
A Bounded Index for Cluster Validity

Sandro Saitta, Benny Raphael, and Ian F.C. Smith

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Station 18, 1015 Lausanne, Switzerland

sandro.saitta@epfl.ch,bdgbr@nus.edu.sg,ian.smith@epfl.ch

Abstract. Clustering is one of the most well known types of unsuper-
vised learning. Evaluating the quality of results and determining the
number of clusters in data is an important issue. Most current validity
indices only cover a subset of important aspects of clusters. Moreover,
these indices are relevant only for data sets containing at least two clus-
ters. In this paper, a new bounded index for cluster validity, called the
score function (SF), is introduced. The score function is based on stan-
dard cluster properties. Several artificial and real-life data sets are used
to evaluate the performance of the score function. The score function
is tested against four existing validity indices. The index proposed in
this paper is found to be always as good or better than these indices in
the case of hyperspheroidal clusters. It is shown to work well on multi-
dimensional data sets and is able to accommodate unique and sub-cluster
cases.
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1 Introduction

The goal of clustering [1, 2] is to group data points that are similar according
to a chosen similarity metric (Euclidean distance is commonly used). Cluster-
ing techniques have been applied in domains such as text mining [3], intrusion
detection [4] and object recognition [5]. In these fields, as in many others, the
number of clusters is usually not known in advance.

Several clustering techniques can be found in the literature. They usually
belong to one of the following categories [6]: partitional clustering, hierarchical
clustering, density-based clustering and grid-based clustering. An additional cat-
egory is the mixture of Gaussian approach. Since its computational complexity is
high, it is not likely to be used in practice. All these categories have drawbacks.
For example, hierarchical clustering has a higher complexity. Density-based clus-
tering algorithms often require tuning non-intuitive parameters. Finally, density-
based clustering algorithms do not always reveal clusters of good quality. The
K-means [1] algorithm, part of the partitional clustering, is the most widely
used. Advantages of K-means include computational efficiency, fast implementa-
tion and easy mathematical background. However, K-means also has limitations.
They include a random choice of centroid locations at the beginning of the pro-
cedure, treatment of categorical variables and an unknown number of clusters
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k. Concerning the first limitation, multiple runs may be a solution. The paper
by [7] contains a possible solution to the second limitation through the use of
a matching dissimilarity measure to handle categorical parameters. Finally, the
third issue is related to the number of clusters and therefore cluster validity.

Clustering is by definition a subjective task and this is what makes it difficult
[8]. Examples of challenges in clustering include i) the number of clusters present
in the data and ii) the quality of clustering [9]. Elements of answers to these two
issues can be found in the field of cluster validation. Other challenges such as
initial conditions and high dimensional data sets are of importance in clustering.
The aim of cluster validation techniques is to evaluate clustering results [6, 8, 10].
This evaluation can be used to determine the number of clusters within a data
set. Current literature contains several examples of validity indices [9, 11–13].
Recent work has also been done on evaluating them [14].

The Dunn index [11] combines dissimilarity between clusters and their diam-
eters to estimate the most reliable number of clusters. As stated in [6], the Dunn
index is computationally expensive and sensitive to noisy data. The concepts of
dispersion of a cluster and dissimilarity between clusters are used to compute
the Davies-Bouldin index [12]. The Davies-Bouldin index has been found to be
among the best indices [14]. The Silhouette index [13] uses average dissimilar-
ity between points to identify the structure of the data and highlights possible
clusters. The Silhouette index is only suitable for estimating the first choice or
the best partition [15]. Finally, the Maulik-Bandyopadhyay index [9] is related
to the Dunn index and involves tuning of a parameter.

All of these indices require the specification of at least two clusters. As noted
in [16], the one cluster case is important and is likely to happen in practice.
As a prerequisite to the identification of a single cluster, a definition of what
is a cluster is important. Among those that exist in the literature, a possible
definition is given in [17]. Briefly, it states that a cluster is considered to be “real”
if it is significantly compact and isolated. Concepts of compactness and isolation
are based on two parameters that define internal properties of a cluster. While
this definition is precise, it is often too restrictive since few data sets satisfy such
criteria. More details of single cluster tests can be found in [16]. Other validity
indices exist in the literature. Some are computationally expensive [6] while
others are unable to discover the real number of clusters in all data sets [14].
This paper proposes a new validity index that helps overcome such limitations.

This article is organized as follows. Section 2 describes existing validity in-
dices from the literature. Section 3 proposes a new validity index, named the
score function. Performance of the score function is described in Section 4. The
last Section provides conclusions and directions for future work.

2 Existing Indices

In this Section, four validity indices suitable for hard partitional clustering are
described. These indices serve as a basis for evaluating results from the score
function on benchmark data sets. Notation for these indices have been adapted
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to provide a coherent basis. The metric used on the normalized data is the

standard Euclidean distance defined as ||x − y|| =

√

∑d
i=1

(xi − yi)2 where x

and y are data points and d is the number of dimensions.

Dunn index: One of the most cited indices is proposed by [11]. The Dunn
index (DU) identifies clusters which are well separated and compact. The goal
is therefore to maximize the inter-cluster distance while minimizing the intra-
cluster distance. The Dunn index for k clusters is defined by Equation 1:

DUk = min
i=1,...,k

{

min
j=1+1,...,k

(

diss(ci, cj)

maxm=1,...,k diam(cm)

)}

(1)

where diss(ci, cj) = minx∈ci,y∈cj
||x−y|| is the dissimilarity between clusters

ci and cj and diam(C) = maxx,y∈C ||x − y|| is the intra-cluster function (or
diameter) of the cluster. If Dunn index is large, it means that compact and well
separated clusters exist. Therefore, the maximum is observed for k equal to the
most probable number of clusters in the data set.

Davies-Bouldin index: Similar to the Dunn index, Davies-Bouldin index
[12] identifies clusters which are far from each other and compact. Davies-Bouldin
index (DB) is defined according to Equation 2:

DBk =
1

k

k
∑

i=1

max
j=1,...,k,i6=j

{

diam(ci) + diam(cj)

||ci − cj ||

}

(2)

where, in this case, the diameter of a cluster is defined as:

diam(ci) =

(

1

ni

∑

x∈ci

||x − zi||
2

)1/2

(3)

with ni the number of points and zi the centroid of cluster ci. Since the
objective is to obtain clusters with minimum intra-cluster distances, small values
for DB are interesting. Therefore, this index is minimized when looking for the
best number of clusters.

Silhouette index: The silhouette statistic [13] is another well known way
of estimating the number of groups in a data set. The Silhouette index (SI)
computes for each point a width depending on its membership in any cluster.
This silhouette width is then an average over all observations. This leads to
Equation 4:

SIk =
1

n

n
∑

i=1

(bi − ai)

max(ai, bi)
(4)

where n is the total number of points, ai is the average distance between point
i and all other points in its own cluster and bi is the minimum of the average
dissimilarities between i and points in other clusters. Finally, the partition with
the highest SI is taken to be optimal.
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Maulik-Bandyopadhyay index: A more recently developed index is named
the I index [9]. For consistence with other indices it is renamed MB. This index,
which is a combination of three terms, is given through Equation 5:

MBk =

(

1

k
·
E1

Ek
· Dk

)p

(5)

where the intra-cluster distance is defined by Ek =
∑k

i=1

∑

x∈ci
||x− zi|| and

the inter-cluster distance by Dk = maxk
i,j=1 ||zi − zj ||. As previously, zi is the

center of cluster ci. The correct number of clusters is estimated by maximizing
Equation 5. In this work, p is chosen to be two.

Discussion: Although all these indices are useful in certain situations, they
are not of general-purpose. For example, Dunn index is computationally heavy
and has difficulty to deal with noisy data. It is useful for identifying clean clusters
in data sets containing no more than hundreds of points. Davies-Bouldin index
gives good results for distinct groups. However, it is not designed to accommo-
date overlapping clusters. The Silhouette index is only able to identify the first
choice and therefore should not be applied to data sets with sub-clusters. The
Maulik-Bandyopadhyay index has the particularity of being dependent on a user
specified parameter.

3 Score Function

In this paper, we propose a function to estimate the number of clusters in a
data set. The proposed index, namely the score function (SF), is based on inter-
cluster and intra-cluster distances. The score function is used for two purposes:
i) to estimate the number of clusters and ii) to evaluate the quality of the cluster-
ing results. The score function is a function combining two terms: the distance
between clusters and the distance inside a cluster. The first notion is defined
as the “between class distance” (bcd) whereas the second is the “within class
distance” (wcd) .

Three common approaches exist to measure the distance between two clus-
ters: single linkage, complete linkage and comparison of centroids. This proposal
is based on the third concept since the first two have computational costs that
are too high [6]. In this work, the bcd is defined by Equation 6:

bcd =

∑k
i=1

||zi − ztot|| · ni

n · k
(6)

where k is the number of clusters, zi the centroid of the current cluster
and ztot the centroid of all the clusters. The size of a cluster, ni is given by
the number of points inside it. The most important quantity in the bcd is the
distance between zi and ztot. To limit the influence of outliers, each distance is
weighted by the cluster size. This has the effect to reduce the sensitivity to noise.
Through n, the bcd sensitivity to the total number of points is avoided. Finally,
values for k are used to penalize the addition of a new cluster. This way, the
limit of one point per cluster is avoided. The wcd is given in Equation 7:
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wcd =

k
∑

i=1

(

1

ni

∑

x∈ci

||x − zi||

)

(7)

Computing values for wcd involves determining the distance between each
point to the centroid of its cluster. This is summed over the k clusters. Note that
||zi − x|| already takes into account the size of the corresponding cluster. As in
bcd (Equation 6), the cluster size in the denominator avoids the sensibility to the
total number of points. With Equations 6 and 7, bcd and wcd are independent
of the number of data points.

For the score function to be effective, it should i) maximize the bcd, ii) min-
imize the wcd and iii) be bounded. Maximizing Equation 8 satisfies the above
conditions:

SF = 1 −
1

eebcd−wcd
(8)

The higher the value of the SF , the more suitable the number of clusters.
Therefore, with the proposed SF, it is now possible to estimate the number of
clusters for a given set of models. Difficulties such as perfect clusters (wcd = 0)
and unique cluster (bcd = 0) are overcome. Moreover, the proposed score function
is bounded by ]0, 1[. The upper bound allows the examination of how close
the current data set is to the perfect cluster case. Thus we seek to maximize
Equation 8 to obtain the most reliable number of clusters. As can be seen through
Equations 6 and 7, computational complexity is linear. If n is the number of
data points, then the proposed score function has a complexity of O(n). In the
next Section, the score function is tested on several benchmark problems and
compared with existing indices.

4 Results

In this Section, the performance of validity indices are compared. For this pur-
pose, the standard K-means algorithm is used. K-means is a procedure that
iterates over k clusters in order to minimize their intra-cluster distances. The
K-means procedure is as follows. First, k centroids are chosen randomly over all
the points. The data set is then partitioned according to the minimum squared
distance. New centroid positions are calculated according to the points inside
clusters. The process of partitioning and updating is repeated until a stopping
criterion is reached. This happens when either the cluster centers or the intra-
cluster distances do not significantly change over two consecutive iterations.

To control the randomness of K-means, it is launched 10 times from kmin to
kmax clusters. The optimum - minimum or maximum, depending on the index
- is chosen as the most suitable number of clusters. The indices for comparison
have been chosen according to their performance and usage reported in the
literature (see Section 1). Selected indices are Dunn (DU), Davies-Bouldin (DB),
Silhouette (SI) and Maulik-Bandyopadhyay (MB). These are compared with the
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Score Function (SF). Results according to the number of clusters identified for
the proposed benchmarks are shown next. Particularities of the score function
such as perfect and unique clusters as well as hierarchy of clusters are then
tested. Finally, examples of limitations concerning the score function are given.

4.1 Number of clusters

The score function has been tested on benchmark data sets and results are
compared with other indices. kmin and kmax are taken to be respectively 2 and
10. Artificial data sets used in this Section are composed of 1000 points in two
dimensions.
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Fig. 1. Four artificial data sets, namely Noisy, Unbalanced, Overlapped and Mixed. All
of these data sets contains 1000 points in 2D space.

Example 1 : In the first data set, Noisy, five clusters in a noisy environment
are present (see Figure 1a). It is improbable that a data set contains no noise.
Therefore, clusters are frequently surrounded by noise. Table 1 shows that, unlike
other indices, the Dunn index is not able to estimate correctly the number of
clusters (five). This result confirms the idea that the Dunn index is sensitive to
noise [6].

Example 2 : The second data set, Unbalanced, consists of four clusters (see
Figure 1b). These clusters are of different sizes and densities. According to [18],
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k 2 3 4 5 6 7 8 9 10

DU 0.018 0.016 0.019 0.019 0.032 0.035 0.027 0.028 0.023
DB 1.060 0.636 0.532 0.440 0.564 0.645 0.665 0.713 0.729
SI 0.534 0.573 0.719 0.821 0.785 0.768 0.733 0.706 0.669
MB 1.314 2.509 3.353 5.037 4.167 3.323 2.898 2.515 2.261
SF 0.424 0.489 0.553 0.592 0.584 0.578 0.575 0.573 0.572

Table 1. Results of the five validity indices on the Noisy data set (example 1). The
data set is shown in Figure 1a. Bold numbers show maximum values for all indices
except DB, where minimum values is desired. This indication is used for Tables 1-6.
The correct number of clusters is five.

clusters of varying densities are of importance. Table 2 shows the results for this
data set. Whereas DU underestimates the number of clusters, MB overestimates
it. This is not the case for DB, SI and SF which correctly identify four clusters.

k 2 3 4 5 6 7 8 9 10

DU 0.154 0.066 0.025 0.024 0.016 0.018 0.014 0.012 0.016
DB 0.739 0.522 0.347 0.552 0.633 0.712 0.713 0.722 0.733
SI 0.709 0.688 0.803 0.689 0.704 0.701 0.679 0.683 0.590
MB 3.900 3.686 4.795 4.751 4.941 4.844 4.540 3.575 3.794
SF 0.549 0.563 0.601 0.593 0.591 0.589 0.589 0.588 0.589

Table 2. Results of the five validity indices on the Unbalanced data set (example 2).
The data set is shown in Figure 1b. The correct number of clusters is four.

Example 3 : This data set, named Overlapped, contains four clusters, two of
them overlap. It can be seen in Figure 1c. Two clusters are likely to overlap in
real-life data sets. Therefore, the ability to deal with overlapping cluster is one
of the best ways to compare indices [19]. Table 3 contains the results for this
data set. It can be seen that DU and DB underestimate the correct number of
clusters. Only SI, MB and SF are able to identify four clusters.

k 2 3 4 5 6 7 8 9 10

DU 0.030 0.025 0.013 0.013 0.012 0.019 0.021 0.012 0.012
DB 0.925 0.451 0.482 0.556 0.701 0.753 0.743 0.774 0.761
SI 0.635 0.740 0.818 0.728 0.713 0.669 0.683 0.669 0.656
MB 1.909 3.322 5.755 5.068 4.217 3.730 3.527 3.150 3.009
SF 0.452 0.555 0.610 0.601 0.593 0.589 0.588 0.585 0.584

Table 3. Results of the five validity indices on the Overlapped data set (example 3).
The data set is shown in Figure 1c. The correct number of clusters is four.
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Example 4 : The following data set, named Mixed, contains six clusters. They
have different size, compactness and shape. The data set is shown in Figure
1d. Table 4 presents results. First, it can be seen that DU is maximum for two
consecutive values (although not the correct ones). MB is the only index to
overestimate the correct number of clusters. Finally, only DB, SI and SF are
able to identify correctly six clusters.

k 2 3 4 5 6 7 8 9 10

DU 0.015 0.041 0.041 0.027 0.018 0.020 0.014 0.018 0.017
DB 1.110 0.751 0.630 0.575 0.504 0.554 0.596 0.641 0.662
SI 0.578 0.616 0.696 0.705 0.766 0.744 0.758 0.730 0.687
MB 1.523 1.574 2.379 2.813 3.389 3.661 3.857 3.490 3.236
SF 0.442 0.492 0.540 0.559 0.583 0.579 0.577 0.576 0.579

Table 4. Results of the five validity indices on the Mixed data set (example 4). The
data set is shown in Figure 1d. The correct number of clusters is six.

Example 5 : The data set used in this example, Iris is one of the most used
real-life data sets in the machine learning and data mining communities [20]. It
is composed of 150 points in four dimensions. Iris contains three clusters (two
of them are not linearly separable). It is a good example of a case where the
dimension is more than two and clusters overlap. Table 5 shows the index values
for this data set. In this case, only SF is able to correctly identify the three
clusters. The overlap is too strong for other tested indices to enumerate the
clusters.

k 2 3 4 5 6 7 8 9 10

DU 0.267 0.053 0.070 0.087 0.095 0.090 0.111 0.091 0.119
DB 0.687 0.716 0.739 0.744 0.772 0.791 0.833 0.752 0.778
SI 0.771 0.673 0.597 0.588 0.569 0.561 0.570 0.535 0.580
MB 8.605 8.038 6.473 6.696 5.815 5.453 4.489 4.011 4.068
SF 0.517 0.521 0.506 0.507 0.503 0.503 0.497 0.510 0.513

Table 5. Results of the five validity indices on the Iris data set (example 5). The data
set is made by 150 points in a 4D space. The correct number of clusters is three (two
of them overlap).

Example 6 : The next data set, named Wine, is also a real-life data set [20].
It contains 178 points in 13 dimensions. Wine data set contains three clusters.
Results of the five indices are given in Table 6. Whereas DU overestimates the
correct number of clusters, MB underestimates it. DB, SI and SF are able to
discover the three clusters.



A Bounded Index for Cluster Validity 9

k 2 3 4 5 6 7 8 9 10

DU 0.160 0.232 0.210 0.201 0.202 0.208 0.235 0.206 0.214
DB 1.505 1.257 1.499 1.491 1.315 1.545 1.498 1.490 1.403
SI 0.426 0.451 0.416 0.394 0.387 0.347 0.324 0.340 0.288
MB 5.689 5.391 3.548 2.612 2.302 2.124 1.729 1.563 1.387
SF 0.131 0.161 0.151 0.146 0.143 0.145 0.147 0.149 0.150

Table 6. Results of the five validity indices on the Wine data set (example 6). The
data set is made of 178 points in a 13 dimension space. The correct number of clusters
is three.

Table 7 summarizes the results of the application of the five indices to four
artificial and two real-life data sets. Among the five indices tested, SF has the
best performance. SF correctly identified the number of clusters in all six data
sets. The SF successfully processes the standard case with clusters and noise
(Noisy), clusters of different size and compactness (Unbalanced), overlapped
clusters (Overlapped), multiple kind of clusters (Mixed) and multidimensional
data (Iris and Wine).

Data Sets DU DB SI MB SF

Noisy 7(X) 5(O) 5(O) 5(O) 5(O)
Unbalanced 2(X) 4(O) 4(O) 6(X) 4(O)
Overlapped 2(X) 3(X) 4(O) 4(O) 4(O)
Mixed 3/4(X) 6(O) 6(O) 8(X) 6(O)
Iris 2(X) 2(X) 2(X) 2(X) 3(O)
Wine 8(X) 3(O) 3(O) 2(X) 3(O)

Table 7. Estimated number of clusters for six data sets and five cluster validity indices.
Notation indicates when the correct number of clusters has been found (O) or not (X).

4.2 Perfect Clusters

Since the score function is bounded, its upper limit (1.0) can be used to estimate
the closeness of data sets to perfect clusters. The next two data sets are used to
test how the SF deals with perfect clusters. The data sets Perfect3 and Perfect5

are made of 1000 points in 2D and contain three and five clusters respectively
which are near to perfect (i.e. with a very high compactness). Although the num-
ber of clusters is correctly identified, it is interesting to note that the maximum
value for the SF is different in both cases. In the three cluster case, the maximum
(0.795) is higher than in the second one (0.722). This is due to the dependence
of the SF on the number of clusters k. This can be seen in the denominator of
Equation 6. Nevertheless, the SF gives an idea of how good clusters are through
the proximity of the value of the index to its upper bound of unity.
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4.3 Unique Cluster

An objective of the SF is to accommodate the unique cluster case. This case is
not usually treated by others. In this subsection, kmin and kmax are taken to
be respectively, 1 and 8. When the SF is plotted against the number of clusters,
two situations may occur. Either the number of clusters is clearly located with
a local maximum (Figure 2, left) or the SF grows monotonically between kmin

and kmax (Figure 2, right).
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Fig. 2. Difference of the SF trend with a data set containing three clusters (left) and
one cluster (right).

Since in the first situation, the number of clusters is identifiable, the challenge
lies in the second situation. There are three possible cases. They are: i) no
structure in the data, ii) data that forms one cluster and iii) the correct number of
clusters is higher than kmax. The first situation is out of the scope of this article.
More details of whether the data is structured or not, known as cluster tendency,
can be found in [1]. In the last two situations, the SF grows monotonically with
the number of clusters.

Two observations have been noticed. First, in the unique cluster cases, the
value of the SF when k = 2, denoted as SF2 is closer to the value for k = 1 (SF1)
than in other data sets. Second, the SF is dependent upon the dimensionality
of the data set. Therefore, the slope between SF2 and SF1 weighted by the
dimensionality of the data set is used as an indicator. To test the unique cluster
case, two new data sets are introduced: UniqueN is a unique cluster with an
added noise and Unique30 is a unique cluster in a 30 dimensional space. Results
of this indicator on all data sets are given in Table 8.

According to Table 8, it is empirically stated that the data set is likely to
contain more than one cluster if Equation 9 is satisfied.

(SF2 − SF1) · d > 0.2 (9)

where d is the dimensionality of the data, SF2 and SF1 are respectively the
value for SF when k = 2 and k = 1. Only two data sets containing unique
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Data sets Indicator Data sets Indicator

Noisy 0.37 UniqueN 0.11

Unbalanced 0.65 Unique30 0.10

Overlapped 0.45 Iris 1.49
Mixed 0.41 Wine 1.31

Table 8. Results of the indicator (SF2 − SF1) · d for eight benchmark data sets.

clusters do not satisfy the condition in Equation 9. Therefore, the index SF is
the only one, among all tested indices, that is able to identify a unique cluster
situation.

4.4 Sub-clusters

Another interesting study concerns the sub-cluster case. This situation occurs
when existing clusters can be seen as a cluster hierarchy. If this hierarchy can
be captured by the validity index, more information about the structure of the
data can be given to the user. Data set Sub-cluster in Figure 3 is an example of
this situation. The index SF is compared with the previously mentioned indices
on this topic. Figure 3 shows the evolution of each validity index with respect
to the number of clusters.
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Fig. 3. Comparison of DU, DB, SI, MB and SF for the sub-cluster case. DB must be
minimized.



12 Sandro Saitta, Benny Raphael, Ian F.C. Smith

DU is not able to find the correct number of clusters (neither the sub-clusters,
nor the overall clusters). Although MB finds the sub-clusters, no information
about the hierarchy is visible. In the case of DB, even if it is not able to find
the five clusters (it finds four), the sub-cluster hierarchy is visible because the
value of the index drops rapidly at three clusters. The SI index is not able to
recover the correct number of clusters (i.e. the sub-clusters) although it can find
the three overall clusters. Finally, the only index which is capable of giving the
correct five clusters as well as an indication for the three overall clusters is SF.

4.5 Limitations

In the above subsections, data sets used to test the different indices contain hy-
perspheroidal clusters. In this subsection, arbitrarily-shaped clusters are briefly
studied using two new data sets. Pattern is a data set containing 258 points
in 2D. It contains three clusters with a specific pattern and different shapes.
Rectangle is made of 1000 points in 2D that represent three rectangular clusters.
These data sets are shown in Figure 4.
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Fig. 4. Two new artificial data sets. Pattern and Rectangle contain respectively 258
and 1000 points in 2D.

Regarding the Pattern data set, all indices are able to find the correct number
of clusters (3). The proposed shapes and the pattern do not reveal weaknesses in
any index. Concerning the Rectlangle data set, results are different. The proposed
score function is not able to discover the three clusters. All other tested indices
fail as well. All indices overestimates the correct number of clusters: DU (9), DB
(7), SI (8), MB (8) and SF (10). A likely explanation is that clusters are far from
hyperspheroidal shaped. Therefore, a limitation of the score function, as well as
other tested indices, is their restriction to data sets containing hyperspheroidal
clusters.
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5 Conclusions

Although there are several proposals for validity indices in the literature, most
of them succeed only in certain situations. A new index for hard clustering -
the score function (SF) - is presented and studied in this paper. The proposed
index is based on a combination of the within and between class distances. It
can accommodate special cases such as the unique cluster and perfect cluster
cases. The SF is able to estimate correctly the number of clusters in several
artificial and real-life data sets. The SF has successfully estimated the number
of clusters in data sets containing unbalanced, overlapped and noisy clusters.
In addition, the SF has been tested successfully on multidimensional real-life
data sets. No other index performed as well on all data sets. Finally, in the case
of sub-cluster hierarchies, only the SF was able to estimate five clusters and
overall, three groups. Therefore, the index SF outperforms four other validity
indices (Dunn, Davies-Bouldin, Silhouette and Maulik-Bandyopadhyay) for the
k-means algorithm on hyperspheroidal clusters. The proposed index can also
accommodate perfect and unique cluster cases. In order to identify the one cluster
case, an empirical condition has been formulated. Finally, determining values for
the index is computationally efficient.

Several extensions to the present work are in progress. For example, a theo-
retical justification for the unique cluster condition (Equation 9) is under study.
More extensive testing on arbitrarily shaped clusters is necessary. Finally, studies
of other clustering algoritms are also under way.
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