Skip to main content

When Does Greedy Learning of Relevant Attributes Succeed?

— A Fourier-Based Characterization —

  • Conference paper
Computing and Combinatorics (COCOON 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4598))

Included in the following conference series:

Abstract

We introduce a new notion called Fourier-accessibility that allows us to precisely characterize the class of Boolean functions for which a standard greedy learning algorithm successfully learns all relevant attributes. If the target function is Fourier-accessible, then the success probability of the greedy algorithm can be made arbitrarily close to one. On the other hand, if the target function is not Fourier-accessible, then the error probability tends to one. Finally, we extend these results to the situation where the input data are corrupted by random attribute and classification noise and prove that greedy learning is quite robust against such errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T., Bao, F.: Approximating Minimum Keys and Optimal Substructure Screens. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 290–299. Springer, Heidelberg (1996)

    Google Scholar 

  2. Akutsu, T., Miyano, S., Kuhara, S.: Algorithms for Identifying Boolean Networks and Related Biological Networks Based on Matrix Multiplication and Fingerprint Function. J. Comput. Biology 7(3-4), 331–343 (2000)

    Article  Google Scholar 

  3. Akutsu, T., Miyano, S., Kuhara, S.: A Simple Greedy Algorithm for Finding Functional Relations: Efficient Implementation and Average Case Analysis. Theoret. Comput. Sci. 292(2), 481–495 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Almuallim, H., Dietterich, T.G.: Learning Boolean Concepts in the Presence of Many Irrelevant Features. Artificial Intelligence 69(1-2), 279–305 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alon, N., Spencer, J.: The Probabilistic Method. Wiley-Intersci. Ser. Discrete Math. Optim. John Wiley and Sons, Chichester (1992)

    Google Scholar 

  6. Arpe, J.: Learning Concepts with Few Unknown Relevant Attributes from Noisy Data. PhD thesis, Institut für Theoretische Informatik, Universität zu Lübeck (2006)

    Google Scholar 

  7. Arpe, J., Reischuk, R.: Robust Inference of Relevant Attributes. In: Gavaldá, R., Jantke, K.P., Takimoto, E. (eds.) ALT 2003. LNCS (LNAI), vol. 2842, pp. 99–113. Springer, Heidelberg (2003)

    Google Scholar 

  8. Arpe, J., Reischuk, R.: Learning Juntas in the Presence of Noise. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 387–398. Springer, Heidelberg, Invited to appear in special issue of TAMC 2006 in Theoret. Comput. Sci., Series A (2006)

    Chapter  Google Scholar 

  9. Arpe, J., Reischuk, R.: When Does Greedy Learning of Relevant Attributes Succeed?—A Fourier-based Characterization. Technical Report ECCC TR06-065, Electronic Colloquium on Computational Complexity (2006)

    Google Scholar 

  10. Bahadur, R.R.: A Representation of the Joint Distribution of Responses to n Dichotomous Items. In: Solomon, H. (ed.) Studies in Item Analysis and Prediction, pp. 158–168. Stanford University Press, Stanford (1961)

    Google Scholar 

  11. Bernasconi, A.: Mathematical Techniques for the Analysis of Boolean Functions. PhD thesis, Università degli Studi di Pisa, Dipartimento di Ricerca in Informatica (1998)

    Google Scholar 

  12. Blum, A., Furst, M., Jackson, J.C., Kearns, M., Mansour, Y., Rudich, S.: Weakly Learning DNF and Characterizing Statistical Query Learning Using Fourier Analysis. In: Proc. 26th STOC 1994, pp. 253–262 (1994)

    Google Scholar 

  13. Blum, A., Langley, P.: Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence 97(1-2), 245–271 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s Razor. Inform. Process. Lett. 24(6), 377–380 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Boros, E., Horiyama, T., Ibaraki, T., Makino, K., Yagiura, M.: Finding Essential Attributes from Binary Data. Ann. Math. Artif. Intell. 39(3), 223–257 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chvátal, V.: A Greedy Heuristic for the Set Covering Problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Feige, U.: A Threshold of ln n for Approximating Set Cover. J. ACM 45(4), 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fukagawa, D., Akutsu, T.: Performance Analysis of a Greedy Algorithm for Inferring Boolean Functions. Inform. Process. Lett. 93(1), 7–12 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Furst, M.L., Jackson, J.C., Smith, S.W.: Improved Learning of AC 0 Functions. In: Proc. 4th COLT 1991, pp. 317–325

    Google Scholar 

  20. Johnson, D.S.: Approximation Algorithms for Combinatorial Problems. J. Comput. System Sci. 9(3), 256–278 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kleinberg, J., Tardos, É.: Algorithm Design. Addison-Wesley, Reading (2005)

    Google Scholar 

  22. Linial, N., Mansour, Y., Nisan, N.: Constant Depth Circuits, Fourier Transform, and Learnability. J. ACM 40(3), 607–620 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mansour, Y.: Learning Boolean Functions via the Fourier Transform. In: Roychodhury, V., Siu, K.-Y., Orlitsky, A. (eds.) Theoretical Advances in Neural Computation and Learning, pp. 391–424. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  24. Mossel, E., O’Donnell, R.W., Servedio, R.A.: Learning functions of k relevant variables. J. Comput. System Sci. 69(3), 421–434 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Reischuk, R.: Can Large Fanin Circuits Perform Reliable Computations in the Presence of Noise? Theoretical Comput. Sci. 240(4), 319–335 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shamir, R., Dietrich, B.: Characterization and Algorithms for Greedily Solvable Transportation Problems. In: Proc. 1st SODA 1990, pp. 358–366 (1990)

    Google Scholar 

  27. Slavík, P.: A Tight Analysis of the Greedy Algorithm for Set Cover. In: Proc. 28th STOC 1996, pp. 435–441 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Guohui Lin

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arpe, J., Reischuk, R. (2007). When Does Greedy Learning of Relevant Attributes Succeed?. In: Lin, G. (eds) Computing and Combinatorics. COCOON 2007. Lecture Notes in Computer Science, vol 4598. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73545-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73545-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73544-1

  • Online ISBN: 978-3-540-73545-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics