Comparison of a novel Combined ECOC
Strategy with Different Multiclass Algorithms
together with Parameter Optimization Methods

Marco Hiilsmann!? and Christoph M. Friedrich?

! Universitit zu Kéln, Germany
2 Fraunhofer-Institute for Algorithms and Scientific Computing (SCAI), SchloB
Birlinghoven, 53754 Sankt Augustin, Germany

Abstract. In this paper we consider multiclass learning tasks based on
Support Vector Machines (SVMs). In this regard, currently used meth-
ods are One-Against-All or One-Against-One, but there is much need for
improvements in the field of multiclass learning. We developed a novel
combination algorithm called Comb-ECOC, which is based on posterior
class probabilities. It assigns, according to the Bayesian rule, the re-
spective instance to the class with the highest posterior probability. A
problem with the usage of a multiclass method is the proper choice of pa-
rameters. Many users only take the default parameters of the respective
learning algorithms (e.g. the regularization parameter C' and the ker-
nel parameter 7). We tested different parameter optimization methods
on different learning algorithms and confirmed the better performance
of One-Against-One versus One-Against-All, which can be explained by
the maximum margin approach of SVMs.

1 Introduction

All multiclass learning methods considered here are based on Support Vector
Machines, which are presented for example by Scholkopf and Smola [22] and
Vapnik [25]. Mostly, several binary classifications are resolved by an SVM, which
are then combined to a multiclass solution. Our goal is to present improved
methods in the open-research field of multiclass learning.

In section 2 we start with the presentation of different state-of-the-art multi-
class algorithms. We consider the standard methods One-Against-All (OAA) and
One-Against-One (OAO) using implementations of the libsvm [11] and SVMlight
[15]. We continue with two direct approaches, which are not based on several
binary optimization problems: the algorithm by Crammer and Singer [4] and
SVMmulticlass based on the theory of [24]. Furthermore we use the exhaus-
tive ECOC algorithm introduced by Dietterich and Bakiri [5] and present a
novel combination approach of ECOC, OAA and probability predictions. This
method ist called Comb-ECOC and has been developed in [14]. The probability
predictions are based on Bradley-Terry models described in [13].

The next principal subject of this paper will be the parameter optimiza-
tion. In many applications, Support Vector Machines are used with their default

parameters. Optimizing the parameters improves the classification performance
drastically, which will be shown in section 3. We consider different optimization
methods, such as the common grid search and the SVMpath algorithm intro-
duced in [10].

Finally, we give results obtained from different test runs with all considered
multiclass algorithms and parameter optimization methods in section 3, together
with the practical confirmation of the maximum margin explanation in the case
of One-Against-One and One-Against-All. A final discussion is carried out in
section 4.

2 Theoretical Background

In this section we consider the multiclass algorithms from a theoretical point
of view. We shortly describe the principal ideas of both the learning methods
and the parameter optimization. In order to avoid later misunderstandings, we
here already enumerate the used algorithms in Table 1. Detailed experiments
and comparisons can also be found in [9] and [12]. In the latter, especially One-
Against-One is suggested for real-world applications, which will be confirmed by
our analysis.

We start with a general description of the multiclass learning task, in order
to appoint the notations used in this paper: We consider an input space X =
{1, ..., 2} and assign k > 2 classes to this set, so that each element in X belongs
to exactly one class. The goal is to find a decision function f: X — {1,...,k} to
get a pair (x;, f(z;)) for all ¢ = 1, ..., m. The assigned class f(z;) =r € {1,...,k}
is also called label. We furthermore distinguish between the input space and the
feature space. The input space X can be anything. It is not necessary that it
consists of vectors or numerical values. In contrast, the feature space F is a high
dimensional vector space. In this paper, let its dimension be defined as n. A
map @ : X — F is used to assign an element of the input space to a vector
in the feature space. In order to avoid the computation of @, we simply use
a kernel function k(z,z") = (®(z),P(z’)) for all z,2’ € X. Here we only give
results obtained by using Gaussian kernels k(z, 2’) = exp(—v||z — 2/||?), v € R,
because pursuant to [14], it delivers the best results and the corresponding SVM
algorithm works faster in comparison to the polynomial and the sigmoid kernel.
Instead of predicting classes we also use methods which predict posterior class
probabilities.

2.1 Standard Multiclass Algorithms

One-Against-All (OAA) A well-known simple approach for the assignment
of instances to several classes is to separate each class from all the other classes.
This method is called One-Versus-the-Rest or One-Against-All and bears on k

Table 1. Description of the different multiclass learning algorithms.

Algorithm Description Section

OAA One-Against-All classification by libsvm using binary 2.1
class probabilities

OAO One-Against-One classification by libsum, voting 2.1

SVMpath SVMpath algorithm described in [10] using the appropri- 2.6
ate predict function

SVMlight-OAA Interface between R and SV Mlight, One-Against-All clas- 2.1
sification

SVMlight-OAO Interface between R and SVMiight, One-Against-One 2.1
classification

Crammer-Singer Multiclass Algorithm by Crammer and Singer [4] 2.2

SVMmulticlass Direct Algorithm by Thorsten Joachims [24] 2.2

ECOC Standard Exhaustive ECOC Algorithm by Dietterich and 2.3
Bakiri [5] using the libsum for binary classification

ECOC-SVMpath ECOC with SVMpath as binary predictor 2.3, 2.6

Comb-ECOC Combined ECOC Algorithm, combination with OAA 2.4
predicting posterior class probabilities

binary classificators f1,..., f¥, where k is the number of classes. In order to
classify a test point x, one computes the decision function

_ i NIRY;
flz)= argj:rrllﬁ}ik ; yiorl k(x,) + V7, (1)

where the index j refers to the binary separation of class j from the rest. The
coefficients «; and b stem from the dual optimization problem, which is set up
in the context of binary Support Vector Machine classification, see e.g. [3]. We
use this method in two implementations: First, we consider the method named
OAA (see Table 1), which uses binary class probabilities computed — pursuant
to [19] — by:
1

~ 1+exp(Afi(z) + B)’

where f7 is the binary classificator that separates class j from the rest. A and B
are parameters obtained by the minimization of a negative log-likelihood func-
tion. Then the class is computed by:

f(x) = argj:rrll?;ikp(jlév). (3)

P(jlx) (2)

The second implementation called SVMlight-OAA is based on the interface
between R [21] and SVMlight [15] (website: http://svmlight. joachims.org)
provided by the R-library klaR (see [20]). It calls SVMlight k times for all k
binary classifications and computes the class by equation (1).

One-Against-One (OAO) The idea of this method is to extract all pairs of
classes and accomplish a binary classification between the two classes in each
pair. Altogether, there are (}) = @ binary classifications. The training set
contains only elements of two classes. The other training instances are eliminated
from the set. This results in a smaller complexity in comparison to the One-
Against-All method, but the number of classes is O(k?) instead of O(k). The
assignment of a class to a test point occurs by voting. Pursuant to [16], an
advantage of the pairwise classification is that in general, the margin is larger
than in the OAA case, as we can see from Figure 1. Moreover, the difference of
the margin sizes is bigger in the OAO case. Very large margins are possible to
appear.

22 2 2 2 2 9 22 2
3 3 2
2.2, 333 2, 2, 335 2,2 333
2,72 333 | 2, 333 2552 3333
222 222 222
1 1
1h 44,4 1h 44,4 1h 444
tfal Jaty | ialn o agd LN dgd
117 44, 1171 244, 117 4at
4 4 4% 44

Fig. 1. Comparison of the margin size in the case of OAA and OAO (4 classes): In the
left picture class 1 is separated from the rest. The margin is small. In the middle class
1 is separated from class 2 and in the right picture class 1 is separated from class 3.
The margin is larger in general. The margin size differs more in the OAO case. The
right picture shows a very large margin.

We use OAO from the libsum (see [17]) as a function called sum from the
R-package e1071 (see [6]).

2.2 Direct Multiclass Algorithms

In our evaluation, we use two direct methods. Direct means that there is only
one optimization problem to solve instead of multiple binary ones.

The Algorithm by Crammer and Singer The direct approach consists in
formulating one quadratic program with constraints for each class. The algorithm
developed by Crammer and Singer [4] is based on the same idea as the OAA-
approach, namely to look for a function Hys : F — {1, ..., k} of the form

Ha(w) = argmax{M, -z}, (4)

where M is a matrix with k£ rows and n columns and M, the rth row of M. The
aim is to determine M, so that the training error is minimized.

We take the implementation of this algorithm from the R-library kernlab.
The used function is named ksvm.

The Algorithm by Thorsten Joachims This method is based on [24], where
the composition of the optimization problem and its solution are described in
detail. The first reason for finding a more general direct multiclass algorithm
is the fact that in real world examples, one does not only have labels in IN.
The label set can be arbitrary. For instance, it can consist of structured output
trees. The output set) does not have to be a vector space. The second reason is
allowing different loss functions. Most multiclass algorithms only minimize the
zero-one-loss.
We use the software SVM™lass jipplemented by Thorsten Joachims (see

http://www.cs.cornell.edu/People/tj/svmlight/svmmulticlass.html).

2.3 Error Correcting Output Codes

A very simple but efficient method is based on Error Correcting Output Codes
(the so-called ECOC method) and has been developed by Dietterich and Bakiri
[5]. ECOC is not a direct application but uses several binary classifications like
OAA and OAO. The main difference between OAA, OAO and ECOC is that
these are not predisposed. They can be chosen arbitrarily and are determined by
a coding matrix. The advantage of the usage of error correcting output codes is
that several binary classification errors can be handled, so that no error occurs
in the multiclass problem. We use an ezhaustive code matrix, as proposed in [5].
The ECOC algorithm is part of our own implementation.

2.4 Combined ECOC Method

The novel Comb-ECOC algorithm (see also [14]) is a mixture of OAA, ECOC
and probability prediction. The results of three different partial algorithms are
combined by a combination method. We use three code matrices, one defined by
the user himself and two generated at random. The random code matrices are
composed, so that the minimum Hamming distance is equal to [g] The number
of binary classificators £ is a random integer between 2k and 2¥, so the algorithm
can be NP-complete, like the Ezhaustive-ECOC algorithm of section 2.3. This
disadvantage can be reduced by precalculating the code matrices for a given k.
Furthermore we use the binary class probabilities computed by equation (2) for
each of the ¢ binary classificators and apply Bradley-Terry methods to estimate
the multiclass probabilities following [13]. The optimization problem results in a
fixpoint algorithm. The complete procedure of Comb-ECOC is described in [14].

All three initial code matrices contain OAA columns, that means columns
which define an OAA classification (one entry 1 and the rest 0). By a small
modification of the convergence proof in [13], one can show that the fixpoint

algorithm converges with this assumption. A test point is assigned to the class
with the highest posterior probability.

The fact that we consider three different code matrices delivers three different
multiclass models m;, ¢ = 1, ..., 3. These models can be combined in order to be
able to compensate the weaknesses of particular models, as described in [8]. We
illustrate the idea of combination by the following example:

Example 1 (Combination of multiclass models) Consider k classes and p
multiclass models. Let p;(x;,,) be the posterior probability with which a test point
x; belongs to a class v € {1,....k} predicted by the multiclass model m;, i €
{1,...,p}. Let furthermore Peomb(Tj,r) be the resulting combination classificator.
Then x; is assigned to a class as follows:

class(xj) = arg rrllaxkpcomb(xj7r). (5)

We consider different combination models for peoms:
The maximum: peoms(2j,r) = Mmaxi—1,...,. Di(Zj,r)

The minimum: peoms (z5,r) = ming—y_... . pi(x;r)

The average: peomb(Tj,r) = %Zle pi(zj,)
The median:

= Lo

P% (‘TJYT‘)+1’A‘2£+1(‘TJ}7‘)

o) = 5 : s even 6
pcomb(j,?”) { puTH(xj,T)) is odd ()

5. The entropy:

1 - Di x] r)
pcomb(mj,r) = i) — — Z (7)

= s 1p1(x.7 S)logpl(xj s)

6. The product:
n

pcomb($j7r) = Hpi($j7r) (8)

=1

2.5 Parameter Optimization via Grid Search

In order to show that it is not sufficient to use the default parameters of the
respective methods, we performed a parameter optimization via grid search.
The parameters we consider are the SVM regularization parameter C' and the
Gaussian kernel parameter . We first defined a training set and a test set of the
original dataset. To warrant the comparability of the results we used the same
training set and the same test set for all algorithms and optimization methods.
For the parameter optimization itself, we determined 10 bootstrap replications
on the training set (for details concerning the bootstrap see [7]). Each of them is
evaluated with different parameter pairs. The parameter pair with the smallest
mean error over the 10 bootstrap replications is taken for predictions on the test
set.

The parameters are defined on a grid, that means that we only allow a
final number of parameters for the optimization. For computational reasons,
we only use C € C = {272,271 ...,23 24} and v € G = {273,272, ..., 22 23}
In total, have 7 -7 - 10 = 490 bootstrap replications in our optimization pro-
cess. If we have two or more pairs (C,v) with the same mean error rate over
the 10 bootstrap replications, we take the pair with the largest C to facili-
tate the choice of the maximum margin classification. We differenciate between
two methods: global and local. The global method tunes the whole multiclass
algorithm globally, that means it takes one pair (C,7) for the entire algo-
rithm, i.e. the same pair for all contained binary classifications. However, the
local method tunes all binary classificators, making a grid search for each bi-
nary classification. Therefore, in the global case we have a for-loop over C
and over v and evaluate the multiclass algorithm with C' and ~. The result
is one parameter pair (C,). In the local case we implemented a for-loop over
all ¢ binary classificators, which in turn contains the C- and the ~-for-loops.
Then the binary classification ¢ € {1,...,¢} is made with C and 5. The re-
sult is a vector (Cy,7;)i=1,..¢. The computational complexity of the global
optimization is |C| - |G| - #(op. in the multiclass algorithm). The complexity of
the local optimization is £ - |C| - |G| - #(op. in the binary algorithm). But espe-
cially in the case of the ECOC algorithms: #(op. in the multiclass algorithm) >
£ - #(op. in the binary algorithm). Therefore the local optimization method is
faster in general.

2.6 Parameter Optimization via SVMpath

In [10], a different method to optimize the cost parameter C' is suggested. They
compute the entire regularization path for a binary Support Vector Machine
algorithm. The advantage of the calculation of this path is the fact that the
complexity is as large as the one of a usual SVM algorithm. Consider the decision
function f(z) = By + g(x), where

Viz1,...m g(x;) = Zozjyjk(a:i,xj) (9)
j=1

>| =

with a; the Lagrangian multipliers of the SVM optimization problem and A = é
Then the following definitions are made:

— & ={ilyif(z;) = 1,0 < o; < 1} is called Elbow
— L :={ilyif(z;) < 1,a; = 1} is called Left of the Elbow
— R :={ilyif(x;) > 1,; = 0} is called Right of the Elbow.

For the calculation of the optimal A a Linear Equation System has to be
solved. The respective matrix can be singular, which is a problem of the SVMpath
algorithm.

3 Results

Finally, we show some results from the evaluation of the algorithms indicated in
Table 1. We took the Glass dataset for the evaluation. It consists of 241 instances,
9 features and 6 classes and stems from the UCT repository of machine learning
databases [18]. The task of the Glass problem is to discriminate between different
glass types to support criminological and forensic research. As mentioned in
section 2.5, we divided the dataset into a training and a test set. Table 2 shows
the classification error rates (= 1 — test accuracy) for the application of the
model established by the Glass training set on the independent test set with the
optimal parameters computed by the methods described in sections 2.5 and 2.6.
The training set contains about 70% of the original dataset. It is guaranteed
that all classes are contained both in the training set and in the test set.

The results are comparable with error rates obtained by authors of other
reviews: Szedmak and Shawe-Taylor [23] got results in the range of 0.3-0.4 with
standard OAA and OAO algorithms, Garcia-Pedrajas and Ortiz-Boyer [9] a re-
sult of 0.28. Friedrich [8] used 50 bootstrap replications which evoked 50 error
rates. Their mean was 0.39 with a standard deviation of 0.04, using a k-Nearest-
Neighbor algorithm, 0.40 with a standard deviation of 0.07 using a Decision Tree
based method and 0.41 with a standard deviation of 0.07 using a Linear Dis-
criminant Analysis. The best result obtained by [8] was 0.23 with evolutionarily
generated architectures of neural networks and combination models originated
from bagging (see [2]). The best result of 0.23 in Table 2 is obtained by Comb-
ECOC with a local parameter optimization. In general, the local optimization
delivers the best results but also from svmpath, quite good results are achieved,
especially with the simple multiclass algorithms that use the libsvm.

Table 2 also shows the results obtained with the default parameters of the

methods. Note that ECOC and Comb-ECOC use the libsvm and SVMlight, re-
spectively, as binary classificators. So we only took the binary default parame-
ters. We also got a result from the method by Crammer and Singer described
in section 2.2. Due to high runtimes during the parameter optimization, we did
not indicate any results for it in the lower tabulars of Table 2.
If we compare these results with the error rates in the tabular below, we see
that the results are much worse than with parameter optimization, except in
the case of OAA and ECOC (global and svmpath optimization). Mainly in the
case of the ECOC algorithms, a good parameter optimization is indispensable.
To explain this, we differenciate between two kinds of classification errors:

1. Errors occuring because of overlapping classes
2. Errors occuring because of classes that are too far away from each other with
other classes between them.

Especially errors of the second type can be serious. Depending on how the
classes are distributed in the input space and which classes have to be merged
by a binary classificator, the Gaussian kernel may not accomplish several classi-
fications anymore. Therefore, the choice of better parameters is necessary.

Table 2. Error Rates, runtime in CPU seconds (on an Intel Pentium IV processor with 3.06 GHz and
1 GB RAM) and number of support vectors for Glass dataset with default and optimal parameters
for each algorithm and each optimization method. The mean of the support vectors (over all binary
classifications) with the standard deviations in parentheses are mostly indicated. Exceptions: OAO-
global (total number of support vectors, specific output of libsum), Crammer-Singer/SVMmulticlass
(Note that these are direct algorithms. See [4] and [24] for more details.) Note that in the case of
Comb-ECOC we have three different code matrices: the user defined matrix (U) and two randomly
defined matrices (R1, R2).

Results with Default Parameters of each Multiclass Algorithm

Algorithm Error Rate Runtime Number of SVs
OAA 0.27 0.53 57.17 (38.85)
OAO 0.34 0.09 132.00
SVMlight-OAA 0.34 0.98 85.17 (29.53)
SVMlight-OAO 0.38 2.27 32.27 (17.14)
Crammer-Singer 0.28 0.46 480.00
SVMmulticlass 0.27 3.33 430.00
ECOC 0.45 1.81 84.42 (33.51)
Comb-ECOC 0.48 189.92 U: 96.07 (28.95)

R1: 101.00 (24.92)

R2: 101.00 (24.91)

Error Rates and Runtime with Parameter Optimization

Optimization Method

Algorithm Global Local SVMpath
OAA 0.30 947.64 0.38 1695.26 0.30 23.88
OAO 0.31 282.63 0.30 1062.92 0.28 5.63
SVMpath - - 0.30 4.47
SVMlight-OAA 0.33 95.5 0.30 1253.93 0.34 19.72
SVMlight-OAO 0.33 217.62 0.33 2522.45 0.30 10.34
SVMmulticlass 0.25 817.79 - -

ECOC 0.47 996.54 0.44 944.09 0.52 81.29
ECOC-SVMpath - - 0.48 87.36
Comb-ECOC 0.28 57822.65 0.23 5279.15 0.31 458.38

Number of Support Vectors with Parameter Optimization

Optimization Method

Algorithm Global Local SVMpath
OAA 70.00 (37.36) 64.00 (40.63) 48.00 (34.04)
0AO 135.00 28.47 (18.58) 21.13 (15.22)
SVMpath — - 14.8 (8.67)
SVMlight-OAA 82.00 (24.47) 72.17 (30.31) 34.00 (21.73)
SVMlight-OAO 32.6 (13.83) 24.27 (15.90) 14.8 (9.50)
SVMmulticlass 570.00 - -
ECOC 101.84 (22.31) 88.87 (28.34) 94.03 (15.81)
ECOC-SVMpath - - 61.81 (21.87)
Comb-ECOC U: 20.35 (4.66) U: 33.10 (2.45) U: 4247 (22.05)
R1: 21.67 (3.62) R1: 33.82 (2.55) R1: 53.48 (22.65)

R2: 21.65 (3.70) R2: 33.64 (2.44) R2: 53.48 (22.65)

It is not excluded that the default parameters are better than the optimized
ones. This can have two reasons:

1. They are not taken from a grid but defined by another way, so their domain
is different.

2. As we use bootstrapping for finding the optimal parameters, the parameters
can differ from run to run, as the bootstrap replicates are defined at random.

However, the higher runtime of a parameter optimization is worth getting
better models for classification tasks.

Beside the test accuracies, one also has to account the number of support
vectors, in order to exclude overfitting. They are also shown in Table 2. If we
confront the OAO algorithms with the OA A algorithms, we see that in the OAO
case, the number of support vectors is much lower than in the OAA case, as in
general, the margin is much larger in the first case (see Figure 1). Another ex-
planation might be the larger size of the training sets in the OAA case. Secondly,
if we compare ECOC and Comb-ECOC, we see that the bad test accuracies of
ECOC in Table 2 are related to the high number of support vectors, whereas
the good results of Comb-ECOC are connected with a small number of support
vectors.

Note that the complexities of the standard algorithms OAA and OAO are
polynomial in the number of classes. Also the algorithms by Crammer and Singer
[4] and by Thorsten Joachims [24] can be run in polynomial time. The methods
using error correcting output codes are NP-complete. As Comb-ECOC consists
of three runs defined by three different code matrices, each of which can have
an exponential number of columns, its elapsed runtime is the largest by far, fol-
lowed by ECOC and SVMmulticlass. OAA is not always faster than OAO, even
if its complexity is O(k) instead of O(k?). Note that the number of data points
is smaller in the case of pairwise classification.

Class Distribution of Artificial Dataset (4 classes), 1 overlap region Class Distribution of Artificial Dataset (4 classes), 2 overlap regions

v

<%,
*%@;;» °§

apoe
ooee

Fig. 2. Artificial Datasets with different margin sizes for OAA and OAO. Each class is
defined by a unit circle. The first dataset has one, the second has two overlap regions.

Table 3. Error Rates, runtime and number of support vectors for the artificial dataset in Figure 2
with 1 overlap region with optimal parameters for each algorithm and each optimization method.
The mean of the support vectors (over all binary classifications) with the standard deviations in
parentheses are mostly indicated. Exception: OAO-global (total number of support vectors, specific
output of libsum).

Error Rates and Elapsed Runtime in CPU seconds

Optimization Method

Algorithm Global Local SVMpath

OAA 0.0233 477.08 0.0233 136.37 0.0233 177.52
OAO 0.0200 40.11 0.0267 157.93 0.0167 40.52
SVMlight-OAA 0.0267 290.11 0.0233 2980.90 0.0167 381.90
SVMlight-OAO 0.0267 368.49 0.0233 3999.49 0.0167 108.60

Number of Support Vectors

Optimization Method

Algorithm Global Local SVMpath

OAA 58.25 (41.92) 70.75 (40.05) 22.5 (23.04)
OAO 53.00 41.17 (38.94) 13.67 (19.56)
SVMlight-OAA 82.00 (61.16) 131.25 (76.68) 33.75 (35.53)
SVMlight-OAO 29.50 (18.43) 85.67 (14.25) 13.83 (13.17)

Table 4. Error Rates, runtime and number of support vectors for the artificial dataset in Figure 2
with 2 overlap regions with optimal parameters for each algorithm and each optimization method.
The mean of the support vectors (over all binary classifications) with the standard deviations in
parentheses are mostly indicated. Exception: OAO-global (total number of support vectors, specific
output of libsvm). Note that in the OAA case, the matrix of the resulting Linear Equation System
is singular.

Error Rates and Elapsed Runtime in CPU seconds

Optimization Method

Algorithm Global Local SVMpath

OAA 0.0267 509.11 0.0233 166.41 singular system
OAO 0.0200 48.33 0.0267 157.09 0.0267 60.39
SVMlight-OAA 0.0233 10748.38 0.0200 3081.58 singular system
SVMlight-OAO 0.0133 450.48 0.0200 3848.86 0.0267 142.03

Error Rates and Elapsed Runtime in CPU seconds

Optimization Method

Algorithm Global Local SVMpath
OAA 184.25 (5.85) 133.5 (34.85) singular system
OAO 113.00 58.83 (31.69) 23.83 (32.96)
SVMlight-OAA 111.00 (8.29) 133.25 (69.01) singular system

SVMlight-OAO 37.50 (19.69) 89.83 (24.84) 17.00 (23.68)

‘Separation of class 1vs the rest ‘Separation of class 2 vs the rest

A, A
. 5] w:'z”%{':jf X ge?{?@f%ﬂ%-“;ja X
RS RS

Fig. 3. Decision boundaries for the separations ’Class 1 vs rest’, ’Class 2 vs rest’ and OAO decision
boundaries for the first dataset in Figure 2. We see that the OAA margins are much narrower than
the OAO margins. The support vectors are highlighted by crosses.

Separation of class 3vs the rest Separation of class 4 s the rest

Fig. 4. Decision boundaries for the separations 'Class 3 vs rest’, ’Class 4 vs rest’ and OAO decision
boundaries for the second dataset in Figure 2. We see that the OAA separations are much narrower
than the OAO margins. The support vectors are highlighted by crosses.

Finally, we compared the OAA and OAQO algorithms on two artificially com-
posed datasets, which are plotted in Figure 2. It is a realization of the theoretical
idea formulated by Figure 1. The margin sizes of the OAA algorithm are much
smaller than the ones of the OAO algorithm. Furthermore, we have different
margin sizes in the OAO case.

Each of the two datasets is two-dimensional and consists of 1000 instances.
The 4 classes are equally distributed. They are divided into a training set with
700 and a test set with 300 instances. Table 3 shows the results for the first and
Table 4 for the second dataset. In the case of one overlap region, we cannot see
any difference between OAA and OAQ yet, except the fact that in the OAO
case, the number of support vectors is much smaller. The separations ’Class 1
vs rest’, 'Class 2 vs rest’ and ’Class 1 vs Class 2’ will produce training errors.
All the other cases are separable. Figure 3 shows the binary decision boundaries
of the first two OAA separations and the multiclass decision boundaries of the
OAO algorithm. In the OAO case, the margins are much larger than in the OAA
case.

The results for the second dataset with two overlap regions are summarized in
Table 4. Here, we see a difference between SVMlight-OAA and SVMlight-OAO:
As in Table 3, the number of support vectors is always smaller in the OAO case.
Furthermore the error rate is smaller using SVMlight-OAO. Also the runtime is
much higher in the OAA case. That is because the optimization problems are
more difficult to solve. The individual binary separations are more complicated.
The corresponding feature spaces will have very high dimensions. For the second
dataset, the separations 'Class 1 versus the rest’, ’Class 2 versus the rest’, ’Class
3 versus the rest’, 'Class 1 versus Class 2’ and ’Class 1 versus Class 3’ cause
positive training errors. Figure 4 shows the binary decision boundaries of the
last two OAA separations and the multiclass decision boundaries of the OAO
algorithm. The margin is smaller in the OAA case, as expected.

In order to complete the experimental proof that the OAO algorithm per-
forms better than the OAA algorithm in the aforesaid special geometric case, we
executed pairwise t-tests on 30 bootstrap replications, using a confidence level
a = 0.05. Especially in the global optimization case the t-tests were significant
(p-value: p < a), in favor of the OAO algorithm.

4 Discussion and Conclusion

In this paper, we present a multiclass combination method named Comb-ECOC
and compare it statistically with other existing algorithms enlisted in Table 1.
Furthermore, we oppose different parameter optimization methods.

Comb-ECOC delivers good results. It performed best for the Glass dataset
with a special kind of parameter optimization. Its advantages are

1. the usage of error correcting output codes,
2. the prediction of posterior class probabilities,
3. its robustness and

4. the combination of three multiclass runs defined by three different code ma-
trices.

Of course, there are also some disadvantages. The result for the Glass dataset
is the best, but from this fact, one cannot interprete that it always outper-
forms the other algorithms. Pursuant to [26], this also depends on the respective
dataset. The main problem of Comb-ECOC lies in the precoding. In order to
maintain the robustness against several binary classification errors, a large min-
imum Hamming distance between the rows of the code matrices must always
be guaranteed. Some approaches can be found in [1], but it is indispensable to
use algebraic methods from Galois theory. Especially if the number of k is large
(e.g. k = 15), a large minimum Hamming distance is not procurable in an easy
way, and therefore Comb-ECOC will fail. But with a good precoding strategy
its performance will be enhanced.

The second disadvantage is its high runtime: For the local parameter opti-
mization it takes 1.5 hours and for the global optimization even 16 hours. How-
ever, from Table 2 (first tabular) we can see that one modelling and classification
process without parameter optimization before only takes about 3 minutes.

The second subject of this paper is the parameter optimization. We sug-
gest three methods: global, local and svmpath. Intuitively, the local optimization
should perform better than the global optimization, because each classificator
gets its own optimal parameters. The danger of overfitting is excluded, because
we do not minimize training errors but test errors occuring during several boot-
strap replicates. As we can see from Table 2, the results are mostly better in the
local case.

Another way is to take into account the contrast between a small training
error and a large margin instead of only considering several test errors. SVMpath
does so. Furthermore, it has the advantage of a complexity that is not higher
than a usual Support Vector Machine. But as we see in this paper, it does not
perform well on foreign classification algorithms. It should be used for algorithms
implemented in the libsvm. The best solution would be to use its own prediction
function. A disadvantage of SVMpath is the fact that it may compute nega-
tive regularization constants which are useless for Support Vector Machines. We
found this problematic using other datasets.

Despite the advantages that SVMs show for binary classifications, other
methods like Neural Networks, Linear Discriminant Analysis or Decision Trees
should be considered in multiclass scenarios.

References

1. Bose, R.C., Ray-Chaudhuri, D.K.: On A Class of Error Correcting Binary Group
Codes. Information and Control 3 (1960)

2. Breiman, L.: Bagging Predictors. In: Machine Learning 24 (1996) 123-140

3. Christianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines.
Cambridge University Press (2000)

4. Crammer, K., Singer, Y.: On the Algorithmic Implementation of Multiclass Kernel-
based Vector Machines. Journal of Machine Learning Reseach 2 (2001) 265-292

5. Dietterich, T., Bakiri, G.: Solving Multiclass Learning Problems via FError-
Correcting Output Codes. Journal of Artificial Intelligence Research 2 (1995) 263286

6. Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A.: The 1071 pack-
age. Manual (2006)

7. Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Chapman & Hall/CRC
(1993)

8. Friedrich, C.: Kombinationen evolutionér optimierter Klassifikatoren. PhD thesis,
Universitat Witten/Herdecke (2005)

9. Garcia-Pedrajas, N., Ortiz-Boyer, D.: Improving Multiclass Pattern Recognition
by the Combination of Two Strategies IEEE Transactions on Pattern Analysis and
Machine Intelligence 28 (2006)

10. Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The Entire Regularization Path
for the Support Vector Machine. Technical Report, Statistics Department, Stanford
University (2004)

11. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A Practical Guide to Support Vector Clas-
sification. Department of Computer Science and Information Engineering, National
Taiwan University (2006)

12. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class Support Vector
Machines. IEEE Transactions on Neural Networks 13 (2002) 415-425

13. Huang, T.-J., Weng, R.C., Lin, C.-J.: Generalized Bradley-Terry Models and Multi-
class Probability Estimates. Journal of Machine Learning Research 7 (2006) 85-115

14. Hiilsmann, M.: Vergleich verschiedener kernbasierter Methoden zur Realisierung
eines effizienten Multiclass-Algorithmus des Maschinellen Lernens. Master’s thesis,
Universitat zu Koln (2006)

15. Joachims, T.: Making large-Scale SVM learning practical. Advances in Kernel
Methods — Support Vector Learning, MIT Press (1999) 41-56

16. Mencia, E.L.: Paarweises Lernen von Multilabel-Klassifikatoren mit dem
Perzeptron-Algorithmus. Master’s thesis, Technische Universitat Darmstadt (2006)

17. Meyer, D.: Support Vector Machines, the Interface to 1libsvm in package e1071.
Vignette (2006)

18. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine
learning databases. http://www.ics.uci.edu/ "mlearn/MLRespository.html (1998)

19. Platt, J.C.: Probabilistic Ouputs for Support Vector Machines and Comparisons
to Regularized Likelihood Methods. Proceedings of Advances in Large-Margin Clas-
sifiers, MIT Press (1999) 61-74

20. Roever, C., Raabe, N., Luebke, K., Ligges, U., Szepanek, G., Zentgraf, M.: The
klaR package. Manual (2006)

21. Thaka, R., Gentleman, R.: R: A Language for Data Analysis and Graphics. Journal
of Computational and Graphical Statistics 5 (1996) 299-314

22. Scholkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization and Beyond. MIT Press (2002)

23. Szedmak, S., Shawe-Taylor, J.: Multiclass Learning at One-Class Complexity.
Information-Signals, Images, Systems (ISIS Group), Electronics and Computer Sci-
ence. Technical Report (2005)

24. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support Vector Machine
Learning for Interdependent and Structured Output Spaces. Proceedings of the 21th
International Conference on Machine Learning. Banff, Canada (2004)

25. Vapnik, V.: The Nature of Statistical Learning Theory. Springer (1995)

26. Wolpert, D.H.: No Free Lunch Theorems for Optimization. Proceedings of IEEE
Transactions on Evolutionary Computation 1 (1997) 67-82

