−1 ◦ φ̂−1 is linear. So we have defined a unique
class [Vφ] ∈ EN0(Γ̂ , K). ut

Definition 6. Let WÊK
denote the class [Vφ] ∈ EN0(ÊK ,K) defined in Theorem

5.

This equivalence class is in some sense the “abstract” elliptic net. Just as one
writes an abstract linear transformation as a matrix with respect to a basis in
order to do calculations, we must choose a basis in order to do calculations with
nets. This choice of basis is for us the choice of homomorphism φ : Zn → E(K).
Theorem 6 gives a formula for the Tate pairing independent of the equivalence
class chosen in WÊK

. Later, we will exploit this freedom to choose an appropriate
φ for efficient calculations.

We note one useful proposition.

Proposition 4. Let W ∈ WÊK
. Then W (p) = 0 implies π(p) = O.

Proof. If W (p) = 0 then by definition Ωv(P) = 0 for some v and P such that
v ·P = π(p). But the zeroes P of Ψv are exactly those P such that v ·P = 0. ut
1 An examination of the statement of Theorem 6 reveals that the difference in these

values is in some sense what the Tate pairing measures.



2.6 The Tate Pairing

Choose m ∈ Z+. Let E be an elliptic curve defined over a field K containing the
m-th roots of unity. Suppose P ∈ E(K)[m] and Q ∈ E(K)/mE(K). Since P
is an m-torsion point, m(P )−m(O) is a principal divisor, say div(fP ). Choose
another divisor DQ defined over K such that DQ ∼ (Q)− (O) and with support
disjoint from div(fP ). Then, we may define the Tate pairing

τm : E(K)[m]× E(K)/mE(K) → K∗/(K∗)m

by
τm(P,Q) = fP (DQ) .

This pairing is well-defined, bilinear and Galois invariant. For cryptographic
applications, the Tate pairing is usually considered over finite fields, where it is
non-degenerate. For details, see [21, 22].

3 Tate Pairing Using Elliptic Nets

Theorem 6. Fix a positive m ∈ Z. Let E be an elliptic curve defined over
a finite field K containing the m-th roots of unity. Let P , Q ∈ E(K), with
[m]P = O. Choose S ∈ E(K) such that S /∈ {O,−Q}. Choose p, q, s ∈ ÊK such
that π(p) = P , π(q) = Q and π(s) = S. Let W ∈ WÊK

. Then the quantity

Tm(P,Q) =
W (s + mp + q)W (s)
W (s + mp)W (s + q)

(9)

is a well-defined function Tm : E(K)[m]×E(K)/mE(K) → K∗/(K∗)m. Further,
Tm(P,Q) = τm(P,Q), the Tate pairing.

Proof. By Proposition 4 and the assumptions on the choice of S, any W in the
equivalence class of W is non-vanishing at the four arguments in (9). To verify
that Tm is independent of choice of representative of W, suppose that W1 and
W2 are in the equivalence class of W. Then W2(v) = αβf(v)W1(v) for some
α, β ∈ K∗ and quadratic form f . Then

W1(s + mp− q)W1(s)W2(s + mp)W2(s− q)
W1(s + mp)W1(s− q)W2(s + mp− q)W2(s)

= βf(s+mp)+f(s−q)−f(s+mp−q)−f(s)

= βf(mp+q)−f(mp)−f(q) = βm[f(p+q)−f(p)−f(q)] ∈ (K∗)m .

Let Γ ⊂ EK(K) be the subgroup generated by S, P , and Q. Let

fP =
Ω1,0,0(−S, P, Q)
Ω1,m,0(−S, P, Q)

.

Therefore, we may compute the divisor of fP as a function of S (by equation
(3)):

(fP ) = −([m]P ) + (1−m)(O) + m(P ) = m(P )−m(O) .



Let DQ be the divisor (−S)− (−S −Q).
Then, using Proposition 2 and Theorem 3, in K∗/(K∗)m,

fP (DQ) =
Ω1,0,0(S, P, Q)Ω1,m,0(S + Q,P,Q)
Ω1,m,0(S, P, Q)Ω1,0,0(S + Q,P,Q)

=
Ω1,0,0(S, P, Q)Ω1,m,1(S, P, Q)
Ω1,m,0(S, P, Q)Ω1,0,1(S, P, Q)

.

By a choice of φ : Z3 → Γ such that φ(1, 0, 0) = S, φ(0, 1, 0) = P , and φ(0, 0, 1) =
Q, we have Wφ(v) = Ωv(S, P, Q) ∈ EN(Z3,K). Therefore

τm(P,Q) = fP (DQ) =
Vφ(s + mp + q)Vφ(s)
Vφ(s + mp)Vφ(s + q)

= Tm(P,Q) .

ut

Corollary 1. Let E be an elliptic curve defined over a finite field K, m a pos-
itive integer, P ∈ E(K)[m] and Q ∈ E(K). If WP is the elliptic net associated
to E,P , then we have

τm(P, P ) =
WP (m + 2)WP (1)
WP (m + 1)WP (2)

. (10)

Further, if WP,Q is the elliptic net associated to E,P,Q, then we have

τm(P,Q) =
WP,Q(m + 1, 1)WP,Q(1, 0)
WP,Q(m + 1, 0)WP,Q(1, 1)

. (11)

Proof. For the first formula, taking q = p and s = 2p, we obtain

Tm(P, P ) =
W ((m + 2)p)W (p)
W ((m + 1)p)W (2p)

.

For the second, take s = p, obtaining

Tm(P,Q) =
W ((m + 1)p + q)W (p)
W ((m + 1)p)W (p + q)

.

ut

4 Tate Pairing Computation

4.1 Computing the Values of an Elliptic Net

Rachel Shipsey gives a double-and-add algorithm for computing terms of an
elliptic divisibility sequence [14]. In the case of interest to us now, given the
initial values of an elliptic divisibility sequence, the algorithm computes the n-th
term of a sequence in log(n) time. Shipsey applied her more general algorithm



(which allows beginning elsewhere in the sequence) to give a solution to the
elliptic curve discrete logarithm problem in certain cases.

The algorithm described here is an adaptation and generalisation of Shipsey’s
algorithm to calculate terms W (m, 0) and W (m, 1) of an elliptic net. We define a
block centred on k (shown in Fig. 2) to consist of a first vector of eight consecutive
terms of the sequence W (i, 0) centred on terms W (k, 0) and W (k + 1, 0) and a
second vector of three consecutive terms W (i, 1) centred on the term W (k, 1).
We define two functions:

1. Double(V ): Given a block V centred on k, returns the block centred on 2k.

2. DoubleAdd(V ): Given a block V centred on k, returns the block centred
on 2k + 1.

(k-3,0) (k-2,0) (k-1,0) (k,0) (k+1,0) (k+2,0) (k+3,0) (k+4,0)

(k-1,1) (k,1) (k+1,1)

Fig. 2. A block centred on k

We assume the elliptic net satisfies W (1, 0) = W (0, 1) = 1. The first vectors of
Double(V ) and DoubleAdd(V ) are calculated according to the following special
cases of (5) (or (1)):

W (2i− 1, 0) = W (i + 1, 0)W (i− 1, 0)3 −W (i− 2, 0)W (i, 0)3 , (12)

W (2i, 0) = (W (i, 0)W (i + 2, 0)W (i− 1, 0)2

−W (i, 0)W (i− 2, 0)W (i + 1, 0)2)/W (2, 0) . (13)



The formulæ needed for the computations of the second vectors are instances
of (5):2

W (2k − 1, 1) = (W (k + 1, 1)W (k − 1, 1)W (k − 1, 0)2

−W (k, 0)W (k − 2, 0)W (k, 1)2)/W (1, 1) , (14)

W (2k, 1) = W (k − 1, 1)W (k + 1, 1)W (k, 0)2

−W (k − 1, 0)W (k + 1, 0)W (k, 1)2 , (15)

W (2k + 1, 1) = (W (k − 1, 1)W (k + 1, 1)W (k + 1, 0)2

−W (k, 0)W (k + 2, 0)W (k, 1)2)/W (−1, 1) , (16)

W (2k + 2, 1) = (W (k + 1, 0)W (k + 3, 0)W (k, 1)2

−W (k − 1, 1)W (k + 1, 1)W (k + 2, 0)2)/W (2,−1) . (17)

Equations (12) and (13), applied for i = k− 1, . . . , k +3, allow calculation of
the first vectors of Double(V ) and DoubleAdd(V ) in terms of W (2, 0) and the
terms of V . Equations (14)–(17) allow calculation of the second vectors in terms
of W (1, 1), W (−1, 1), W (2,−1) and the terms of V .

The algorithm to calculate W (m, 1) and W (m, 0) for any positive integer m
is shown in Algorithm 1. The formula for the last term of the first vector of V
in line 1 is from (1). Note that elliptic nets satisfy W (−n,−m) = −W (n, m) by
Proposition 3. In Sect. 5.1 we will consider possible optimisations.

Algorithm 1 Elliptic Net Algorithm
Input: Initial terms a = W (2, 0), b = W (3, 0), c = W (4, 0), d = W (2, 1), e =

W (−1, 1), f = W (2,−1), g = W (1, 1) of an elliptic net satisfying W (1, 0) =
W (0, 1) = 1 and integer m = (dkdk−1 . . . d1)2 with dk = 1

Output: Elliptic net elements W (m, 0) and W (m, 1)
1: V ← [[−a,−1, 0, 1, a, b, c, a3c− b3]; [1, g, d]]
2: for i = k − 1 down to 1 do
3: if di = 0 then
4: V ← Double(V )
5: else
6: V ← DoubleAdd(V )
7: end if
8: end for
9: return V [0, 3] and V [1, 1] // terms W (m, 0) and W (m, 1) respectively

2 The values p, q, r, s substituted into (5) to obtain equations (14) - (17) are
[p, q, r, s] = [(k, 0), (k − 1, 0), (1, 0), (0, 1)], [(k + 1, 0), (k, 0), (1, 0), (−1, 1)], [(k +
1, 0), (k, 0), (−1, 0), (0, 1)], and [(k + 2, 0), (k, 1), (1, 0), (0, 0)] respectively.



4.2 Computation of the Tate Pairing

We can now compute the Tate pairing via Corollary 1. Consider an elliptic curve
E over a finite field Fq of characteristic not 2 or 3, in Weierstrass form

y2 = x3 + Ax + B

and points P = (x1, y1) and Q = (x2, y2) on E(Fq) with Q 6= ±P . We must cal-
culate the values a, b, c, d, e, f, g required as input for the Elliptic Net Algorithm.
These are terms of the elliptic net associated to E,P,Q. The necessary formulæ
are given by the functions Ψm,n. In the case that m = 0, these are called division
polynomials (see [16, p.105] and [17, p.477]). We have

W (1, 0) = 1 , (18)
W (2, 0) = 2y1 , (19)

W (3, 0) = 3x4
1 + 6Ax2

1 + 12Bx1 −A2 , (20)

W (4, 0) = 4y1(x6
1 + 5Ax4

1 + 20Bx3
1 − 5A2x2

1 − 4ABx1 − 8B2 −A3) . (21)

For the formulæ in case of characteristic 2 or 3, or the more general Weierstrass
form, see [23, p.80]. Also using classical formulæ (see for example [24]), we have

W (0, 1) = W (1, 1) = 1 , (22)

W (2, 1) = 2x1 + x2 −
(

y2 − y1

x2 − x1

)2

, (23)

W (−1, 1) = x1 − x2 , (24)

W (2,−1) = (y1 + y2)2 − (2x1 + x2)(x1 − x2)2 . (25)

Suppose that P has order m. Then we use the Elliptic Net Algorithm, with input
m + 1 and a, b, c, d, e, f, g given by (19)–(25).3 The output is used to evaluate
formula (11) of Corollary 1, giving the Tate pairing.

5 Analysis

5.1 Some Implementation Considerations

For an integer m and finite field Fq, we define the embedding degree k to be the
least integer such that m|(qk − 1), thus ensuring the m-th roots of unity are
contained in F∗qk . In cryptographic applications of the Tate pairing, it is usual to
use a curve defined over Fq of embedding degree k > 1, and points P ∈ E(Fq),
Q ∈ E(Fqk): throughout what follows we make this assumption.

First, note that no inversions are actually needed in equations (12)–(17), since
the inverses of W (2, 0), W (2, 1), W (−1, 1) and W (2,−1) may be precomputed
3 In this case, g = 1. However, in Sect. 5.1 we will replace this elliptic net with an

equivalent one for which W (1, 1) 6= 1. For this reason, it is convenient to state
Algorithm 1 in sufficient generality and include a variable g.



before the double-and-add loop is begun. Therefore these inversions are replaced
by multiplications.

Now we consider optimisations in the functions Double and DoubleAdd. The
largest savings can be gained by first computing a number of products which
appear frequently in the formulæ:

W (i, 0)2 and W (i− 1, 0)W (i + 1, 0) for i = k − 2, . . . , k + 3 ,

W (k, 1)2 and W (k − 1, 1)W (k + 1, 1) .

With these 14 computations, each term of the 11 to be calculated requires
only two multiplications and an addition (plus multiplications by W (2, 0)−1,
W (2,−1)−1, W (1, 1)−1 and W (−1, 1)−1). The resulting Double and DoubleAdd
algorithms are shown in Algorithm 2.

Algorithm 2 Double and DoubleAdd
Input: Block V centred at k of an elliptic net satisfying W (1, 0) = W (0, 1) = 1,

values A = W (2, 0)−1, E = W (−1, 1)−1, F = W (2,−1)−1, G = W (1, 1)−1 and
boolean add

Output: Block centred at 2k if add == 0 and centred at 2k + 1 if add == 1
1: S ← [0, 0, 0, 0, 0, 0]
2: P ← [0, 0, 0, 0, 0, 0]
3: S0 ← V [1, 1]2

4: P0 ← V [1, 0]V [1, 2]
5: for i = 0 to 5 do
6: S[i]← V [0, i + 1]2

7: P [i]← V [0, i]V [0, i + 2]
8: end for
9: if add == 0 then

10: for i = 1 to 4 do
11: V [0, 2i− 2]← S[i]P [i + 1]− S[i + 1]P [i]
12: V [0, 2i− 1]← (S[i]P [i + 2]− S[i + 2]P [i])A
13: end for
14: V [1, 0]← (S0P [3]− S[3]P0)G
15: V [1, 1]← S[3]P0 − S0P [3]
16: V [1, 2]← (S[4]P0 − S0P [4])E
17: else
18: for i = 1 to 4 do
19: V [0, 2i− 2]← (S[i]P [i + 2]− S[i + 2]P [i])A
20: V [0, 2i− 1]← S[i + 1]P [i + 2]− S[i + 2]P [i + 1]
21: end for
22: V [1, 0]← S[3]P0 − S0P [3]
23: V [1, 1]← (S[4]P0 − S0P [4])E
24: V [1, 2]← (S0P [5]− S[5]P0)F
25: end if
26: return V



Finally, we may try to avoid some of these extra multiplications by W (2, 0)−1,
W (1, 1)−1, W (2, 1)−1 and W (2,−1)−1 entirely. Recall that by Theorem 6, ap-
plying an equivalence to the net will not alter the Tate pairing result. Let
η = W (−1, 1). Apply the equivalence given by α = 1, β = η and f(n, m) = mn.
Clearly, this preserves the conditions4 that W (1, 0) = W (0, 1) = 1 (and leaves
terms W (n, 0) unchanged, so they are still in Fq), but changes W (−1, 1) to 1,
which saves one multiplication in Fqk per iteration. If W (2, 0) has a cube root
ν in Fq, then the equivalence α = ν−1, β = ν and f(n, m) = m2 + n2 + mn
will change W (2, 0) to 1, while preserving W (1, 0) = W (0, 1) = W (−1, 1) = 1,
saving four Fq multiplications per iteration. Note that these equivalences may
result in W (1, 1) 6= 1.

Finally, we consider the applicability of some of the usual optimisations of
Miller’s algorithm. In Miller’s algorithm, a final exponentiation is applied, in
order to compute a unique value for the Tate pairing; the same exponentiation
must be applied here. In the case of Miller’s, this exponentiation eliminates
multiplicative factors living in the base field Fq. In our case, the Fq computations
do not give rise to strictly multiplicative factors (the algorithm requires much
addition and subtraction), and so we cannot use this final exponentiation as a
justification for the saving of Fq computations. Windowing methods (as in [25]
and [26]) may lead to improvement. A triple-and-add adaptation (as in [11] and
[27]) does not seem promising, by the nature of the recurrence relation. However,
efficiency improvements are likely to be found by studying the characteristic 2
and 3 cases.

5.2 Complexity

Since the algorithm involves a fixed number of precomputations, and a double-
and-add loop with a fixed number of computations per step, the algorithm is
linear time in the size of m, as is Miller’s algorithm. Miller’s algorithm also con-
sists of a double-and-add loop, and we call the two internal steps Double and
DoubleAdd, as for the Elliptic Net Algorithm. In Miller’s algorithm the cost
of DoubleAdd is almost twice that of Double. By contrast, in the Elliptic Net
Algorithm these steps take the same time, so the complexity is independent of
Hamming weight. This makes the choice of appropriate curves for cryptograph-
ical implementations somewhat easier [6], and may help discourage side channel
attacks.

Denote squaring and multiplication in Fq by S and M . Denote squaring and
multiplication in Fqk by Sk and Mk. Assume that multiplying an element of
Fq by one of Fqk takes k multiplications in Fq. Recall that E is defined over
Fq, P ∈ E(Fq), and Q ∈ E(Fqk). Then any term W (n, 0), being a term in the
elliptic divisibility sequence associated to E,P , has a value in Fq. Under the
optimisations discussed in Sect. 5.1, each Double or DoubleAdd step requires
6S + (6k + 26)M + Sk + 2Mk. Furthermore, under the condition that 2yP ∈ Fq

4 These were needed to derive formulæ (12)–(17).



is a cube, then precomputing its cube root will save four multiplications in Fq

per step.
The Elliptic Net Algorithm requires no inversions. Miller’s algorithm in affine

coordinates requires one or two Fq inversion per step. In situations where inver-
sions are costly (depending on implementation, they may cost anywhere from
approximately 4 to 80 multiplications [28]), one may implement Miller’s algo-
rithm in homogeneous coordinates.

For the purpose of comparison, we consider an optimised implementation of
Miller’s algorithm in Jacobian coordinates analysed by Neal Koblitz and Alfred
Menezes [29]. In their implementation, they assume x(Q) ∈ E(Fqk/2) (this is
possible by using a twist of the curve, see for example [30]). Applying this ad-
ditional assumption to the elliptic net algorithm, W (1, 1) will be an element of
Fqk/2 , reducing one of the multiplications in Double to one half the time. The
comparison is summarised in Tables 1 and 2. In the latter, a squaring is assumed
to be comparable to a multiplication (although it is more usually assumed to
be 0.8 times as fast), and a multiplication in Fqk is assumed to take k1.5 multi-
plications in Fq (see [29]). The number of steps constitutes a range because the
Double and DoubleAdd steps may differ in cost.

Table 1. Comparison of Operations for Double and DoubleAdd steps

Algorithm Double DoubleAdd

Optimised Miller’s [29] 4S + (k + 7)M + Sk + Mk 7S + (2k + 19)M + Sk + 2Mk

Elliptic Net Algorithm 6S + (6k + 26)M + Sk + 3
2
Mk 6S + (6k + 26)M + Sk + 2Mk

Table 2. Fq Multiplications per Step

Embedding degree 2 4 6 8 10 12

Optimised Miller’s 18-38 31-58 46-82 64-109 84-140 106-174

Elliptic Net 51-52 76-80 104-112 136-147 171-186 207-228

5.3 A Remark on Implementations

The elliptic net algorithm has been implemented by the author for PARI/GP
(see [31]) and is available at [32]. It has also been implemented in C++ by
Michael Scott and Augusto Jun Devegili for a pairing-friendly curve of degree 2.
The implementation by Ben Lynn in the Pairing Based Cryptography Library



[33] is applicable to curves of various sizes and embedding degrees and includes
a program to compare the Elliptic Net algorithm with Miller’s. Preliminary data
agree with the complexity analysis above.

6 Conclusions

The Elliptic Net Algorithm has no significant restrictions on the points, curves
or finite fields to which it applies, and requires no inversions. The efficiency of
the algorithm is comparable to Miller’s algorithm. One expects that the Elliptic
Net Algorithm will yield to further optimisation, possibly providing an efficient
alternative to Miller’s algorithm in many cases. The theory of elliptic nets here
introduced may also yield other applications in the field of elliptic curve cryp-
tography.
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