Skip to main content

Eta Pairing Computation on General Divisors over Hyperelliptic Curves y 2 = x 7 − x ±1

  • Conference paper
Pairing-Based Cryptography – Pairing 2007 (Pairing 2007)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4575))

Included in the following conference series:

Abstract

Recent developments on the Tate or Eta pairing computation over hyperelliptic curves by Duursma-Lee and Barreto et al. have focused on degenerate divisors. We present two efficient methods that work for general divisors to compute the Eta paring over divisor class groups of the hyperelliptic curves \(H/{{\mathbb F}}_{7^n}:y^2 = x^7 - x \pm 1\) of genus 3. The first method generalizes the method of Barreto et al. so that it holds for general divisors, and we call it the pointwise method. For the second method, we take a novel approach using resultant. We focus on the case that two divisors of the pairing have supporting points in \(H({{\mathbb F}}_{7^{3n}}),\) not in \(H({{\mathbb F}}_{7^n})\). Our analysis shows that the resultant method is faster than the pointwise method, and our implementation result supports the theoretical analysis. In addition to the fact that the two methods work for general divisors, they also provide very explicit algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki, K., Miura, S., Satoh, T.: Overview of elliptic curve crptography. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 29–49. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Barreto, P.S.L.M., Galbraith, S., ÓhÉigeartaigh, C., Scott, M.: Efficient Pairing Computation on Supersingular Abelian Varieties. Des. Codes Cryptogr. 42, 239–271 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berlekamp, E.R: Factoring polynomials over large finite fields. Math. Comp. 24, 713–735 (1970)

    Article  MathSciNet  Google Scholar 

  5. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Cha, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman Groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2002)

    Google Scholar 

  7. Choie, Y., Lee, E.: Implementation of Tate pairing on hyperelliptic curves of genus 2. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 97–111. Springer, Heidelberg (2004)

    Google Scholar 

  8. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra: with 91 illustrations. Springer, New York (1997)

    Google Scholar 

  9. Duursma, I.: Class numbers for hyperelliptic curves. In: Pellikaan, Perret, Vladuts (eds.) Arithmetic, Geometry and Coding Theory, pp. 45–52. deGruyter, Berlin (1996)

    Google Scholar 

  10. Duursma, I., Sakurai, K.: Efficient algorithms for the Jacobian variety of hyperelliptic curves y 2 = x p− x + 1 over a finite field of odd characteristic p. In: Coding theory, cryptography and related areas (Guanajuato, 1998) pp. 73–89. Springer, Heidelberg (2000)

    Google Scholar 

  11. Duursma, I., Lee, H.: Tate pairing implementation for hyperelliptic curves y 2 = x p − x + d. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 111–123. Springer, Heidelberg (2003)

    Google Scholar 

  12. Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Math. Comp. 62(206), 865–874 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In: Fieker, C., Kohel, D.R. (eds.) Algorithmic Number Theory - V. LNCS, vol. 2369, pp. 324–337. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Greuel, G.-M., Pfister, G., Schönemann, H.: SINGULAR 3.0. A Computer Algebra System for PolynomialComputations. Centre for Computer Algebra, University ofKaiserslautern (2005) http://www.singular.uni-kl.de

  15. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) Algorithmic Number Theory IV. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Hess, F., Smart, N.P., Vercauteren, F.: The Eta Pairing Revisited. IEEE Trans. Information Theory 52, 4595–4602 (2006)

    Article  MathSciNet  Google Scholar 

  17. Karatsuba, A., Ofman, Y.: Multiplication of Multidigit Numbers on Automata (Engl. transl.). Sov. Phys.-Dokl. 7(7), 595–596 (1963)

    Google Scholar 

  18. Knuth, D.E.: The Art of Computer Programming, vol. II. Addison Wesley, London (2004)

    Google Scholar 

  19. Koblitz, N.: Algebraic Aspects of Cryptography. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  20. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In: Smart, N.P. (ed.) Cryptography and Coding. LNCS, vol. 3796, pp. 3–36. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Kwon, S.: Efficient Tate Pairing Computation for Elliptic Curves over Binary Fields. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 134–145. Springer, Heidelberg (2005)

    Google Scholar 

  22. Lange, T.: Formulae for arithmetic on genus 2 hyperelliptic curves. Appl. Algebra Engrg. Comm. Comput. 15(5), 295–328 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mumford, D.: Tata Lectures on Theta II, Birkhauser (1984)

    Google Scholar 

  24. Paterson, K.G.: ID-based signature from pairings on elliptic curves. Electronics Letters 38(18), 1025–1026 (2002)

    Article  Google Scholar 

  25. Pelzl, J., Wollinger, T., Paar, C.: Low cost security: explicit formulae for genus-4 hyperelliptic curves. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 1–16. Springer, Heidelberg (2004)

    Google Scholar 

  26. Shoup, V.: A library for doing number theory, Software (2001), http://www.shoup.net/ntl/

  27. Smart, N.: On the Performance of Hyperelliptic Cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 165–175. Springer, Heidelberg (1999)

    Google Scholar 

  28. Smart, N.P.: An identity based authentication key agreement protocol based on pairing. Electronics Letters 38, 630–632 (2002)

    Article  Google Scholar 

  29. Yap, C.K.: Fundamental Problems in Algorithmic Algebra. Oxford University Press, Oxford (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tsuyoshi Takagi Tatsuaki Okamoto Eiji Okamoto Takeshi Okamoto

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, E., Lee, HS., Lee, Y. (2007). Eta Pairing Computation on General Divisors over Hyperelliptic Curves y 2 = x 7 − x ±1. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds) Pairing-Based Cryptography – Pairing 2007. Pairing 2007. Lecture Notes in Computer Science, vol 4575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73489-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73489-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73488-8

  • Online ISBN: 978-3-540-73489-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics