
Approximation Algorithms for Reconstructing the Duplication

History of Tandem Repeats

Zhi-Zhong Chen∗ Lusheng Wang† Zhanyong Wang‡

Abstract

Tandem repeated regions are closely related to some genetic diseases in human beings. Once
a region containing pseudo-periodic repeats is found, it is interesting to study the history of
creating the repeats. It is important to reveal the relationship between repeats and genetic
diseases. The duplication model has been proposed to describe the history [3, 9, 4]. We design
a polynomial-time approximation scheme (PTAS) for the case where the size of the duplication
block is 1. Our PTAS is faster than the previously best PTAS in [4]. For example, to achieve
a ratio of 1.5, our PTAS takes O(n5) time while the PTAS in [4] takes O(n11) time. We also
design a ratio-6 polynomial-time approximation algorithm for the case where the size of each
duplication block is at most 2 1. This is the first polynomial-time approximation algorithm with
a guaranteed ratio for this case.

1 Introduction

The genomes of many species are dominated by short segments repeated consecutively. It is es-
timated that over 10% of the human genome, the totality of human genetic information, consists
of repeated segments. About 10-25% of all known proteins have some form of repeated structures
ranging from simple homopolymers to multiple duplications of entire globular domains. In some
other species, repeated regions can even dominate the whole genome. For example, in the Kan-
garoo rat (Dipomys ordii) more than half of the genome consists of three patterns of repeated
regions: AAG (2.4 billion repetitions), TTAGG (2.2 billion repetitions) and ACACAGCGGG (1.2
billion repetitions) [11]. Recent studies show that tandem repeats are closely related with human
diseases, including neurodegenerative disorders such as fragile X syndrome, Huntington’s disease
and spinocerebellar ataxia, and some cancers [2, 8]. These tandem repeats may occur in protein
coding regions of genes or non-coding regions. Since the initial discovery of tandem repeats [12],
many theories on the biological mechanisms that create and extend tandem repeats have been
proposed, e.g., slipped-strand mis-paring, unequal sister-chromatid exchange and unequal genetic
∗Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan. Email:

chen@r.dendai.ac.jp. Part of work was done during a visit at City University of Hong Kong.
†Supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China

[Project No. CityU 1196/03E]. Department of Computer Science, City University of Hong Kong, Tat Chee Avenue,

Kowloon, Hong Kong. Email: cswangl@cityu.edu.hk.
‡Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong. Email:

zhyong@cs.cityu.edu.hk.
1In the conference version, we wrongly claimed a ratio-2 polynomial-time approximation algorithm.

1

recombination during meiosis (see [1] for details.) The exact mechanisms responsible for tandem
repeat expansion are still controversial. Thus, the study of repeated regions in biological segments
has attracted lots of attentions [1, 4, 5, 6, 7, 9, 13].

1.1 The Duplication Model

The model for the duplication history of tandem repeated segments was proposed by Fitch in
1977 [3] and re-proposed by Tang et al. [9] and Jaitly et al. [4]. The model captures both the
evolutionary history and the observed order of segments on a chromosome. Let S = s1s2 . . . sn be an
observed string consisting of n segments of the same length m. Let riri+1 . . . ri+k−1 be k consecutive
segments in an ancestor string of S in the evolutionary history. A duplication event generates
2k consecutive segments lc(ri)lc(ri+1) . . . lc(ri+k−1)rc(ri)rc(ri+1) . . . rc(ri+k−1) by (approximately)
copying the k segments riri+1 . . . ri+k−1 twice, where both lc(ri+j) and rc(ri+j) are approximate
copies of ri+j (see Figure 1). Assume that the n segments s1, s2, . . . sn were formed from a locus by
tandem duplications. Then, the locus had grown from a single copy through a series of duplications.
A duplication replaces a stretch of DNA consisting of several segments with two (approximately)
identical and adjacent copies of itself. If the stretch contains k segments, the duplication is called
a k-duplication.

riri+1...ri+k−1

lc(ri)lc(ri+1)...lc(ri+k−1) rc(ri)rc(ri+1)...rc(ri+k−1)

Figure 1: A k-duplication, where both lc(ri+j) and rc(ri+j) are approximate copies of ri+j .

A duplication model M for a string S = s1s2 . . . sn of n tandem repeated segments is a directed
graph that contains vertices, edges, and blocks as shown in Figure 2. Each vertex in M represents a
repeated segment (not necessarily in S), each directed edge (u, v) indicates that vertex v is a child
of vertex u, and each block represents a duplication event. Certain edges in the model are allowed
to cross each other; this is described using an edge-crossing rule (to be specified later).

Each vertex may have at most one parent and either zero or two children. There is only one
vertex, called the root, that has no parent. The root represents the original copy at the locus.
Those vertices that have two children are called the internal vertices, while the others are called
the leaves. The two children of each internal vertex v are distinguished as the left child and the
right child of v, respectively. Each leaf is labeled with a segment si (1 ≤ i ≤ n). Moreover, the
left-to-right order of leaves in M is identical to the order of the segments in S. If there is a directed
path from a vertex s to another vertex t, then s is an ancestor of t and t is a descendant of s.

A block in M represents a duplication event and hence consists of one or more internal vertices.
Each internal vertex appears in a unique block; no vertex in a block is an ancestor (or descendant)
of another vertex in the same block. The following rule applies to the children of vertices in each
block B: If the left-to-right order of the vertices in B is v1, v2, . . . , vk, then their children are
placed (under them) from left to right in the model in the order lc(v1), lc(v2), . . . , lc(vk), rc(v1),
rc(v2), . . . , rc(vk), where lc(vi) (respectively, rc(vi)) is the left (respectively, right) child of vi for
each 1 ≤ i ≤ k. Hence, for every two integers i and j with 1 ≤ i < j ≤ k, the edges (vi, rc(vi))

2

and (vj , lc(vj)) cross each other in the model. However, no other edges cross in the model. For
simplicity, we will draw a box to depict a block in M only when the block represents a k-duplication
event for some k ≥ 2. We also refer to k as the size of the block.

Each edge in M carries a cost which is simply the hamming distance between the two segments
associated with the two endpoints of the edge. The cost of M , denoted by c(M), is the total cost of
edges in M . We remark that all our results apply to other distance measures satisfying the triangle
inequality.

AAAC

AAAC

s1:AAAC AAAC AAAA

s2:AAAC s3:AAAA s4:AAAC s5:AAAA

duplication box of size 2

Figure 2: A duplication model with cost 1 for a string S = s1s2s3s4s5 of five length-4 segments,
where s1 = AAAC, s2 = AAAC, s3 = AAAA, s4 = AAAC, and s5 = AAAA.

If we represent only the parent-child relations defined by a duplication model M , then the
resulting structure TM is planar and can be drawn without edge crossings. TM is a rooted binary
tree for the given string S = s1s2 . . . sn of n segments and is called the associated phylogeny for M .
Obviously, if every block in M is of size 1, then TM and M are identical. However, if one or more
blocks in M are of size larger than 1, then the left-to-right ordering of the labels assigned to the
leaves of TM is not s1, s2, . . . , sn.

1.2 The Problem and the Results

Now, we are ready to state the problem considered in the paper:

Duplication History Reconstruction (DHR):
• Input: An ordered list 〈s1, s2, . . . , sn〉 of strings of the same length m.
• Output: A duplication model for the string S = s1s2 . . . sn with the smallest cost.

For each integer k ≥ 1, let k-DHR denote the special case of DHR where the size of each
duplication block is at most k. In this paper, we consider only 1-DHR and 2-DHR. Our first result
is a PTAS for 1-DHR; it achieves a ratio of 1 + 2h

h2h−2q
in O(n`+1 +mn`) time, where h = dlog2 `e

and q = 2h − `. Our PTAS is faster than the previously best PTAS for 1-DHR given in [4]. For
example, to achieve a ratio of 1.5, our PTAS takes O(n5 +mn4) time while the PTAS in [4] takes
O(n11 +mn5) time.

Our second result is a polynomial-time approximation algorithm for 2-DHR that achieves a
ratio of 6. This is the first polynomial-time approximation algorithm with a guaranteed ratio for
2-DHR. Our algorithm is based on a hidden structure, called the component tree, of a duplication
model.

3

2 The PTAS for 1-DHR

A semiphylogeny is a rooted tree T satisfying the following conditions (see Figure 3(a) for an
example):

• Each vertex of T is assigned a string and all the strings assigned to the vertices of T have the
same length.

• Each internal vertex v of T may be unifurcate or bifurcate. In the former case, v has only one
child. In the latter case, v has two children.

• The root of T is bifurcate.

• Both the parent and the child of each unifurcate internal vertex of T are bifurcate.

• The children of each bifurcate internal vertex v of T are distinguished as the left child and
the right child of v.

• For every unifurcate internal vertex v in T that is the left child of its parent in T , the string
assigned to v in T is the same as the string assigned to r(v, T), where r(v, T) is the rightmost
descendant of v in T . (Comment: r(v, T) must be a leaf in T because the child of each
unifurcate vertex is bifurcate.)

• For every unifurcate internal vertex v in T that is the right child of its parent in T , the
string assigned to v in T is the same as the string assigned to l(v, T), where l(v, T) is the
leftmost descendant of v in T . (Comment: l(v, T) must be a leaf in T because the child of
each unifurcate vertex is bifurcate.)

A semiphylogeny is a phylogeny if it has no unifurcate internal vertices.
Let T be a semiphylogeny. An edge e of T is artificial if e connects a unifurcate internal vertex

of T to its (unique) child in T ; otherwise, it is natural. If we delete all artificial edges from T , then
we get a forest in which each connected component is a phylogeny; we use D(T) to denote the set
of these phylogenies. Note that the number of phylogenies in D(T) is 1 plus the number of artificial
edges in T . We call each phylogeny in D(T) a subphylogeny of T .

For an integer ` ≥ 2, an `-semiphylogeny is a semiphylogeny T such that each subphylogeny of
T has at most ` leaves. The cost of a semiphylogeny T , denoted by c(T), is the total cost of edges
in its subphylogenies. In other words, c(T) is the total cost of natural edges in T .

A semiphylogeny for an (ordered) list 〈s1, . . . , sn〉 of strings of the same length is a semiphylogeny
whose leaves are assigned the strings s1, . . . , sn from left to right in this order. Note that 1-DHR
can be restated as the problem of constructing a phylogeny for a given list of strings of the same
length.

Lemma 2.1 A semiphylogeny T for a list 〈s1, . . . , sn〉 of strings of the same length can be easily
transformed into a phylogeny T ′ for the same list with c(T ′) = c(T).

Proof. We assemble the phylogenies in D(T) into a single phylogeny T ′ for 〈s1, . . . , sn〉 as follows
(see Figure 3):

4

t3

t2 s4

s3s2

t1

s2s1

t4

s7

t5

s5s4

t5

s6s5

(a) (b)

t3

t2 s4

s3s2

s2s1 s7

t5

s5

s4

s6s5

Figure 3: (a) A 3-semiphylogeny T where the bold edges are the natural edges. (b) The phylogeny
T ′ constructed from T .

1. Initialize T ′ as the forest consisting of the trees in D(T).

2. For each unifurcate internal vertex v of T that is the left child of its parent in T , add the
edge (v, r(v, T)) to T ′, connect a new vertex v′ to r(v, T) by a new edge, and assign v′ the
string that is assigned to r(v, T) in T .

3. For each unifurcate internal vertex v of T that is the right child of its parent in T , add the
edge (v, l(v, T)) to T ′, connect a new vertex v′ to l(v, T) by a new edge, and assign v′ the
string that is assigned to l(v, T) in T . (Comment: After this step, T ′ is a tree in which each
new vertex is a leaf.)

4. Root T ′ at r, where r is the root of T .

5. Order the children of each internal vertex in T ′ accordingly so that the strings s1, . . . , sn
appear at the leaves of T ′ from left to right in this order.

6. While T ′ has a unifurcate internal vertex, select such a vertex and merge the two edges
incident to it into a single edge.

2

The main idea behind our PTAS for 1-DHR is that for any given constant `, we can construct
a minimum-cost `-semiphylogeny for a given list of strings of the same length in polynomial time
via dynamic programming. The details will be given in Section 2.1.

Now, our PTAS for 1-DHR is as follows:

Input: An ordered list 〈s1, . . . , sn〉 of strings of the same length and an integer ` ≥ 2.

1. Compute a minimum-cost `-semiphylogeny T for 〈s1, . . . , sn〉.

2. Transform T into a phylogeny T ′ for 〈s1, . . . , sn〉 as described in Lemma 2.1.

Output: T ′.

In order to prove that the above algorithm is indeed a PTAS for 1-DHR, we also need to show
that the minimum cost of an `-semiphylogeny for a list of strings is very close to the minimum cost
of a phylogeny for the same list of strings. Sections 2.2 through 2.4 are for this purpose.

5

2.1 Algorithm for Optimal `-Semiphylogenies

Throughout this subsection, let 〈s1, . . . , sn〉 be a given list of two or more strings of the same length
m, and let ` be an integer larger than 1. The goal is to construct a minimum-cost `-semiphylogeny
for 〈s1, . . . , sn〉 via dynamic programming.

First, for each ordered list L of strings among s1, . . . , sn with 2 ≤ |L| ≤ ` and for each unlabeled
binary tree U with |L| leaves, we compute a minimum-cost phylogeny TL,U for L such that the
topology of TL,U is the same as U . Given L and U , TL,U can be computed in O(m|L|3) time by a
simple dynamic programming. Moreover, for each integer k ≥ 2, there are exactly Ck−1 unlabeled
binary trees with k leaves, where Ck−1 = (2k−2)!

k!(k−1)! is known as the (k − 1)-th Catalan number.

It is also widely known that Ck−1 is approximately 4k−1
√
π(k−1)1.5 . Thus, the total time needed for

computing all TL,U is O(mn`) time.
For two integers i and j with 1 ≤ i ≤ j ≤ n, let ci,j be the cost of a minimum-cost `-

semiphylogeny Ti,j for 〈si, . . . , sj〉. Consider the computation of ci,j with j − i + 1 > `. Imagine
that we already have Ti,j and consider D(Ti,j). One phylogeny Ttop in D(Ti,j) contains the root of
Ti,j . Let k be the number of leaves in Ttop. Note that 2 ≤ k ≤ `.

Let v1, . . . , vk be the leaves of Ttop (ordered from left to right). Note that some vh with 1 ≤ h ≤ k
may also be a leaf of Ti,j . For each h ∈ {1, . . . , k}, let Ti,j(vh) denote the subtree of Ti,j rooted at
vh (i.e., the subtree of Ti,j formed by vh and its descendants in Ti,j). Note that if vh is a leaf of
Ti,j , then Ti,j(vh) has only one vertex (namely, vh) and hence this vertex is both the root and the
(unique) leaf of Ti,j(vh). For each h ∈ {1, . . . , k}, let sah

, sah+1, . . . , sbh be the strings assigned to
the leaves of Ti,j(vh) (from left to right) in Ti,j . Obviously, a1 = i, bk = j, and ah+1 = bh + 1 for
each h ∈ {1, . . . , k − 1}. Moreover, for each vh ∈ {v1, . . . , vk}, if vh is a leaf of Ti,j , then ah = bh;
otherwise, the following hold:

• If vh is the left child of its parent in Ttop, then the string assigned to vh is sbh .

• If vh is the right child of its parent in Ttop, then the string assigned to vh is sah
.

We also have c(Ti,j) = c(Ttop) +
∑k
h=1 c(Ti,j(vh)) = c(TL,U) +

∑k
h=1 c(Ti,j(vh)), where L is the

list of strings assigned to the leaves of Ttop and U is the topology of Topt.
Therefore, when j − i+ 1 > `, we have the following equation:

ci,j = min
2≤k≤`

min
i≤b1<b2<...<bk−1<j

min
U
{c(TL,U) +

k∑
h=1

cbh−1+1,bh}, (2.1)

where b0 = i − 1, bk = j, U ranges over all unlabeled binary trees with exactly k leaves, and L is
the ordered list of k strings defined as follows:

• For each h ∈ {1, . . . , k} such that bh − bh−1 = 1, the h-th string in L is sbh .

• For each h ∈ {1, . . . , k} such that bh− bh−1 ≥ 2, if the h-th leftmost leaf of U is the left child
of its parent in U , then the h-th string in L is sbh ; otherwise, the h-th string in L is sbh−1+1.

6

Recall that there are O(4k

k) choices for U in Equation (2.1). Given U and L, TU,L is already
available. So, ci,j can be computed in O(4`(j − i+ 1)`−1`) time. Obviously, there are O(n2) pairs
(i, j). Thus, c1,n can be computed in O(n`+1 +mn`) time.

In summary, we have proven:

Theorem 2.2 For every integer ` ≥ 2, we can compute a minimum-cost `-semiphylogeny for a
given list of n length-m strings in O(n`+1 +mn`) time.

2.2 Transforming Phylogenies into `-Semiphylogenies

To show that the minimum cost of an `-semiphylogeny for a list 〈s1, . . . , sn〉 of strings of the
same length is very close to the minimum cost of a phylogeny for 〈s1, . . . , sn〉, our idea is to show
that a minimum-cost phylogeny for 〈s1, . . . , sn〉 can be transformed into an `-semiphylogeny for
〈s1, . . . , sn〉 without increasing its cost significantly.

Let Topt be a minimum-cost phylogeny for 〈s1, . . . , sn〉. For a path P in Topt, we use c(P) to
denote the total cost of edges in P . Moreover, we use I(Topt) to denote the set of all internal
vertices of Topt other than the root.

For each v ∈ I(Topt), we define a path P (v) as follows: If v is the left child of its parent in Topt,
then P (v) is the path in Topt from v to r(v, Topt); otherwise, P (v) is the path in Topt from v to
l(v, Topt) (see Figure 4.)

v v

l(v) r(v)r(v)l(v)

v

v1

(a) (b)

v2

Figure 4: (a) P (v) in two cases. (b) A concrete example.

Lemma 2.3
∑
v∈I(Topt) c(P (v)) ≤ c(Topt).

Proof. To prove the lemma, it suffices to claim that for two distinct vertices u and v in I(Topt),
P (u) and P (v) are edge-disjoint. The claim is not obvious only when one of u and v is an ancestor
of the other in Topt. So, assume that u is an ancestor of v in Topt. Then, P (u) and P (v) are clearly
edge-disjoint if v is not a vertex of P (u). So, let us further assume that v is a vertex of P (u). Then,
when u is the left child of its parent in Topt, v must be the right child of its parent in Topt and
hence P (v) is on the left of P (u). Similarly, when u is the right child of its parent in Topt, v must
be the left child of its parent in Topt and hence P (v) is on the right of P (u). Thus, in both cases,
P (u) and P (v) are edge-disjoint. 2

Since the Hamming distance is a metric, we also have:

Lemma 2.4 For every v ∈ I(Tout), the Hamming distance between the strings assigned to r(v, Topt)
(respectively, l(v, Topt)) and the parent u of v in Topt is at most c(P (v)) plus the cost of the edge
between v and u in Topt.

7

For a rooted tree T , we define the level of each vertex v in T (denoted by lev(v, T)) as follows:
The root is at level 0 and its children are at level 1. In general, if a vertex is at level i ≥ 0, then its
children are at level i+ 1.

Fix an integer ` ≥ 2. Our goal is to transform Topt into an `-semiphylogeny T for s1, . . . , sn
such that c(T) is very close to c(Topt). To begin, we let T be a copy of Topt. Then, we find a subset
J of I(Topt) (in some way to be specified later in Sections 2.3 and 2.4) and modify T by repeating
the following five steps until J becomes empty:

1. Find a vertex v ∈ J whose level in Topt is the minimum among all vertices of J .

2. Split the edge ev of T between v and its parent vp in T into two edges by adding a new vertex
v′ at the middle of ev.

3. If v′ is the left child of vp in T , then assign v′ the string that is assigned to r(v, Topt) in Topt.
(Comment: After this step, v′ is a unifurcate internal vertex of semiphylogeny T and the cost
of the (natural) edge between vp and v′ in T is at most c(P (v)) plus the cost of ev according
to Lemma 2.4. So, this step increases the cost of T by at most c(P (v)).)

4. If v′ is the right child of vp in T , then assign v′ the string that is assigned to l(v, Topt) in Topt.
(Comment: Same as the comment on the last step.)

5. Remove v from J .

We use Topt(J) to denote the semiphylogeny T obtained from Topt and J as above. Then, we
have:

Lemma 2.5 For every subset J of I(Topt), c(Topt(J)) ≤ c(Topt) +
∑
v∈J c(P (v)).

Unfortunately, depending on J , Topt(J) may not be an `-semiphylogeny. So, we say that a
subset J of I(Topt) is `-proper if Topt(J) is an `-semiphylogeny. What remains to show is that
for every integer ` ≥ 2, there is always an `-proper subset of I(Topt) such that

∑
v∈J c(P (v)) is

relatively small compared to c(Topt). The next two subsections are for this purpose.

2.3 The Ratio when ` Is a Power of 2

This case is easy as shown in the next lemma:

Lemma 2.6 For every integer ` = 2h with h ≥ 1, there is always an `-proper subset J of I(Topt)
such that

∑
v∈J c(P (v)) ≤ 1

h · c(Topt).

Proof. Let r be the root of Topt. For each integer j with 0 ≤ j ≤ h− 1, let Vj be the set of
those vertices v ∈ I(Topt) such that lev(v, Topt) ≡ j (mod h). Obviously, Vj is `-proper. Moreover,
Vj ∩ Vj′ = ∅ for 0 ≤ j 6= j′ ≤ h− 1. Hence,

h−1∑
j=0

∑
v∈Vj

c(P (v)) ≤
∑

v∈I(Topt)

c(P (v)) ≤ c(Topt),

8

where the last inequality follows from Lemma 2.3. Consequently, there exists an integer j ∈
{0, 1, . . . , h− 1} such that

∑
v∈Vj

c(P (v)) ≤ 1
h · c(Topt). 2

Combining Theorem 2.2 and Lemmas 2.1 and 2.6, we now have:

Theorem 2.7 Our algorithm is a PTAS for 1-DHR and achieves a ratio of 1 + 1
h in O(n2h+1 +

mn2h
) time for every integer h ≥ 1.

For example, to achieve a ratio of 1.5, our PTAS takes O(n5 +mn4) time while the PTAS in [4]
takes O(n11 +mn5) time.

2.4 The Ratio When ` Is not a Power of 2

This case is much more difficult. We start by giving several definitions. The height of a binary tree
is the maximum level of a vertex in the tree. A binary tree is complete if it has 2k leaves, where
k is the height of the tree. Note that for each integer k ≥ 0, there is a unique unlabeled complete
binary tree of height k. Moreover, in a complete binary tree, all leaves appear at the same level. A
binary tree T is balanced if every internal vertex of T has two children in T and the level of every
leaf in T is k or k − 1, where k is the height of T .

Since ` is not a power of 2, ` ≥ 3 and ` can be written as ` = 2h − q, where h = dlog2 `e and
q = 2h− `. Obviously, from a complete binary tree T of height k, we can obtain a balanced binary
tree of height h and with ` leaves by choosing q vertices at the (h − 1)-th level in T and deleting
their children from T . So, there are only b =

(
2h−1

q

)
unlabeled balanced binary trees of height h

and with ` leaves. We denote them by B1, . . . , Bb (see Figures 5 and 6 for two examples).

(a) (b)

Figure 5: B1 and B2 when ` = 3.

(a) (b) (c) (d)

Figure 6: B1, . . . , B4 when ` = 5.

We choose a tree Ba among B1, . . . , Bb uniformaly at random. For each i ∈ {0, . . . , h− 1}, we
will use Ba to find an `-proper subset Ji of I(Topt). The description of Ji will be much easier if Topt
is a complete binary tree. So, we repeat the following steps until Topt becomes a complete binary
tree:

1. Select a leaf v whose level in Topt is smaller than the height of Topt.

9

2. Introduce two new vertices v′ and v′′ and connect each of them to v by an edge.

3. Assign each of the new leaves v′ and v′′ the string that is assigned to v.

Obviously, Topt is still a phylogeny but may not be a phylogeny for 〈s1, . . . , sn〉 because it
may have more than n leaves. However, the cost and the height of Topt remain the same. For
convenience, we denote the original Topt by T orgopt .

We say that a vertex v of Topt is sufficiently low in Topt if lev(v, Topt) ≤ hopt − h, where hopt is
the height of Topt. For each sufficiently low vertex v of Topt, we define a subtree Topt(v,Ba) of Topt
as follows:

• The root of Topt(v,Ba) is v.

• Topt(v,Ba) is isomorphic to Ba, i.e., there is a one-to-one mapping ϕ from the vertices of
Topt(v,Ba) to the vertices of Ba such that

– ϕ(v) is the root of Ba and

– for every vertex u of Topt(v,Ba) other than v, if u is the left (respectively, right) child
of its parent u′ in Topt(v,Ba), then ϕ(u) is the left (respectively, right) child of ϕ(u′) in
Ba.

Note that Topt(v,Ba) must exist because v is sufficiently low and Topt is a complete binary tree.
We are now ready to use Ba to find an `-proper subset Ji of I(Topt) for each i ∈ {0, . . . , h− 1}

as follows:

1. Initialize Ji to be the set of all vertices at level i in Topt.

2. For each vertex v of Topt, if v ∈ Ji and v is sufficiently low in Topt, then color v black; otherwise,
color v white.

3. While Topt has a black vertex, perform the following steps:

(a) Select an arbitrary black vertex v in Topt and recolor v white in Topt.

(b) Add all leaves of Topt(v,Ba) to Ji.

(c) Color those leaves of Topt(v,Ba) in Topt black that are also sufficiently low in Topt.

Note that J0 contains the root r of Topt and we delete it from J0. Then, for each i ∈ {0, . . . , h−1},
Ji is an `-proper subset of I(Topt).

Lemma 2.8 For each i ∈ {0, . . . , h − 1}, let J ′i = Ji ∩ I(T orgopt). Then, the following statements
hold:

1. For each i ∈ {0, . . . , h− 1}, J ′i is an `-proper subset of I(T orgopt) in T orgopt .

2. If α is a real number (depending on `) such that
∑
v∈Ji

c(P (v)) ≤ α·c(Topt), then
∑
v∈J ′i

c(P (v)) ≤
α · c(T orgopt).

10

Proof. The first statement follows from the fact that T orgopt is a subtree of Topt. The second
statement follows from the fact that c(P (v)) = 0 for every v ∈ I(Topt)− I(T orgopt). 2

By Lemma 2.8, what remains to do is to prove that there is a small number (depending on `)
such that

∑
v∈Ji

c(P (v)) ≤ α · c(Topt). The proof is not easy because two sets among J0, . . . , Jh−1

may not be disjoint. We give the proof below.
For each i ∈ {0, . . . , h − 1} and for each j ∈ {0, . . . , hopt}, let yi(j) be the expected number of

vertices v ∈ Ji with lev(v, Topt) = j. By the construction of each Ji, we have the following lemma
immediately:

Lemma 2.9 The following statements hold:

1. y0(0) = · · · = y0(h− 2) = 0, y0(h− 1) = q, y0(h) = 2h − 2q, and

y0(j) = q · y0(j − h+ 1) + (2h − 2q) · y0(j − h) for all j ≥ h+ 1.

2. For every i ∈ {1, . . . , h − 1}, yi(0) = · · · = yi(i − 1) = 0, yi(i) = 2i, yi(i + 1) = · · · =
yi(i+ h− 2) = 0, yi(i+ h− 1) = 2iq, and

yi(j) = q · yi(j − h+ 1) + (2h − 2q) · yi(j − h) for all j ≥ i+ h.

For each i ∈ {0, . . . , h− 1} and for each j ∈ {0, . . . , hopt}, we define

xi(j) =
yi(j)

2j
.

Since Ba is chosen from B1, . . . , Bb uniformly at random, each vertex at level j in Topt has the same
probability to be included in Ji. So, for each vertex v with lev(v, Topt) = j,

xi(j) = Pr[v ∈ Ji], which is the probability that v ∈ Ji.

Moreover, by Lemma 2.9, we have the following lemma immediately:

Lemma 2.10 The following statements hold:

1. x0(0) = · · · = x0(h− 2) = 0, x0(h− 1) = q
2h−1 , x0(h) = 2h−2q

2h , and

x0(j) =
2q
2h
· x0(j − h+ 1) +

2h − 2q
2h

· x0(j − h) for all j ≥ h+ 1.

2. For every i ∈ {1, . . . , h − 1}, xi(0) = · · · = xi(i − 1) = 0, xi(i) = 1, xi(i + 1) = · · · =
xi(i+ h− 2) = 0, xi(i+ h− 1) = q

2h−1 , and

xi(j) =
2q
2h
· xi(j − h+ 1) +

2h − 2q
2h

· xi(j − h) for all j ≥ i+ h.

3. For each i ∈ {1, . . . , h − 1} and for each j ∈ {1, . . . , hopt}, xi(j) = xi−1(j − 1), except that
1 = x1(1) 6= x0(0) = 0.

11

Note that Statement 3 in Lemma 2.10 follows from Statements 1 and 2 in the same lemma.
It seems very difficult to solve the recurrence relations in Lemma 2.10. We get around the

difficulty by considering the following weighted sum of x0(j), . . . , xh−1(j) for all j ≥ 0:

X(j) = 2h
h−2∑
i=0

xi(j) + (2h − 2q) · xh−1(j).

Lemma 2.11 X(0) = 0 and X(j) = 2h for all j ≥ 1.

Proof. Using Statements 1 and 2 in Lemma 2.10, it is easy to verify that X(0) = 0 and
X(1) = · · · = X(h) = 2h. So, consider an arbitrary integer j > h. By Statement 3 in Lemma 2.10,

X(j) = 2h
h−2∑
i=0

x0(j − i) + (2h − 2q) · x0(j − h+ 1).

Thus,
X(j)−X(j − 1) = 2h · x0(j)− 2q · x0(j − h+ 1)− (2h − 2q) · x0(j − h).

Hence, by the recurrence relation in Statement 1 in Lemma 2.10, X(j)−X(j − 1) = 0. Therefore,
X(j) = X(j − 1) = · · · = X(h) = 2h. 2

Next, we consider E [
∑
v∈Ji

c(P (v))], which is the expected value of
∑
v∈Ji

c(P (v)). For each
j ≥ 0, let t(j) =

∑
v c(P (v)), where v ranges over all vertices v of Topt with lev(v, Topt) = j. Then,

we have:

E [
∑
v∈Ji

c(P (v))] =
hopt∑
j=1

xi(j) · t(j),

because Pr[v ∈ Ji] = xi(j) for each vertex v of Topt with lev(v, Topt) = j.
Now, we turn to the following weighted sum of E [

∑
v∈J0

c(P (v))], . . . , E [
∑
v∈Jh−1

c(P (v))]:

W = 2h · E [
∑
v∈J0

c(P (v))] + · · ·+ 2h · E [
∑

v∈Jh−2

c(P (v))] + (2h − 2q) · E [
∑

v∈Jh−1

c(P (v))],

which can be rewritten as

2h ·
hopt∑
j=1

x0(j) · t(j) + · · ·+ 2h ·
hopt∑
j=1

xh−2(j) · t(j) + (2h − 2q) ·
hopt∑
j=1

xh−1(j) · t(j)

and further as
hopt∑
j=1

t(j) · (2h · x0(j) + · · ·+ 2h · xh−2(j) + (2h − 2q) · xh−1(j)).

So, we have

W =
hopt∑
j=1

t(j) ·X(j) = 2h
hopt∑
j=1

t(j) ≤ 2h · c(Topt),

where the last inequality follows from Lemma 2.3. Thus, the weighted average of E [
∑
v∈J0

c(P (v))],
. . . , E [

∑
v∈Jh−1

c(P (v))] is
1

2hh− 2q
·W ≤ 2h

2hh− 2q
· c(Topt).

12

Hence, there is an i ∈ {0, . . . , h− 1} such that

E [
∑
v∈Ji

c(P (v))] ≤ 2h

2hh− 2q
· c(Topt).

Therefore, there is a choice of Ba from {B1, . . . , Bb} such that the subset Ji constructed from Ba
as above satisfies the following inequality:∑

v∈Ji

c(P (v)) ≤ 2h

2hh− 2q
· c(Topt).

In summary, we have proven the following lemma:

Lemma 2.12 For every integer ` ≥ 3 (that is not a power of 2), there is always an `-proper subset
J of I(Topt) such that

∑
v∈J c(P (v)) ≤ 2h

2hh−2q
· c(Topt), where h = dlog2 `e and q = 2h − `.

Combining Theorem 2.2 and Lemmas 2.1 and 2.12, we now have:

Theorem 2.13 Our algorithm is a PTAS for 1-DHR and achieves a ratio of 1+ 2h

2hh−2q
in O(n`+1+

mn`) time for every integer ` ≥ 3 (that is not a power of 2), where h = dlog2 `e and q = 2h − `.

For example, to achieve a ratio of 5
3 , our PTAS takes O(n4 +mn3) time while the PTAS in [4]

takes O(n7 +mn3) time.

3 A Ratio-6 Approximation Algorithm for 2-DHR

Throughout this section, fix a list 〈s1, . . . , sn〉 of strings of the same length m, and let Mopt be a
minimum-cost duplication model for s1s2 . . . sn.

One problem with Mopt is that the label assigned to an internal vertex in Mopt may not be
in {s1, . . . , sn}. This makes it hard to compute Mopt. So instead, we look for a restricted type of
duplication models called lifted duplication models. In a lifted duplication model, the label assigned
to each internal vertex is a string in {s1, . . . , sn}. The following lemma shows that there is always
a good lifted duplication model:

Lemma 3.1 There is a lifted duplication model Nopt for s1s2 . . . sn such that c(Nopt) ≤ 2 · c(Mopt).

Proof. Recall that TMopt denotes the associated phylogeny for Mopt. Note that c(Mopt) =
c(TMopt). Using the lifting technique in [10], we can elaborately lift the labels of the leaves in
TMopt up to their ancestors so that the resulting phylogeny T has a cost less than or equal to
2 · c(TMopt). Now, since the vertices of Mopt one-to-one correspond to those of T , we can obtain
a new model Nopt from Mopt by simply changing the label of each vertex in Mopt to that of the
corresponding vertex in T . Obviously, Nopt is a lifted duplication model for s1s2 . . . sn. Moreover,
c(Nopt) = c(T) ≤ 2 · c(TMopt) = 2 · c(Mopt). 2

The rest of this section is organized as follows. In Section 3.1, we give several definitions and
prove several lemmas. In Section 3.2, we define the component tree D(M) of a given lifted dupli-
cation model M for s1s2 . . . sn. In Section 3.3, we show how to construct a new lifted duplication
model M ′ from D(M). The crucial point is that we can show c(M ′) ≤ 3 · c(M). In Section 3.4, we
describe our algorithm for computing a component tree Dopt such that the cost of the new lifted
duplication model constructed from Dopt is minimized.

13

3.1 Preliminaries

Let M be a lifted duplication model for s1s2 . . . sn. An edge in M is planar if it is not crossed by
another edge in M . A path in M is planar if it traverses planar edges only. Two internal vertices
u and v in M are incomparable if u is neither an ancestor nor a descendant of v in M .

Each size-2 block B in M contains two internal vertices; we distinguish them as the left vertex
and the right vertex in B. For each block B, we define the leftmost planar path of B and the
rightmost planar path of B as follows: If the size of B is 1, then both paths start at the unique
internal vertex in B; otherwise, the leftmost planar path of B starts at the left vertex in B and the
rightmost planar path of B starts at the right vertex in B. The leftmost (respectively, rightmost)
planar path of B then goes down all the way to a leaf by only traversing planar edges based on the
following rule:

• When going down from an internal vertex u to one of its children, always choose the left
(respectively, right) child v of u in B if the edge (u, v) is planar. (Comment: Since M is a
duplication model, at least one of the two edges between u and its children is planar. So, the
path can always go down to a leaf by traversing planar edges only.)

An extreme planar path in M is a path that is the leftmost or rightmost of some block in M .
The next lemma is obvious but helps the reader understand the relations between extreme planar
paths in M .

Lemma 3.2 The following statements hold:

1. If an internal vertex v of M is contained in a size-1 block, then there are exactly two extreme
planar paths starting at v and v is the unique vertex shared by the two paths.

2. If an internal vertex v of M is contained in a size-2 block, then there is exactly one extreme
planar path starting at v.

3. If u and v are two incomparable internal vertices in M , then no extreme planar path starting
at u shares a vertex with an extreme planar path starting at v.

For each integer i with 1 ≤ i ≤ n, the i-th leftmost leaf in M is labeled with the string
si. For convenience, we also use si to denote the i-th leftmost leaf in M . For each internal
vertex u of M , we use a(u) (respectively, b(u)) to denote the integer i such that si is the leftmost
(respectively, rightmost) leaf descendant of u in M . Two internal vertices u and v are unrelated
in M if b(u) < a(v) or b(v) < a(u). An internal vertex u crosses another internal vertex v in
M if a(u) < a(v) < b(u) < b(v). An internal vertex u covers another internal vertex v in M if
a(u) ≤ a(v) < b(v) ≤ b(u). Note that if u is ancestor of v in M , then u covers v in M . However, an
internal vertex may cover another internal vertex in M even if they are incomparable in M . Two
internal vertices of M are unnested if no one of them covers the other in M .

The next lemma is obvious but helps the reader understand how a vertex crosses another vertex
in M .

Lemma 3.3 If a vertex u crosses another vertex v in M , then the path Pu from u to sb(u) in M

and the path Pv from v to sa(v) in M cross each other exactly once and hence there is exactly one
size-2 box Bu,v in M whose left vertex is on Pu and whose right vertex is on Pv.

14

We call the block Bu,v in Lemma 3.3 the block for (u, v)-crossing in M .
The next two lemmas help the reader understand the relations between unnested internal ver-

tices in M .

Lemma 3.4 There do not exist three pairwise unnested internal vertices u, v, and w in M such
that u crosses v in M and so does w.

Proof. Suppose that an internal vertex u crosses another internal vertex v in M . Let 〈x1, y1〉
be the block for (u, v)-crossing in M . Suppose that an internal vertex w other than u also crosses
v in M . Let 〈x2, y2〉 be the block for (w, v)-crossing in M . Then, both y1 and y2 appear on the
path Pv from v to sa(v) in M . So, one of y1 and y2 is an ancestor of the other in M . Without loss
of generality, we may assume that y1 is an ancestor of y2 in M . Then, the leftmost planar path
starting at x1 must end at a leaf si with i < a(w). So, a(u) < i < a(w) because u covers x1 in
M . Similarly, the rightmost planar path starting at y2 must end at a leaf sk with b(w) < k < b(u).
Thus, u covers w in M . This establishes the lemma. 2

Lemma 3.5 Suppose that u, v, and w are three pairwise unnested internal vertices in M such that
u crosses v in M and v crosses w in M . Then, a(v) < b(u) < a(w) < b(v) and hence u does not
cross w in M .

Proof. Since u crosses v in M , we have a(v) < b(u) immediately. Similarly, a(w) < b(v). To
prove b(u) < a(w), consider the right vertex x in the block for (u, v)-crossing and the left vertex
y in the block for (v, w)-crossing. Obviously, the rightmost planar path Px starting at x must end
at a leaf si with b(u) < i and the leftmost planar path Py starting at y must end at a leaf sj with
j < a(w). Moreover, since x is on the left of y in M , Px is on the left of Py and so i < j. Hence,
b(u) < i < j < a(w). 2

A triple (L, i, j) is closed in M if either i = j and L consists of si only, or the following conditions
are satisfied:

• i and j are integers with 1 ≤ i < j ≤ n.

• L is an ordered list 〈v1, v2, . . . , vk〉 of pairwise unnested internal vertices with 1 ≤ k ≤ 4.

• The left child of v1 in M is an ancestor of si, and the right child of vk in M is an ancestor of
sj .

• The path from v1 to si in M is planar and so is the path from vk to sj in M .

• For each integer h with 2 ≤ h ≤ k − 1, all leaf descendants of vh in M are among si, si+1,
. . . , sj .

• Every leaf s` with i ≤ ` ≤ j is a descendant of some vh with 1 ≤ h ≤ k in M .

• For each integer h with 1 ≤ h ≤ k − 1, vh crosses vh+1 in M .

15

For example, both (〈t2〉, 1, 4) and (〈t5, t6〉, 4, 15) are closed triples in the duplication model in
Figure 7(a).

For each closed triple (L, i, j) in M , we use M(L, i, j) to denote the subgraph of M induced by
the set of those vertices u in M such that u is a vertex in L, u is a leaf sh with i ≤ h ≤ j, or u
is both an ancestor of some sh with i ≤ h ≤ j and a descendant of some vertex of L in M . For
example, M(〈r〉, 1, n) is exactly M , where r is the root of M .

Note that M(L, i, j) is a forest consisting of |L| rooted trees whose roots are the vertices in
L and whose leaves are si, . . . , sj . Moreover, M(L, i, j) may have unifurcate vertices, which are
those vertices having only one child in M(L, i, j). Obviously, each unifurcate vertex in M(L, i, j)
appears on the path from the leaf si to the first vertex in L or on the path from the leaf sj to the
last vertex in L.

For each closed triple (L, i, j) in M , we call M(L, i, j) a component of M and call the vertices
in L the roots of the component. Note that the roots of M(L, i, j) are ordered from left to right.
For example, the leftmost root is the first root while the rightmost root is the last root.

3.2 The Component Tree of a Model

We inherit the notations in Section 3.1. For each vertex v of M , let s(v) denote the string assigned
to v in M . Moreover, for a list L of vertices in M , let s(L) denote the list of strings assigned to
the vertices in L. Furthermore, for two strings s′ and s′′, let d(s′, s′′) denote the hamming distance
between them.

t1

t2

t6t5

(a) (b)

t4t3
t8t7

t12t11t10t9 t14t13

s1 s2 s3

s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

<t1>,1,15

<t2,t6>,1,15

1.1

2.1

<t2>,1,4
1.1

<t5,t6>,4,15 2.3.8

<t3,t4>,1,4
2.3.1 <t4,t7,t8,t14>,4,15 3.1

<t9,t10>,4,7
2.3.1 <t7,t8,t14>,7,15

3.2

<t7,t8>,7,122.3.3

<t11,t12>,8,112.3.1

<t13,t14>,12,15
2.3.1

s1 s2 s3 s4

s4 s5 s6 s7

s7 s12

s8 s9 s10 s11

s12 s13 s14 s15

Figure 7: (a) A duplication model M where the three bold paths are the splitting paths for obtaining
D(M). (b) The component tree D(M) of M where the type of each node is given near the node,
the weight of each edge is omitted, and the label (〈si〉, i, i) of each leaf is simplified to si.

We want to dissect M into components and organize them into a rooted, ordered, edge-weighted,
and node-labeled tree D(M), called the component tree of M (see Figure 7 for an example). Since
we want to do this recursively, it is more convenient to dissect M(L, i, j) into components and
organize them into a rooted, ordered, edge-weighted, and node-labeled tree DM (L, i, j) (called the
component tree of M(L, i, j)) for each closed triple (L, i, j) in M .

We next construct DM (L, i, j) by induction on j−i. In the base case where j−i = 0, DM (L, i, j)
has only one node α(L, i, j); we label the node with (s(L), i, j) and call it a type-0 node. So, suppose
that j − i ≥ 1. Then, depending on |L|, there are three cases. In each case, we first create a root

16

node α(L, i, j) for DM (L, i, j) and label it with (s(L), i, j). Then, we proceed to grow DM (L, i, j)
in each case as follows:

Case 1: |L| = 1. Let u be the root of M(L, i, j), and let v1 (respectively, v2) be the first
vertex on the path from u to the leaf si (respectively, sj) that is not a unifurcate internal vertex in
M(L, i, j). We further distinguish two subcases as follows:

Case 1.1: v1 crosses v2 in M . In this subcase, (〈v1, v2〉, i, j) is a closed triple in M . So, we
recursively construct DM (〈v1, v2〉, i, j), then let α(〈v1, v2〉, i, j) be the unique child of α(L, i, j), and
further let the weight of the edge between α(L, i, j) and its child be d(s(u), s(v1)) + d(s(u), s(v2)).
We also call α(L, i, j) a type-1.1 node.

Case 1.2: v1 does not cross v2 in M . In this subcase, both (〈v1〉, i, b(v1)) and (〈v2〉, a(v2), j)
are closed triples in M . So, we recursively construct DM (〈v1〉, i, b(v1)) and DM (〈v2〉, a(v2), j). We
then let α(〈v1〉, i, b(v1)) and α(〈v2〉, a(v2), j) be the left and the right child of α(L, i, j), respectively.
We further let the weight of the edge between α(L, i, j) and its left (respectively, right) child be
d(s(u), s(v1)) (respectively, d(s(u), s(v2))). We also call α(L, i, j) a type-1.2 node.

Case 2: |L| = 2. Let u1 and u2 be the roots of M(L, i, j). Let 〈v1, v2〉 be the block for
(u1, u2)-crossing in M . We further distinguish three subcases as follows:

Case 2.1: u1 6= v1. Let sk be the leaf at which the leftmost planar path starting at v1 ends. Then,
(〈u1〉, i, k) and (〈v1, u2〉, k, j) are closed triples in M . So, we recursively construct DM (〈u1〉, i, k) and
DM (〈v1, u2〉, k, j). Intuitively speaking, this means that we split M(L, i, j) into two components
along the path from v1 to sk and then construct their component trees recursively. For conve-
nience, we call the path a splitting path and associate it with α(L, i, j). Now, to finish constructing
DM (L, i, j), we let α(〈u1〉, i, k) and α(〈v1, u2〉, k, j) be the left and the second child of α(L, i, j),
respectively. We further let the weight of the edge between α(L, i, j) and each of its children be
1
2d(sk, s(v1)). We also call α(L, i, j) a type-2.1 node.

Case 2.2: u1 = v1 but u2 6= v2. Let s` be the leaf at which the rightmost planar path starting
at v2 ends. Then, (〈u1, v2〉, i, `) and (〈u2〉, `, j) are closed triples in M . So, we recursively construct
DM (〈u1, v2〉, i, `) and DM (〈u2〉, `, j). Intuitively speaking, this means that we split M(L, i, j) into
two components along the path from v2 to s` and then construct their component trees recursively.
For convenience, we call the path a splitting path and associate it with α(L, i, j). Now, to finish
constructing DM (L, i, j), we let α(〈u1, v2〉, i, `) and α(〈u2〉, `, j) be the left and the right child of
α(L, i, j), respectively. We further let the weight of the edge between α(L, i, j) and each of its
children be 1

2d(s`, s(v2)). We also call α(L, i, j) a type-2.2 node.
Case 2.3: u1 = v1 and u2 = v2. Let w1 (respectively, w4) be the first vertex on the path

from u1 (respectively, u2) to the leaf si (respectively, sj) that is not a unifurcate internal vertex in
M(L, i, j). Let w3 (respectively, w2) be the right (respectively, left) child of u1 (respectively, u2) in
M(L, i, j). By Lemma 3.5, one of the following subsubcases occurs:

Case 2.3.1: There do not exist two vertices wi and wj with 1 ≤ i < j ≤ 4 such that wi crosses
wj in M . Obviously, (〈w1〉, i, b(w1)), (〈w2〉, a(w2), b(w2)), (〈w3〉, a(w3), b(w3)), and (〈w4〉, a(w4), j)
are closed triples in M . Note that a(wh) = b(wh−1) + 1 for 2 ≤ h ≤ 4. So, we recursively construct
DM (〈w1〉, i, b(w1)), DM (〈w2〉, a(w2), b(w2)), DM (〈w3〉, a(w3), b(w3)), and DM (〈w4〉, a(w4), j). We
then let α(〈w1〉, i, b(w1)), α(〈w2〉, a(w2), b(w2)), α(〈w3〉, a(w3), b(w3)), and α(〈w4〉, a(w4), j) be the
first (i.e., the leftmost), the second, the third, and the fourth child of α(L, i, j), respectively. We
further let the weight of the edge between α(L, i, j) and its first, its second, its third, and its fourth

17

child be d(s(u1), s(w1)), d(s(u2), s(w2)), d(s(u1), s(w3)), and d(s(u2), s(w4)), respectively. We also
call α(L, i, j) a type-2.3.1 node.

Case 2.3.2: w1 crosses w2 in M but neither w2 crosses w3 nor w3 crosses w4 in M . Obvi-
ously, (〈w1, w2〉, i, b(w2)), (〈w3〉, a(w3), b(w3)), and (〈w4〉, a(w4), j) are closed triples in M . Note
that a(w3) = b(w2) + 1 and a(w4) = b(w3) + 1. So, we recursively construct DM (〈w1, w2〉, i, b(w2)),
DM (〈w3〉, a(w3), b(w3)), andDM (〈w4〉, a(w4), j). We then let α(〈w1, w2〉, i, b(w2)), α(〈w3〉, a(w3), b(w3)),
and α(〈w4〉, a(w4), j) be the left, the middle, and the right child of α(L, i, j), respectively. We fur-
ther let the weight of the edge between α(L, i, j) and its left, its middle, and its right child be
d(s(u1), s(w1)) + d(s(u2), s(w2)), d(s(u1), s(w3)), and d(s(u2), s(w4)), respectively. We also call
α(L, i, j) a type-2.3.2 node.

Case 2.3.3: w2 crosses w3 in M but neither w1 crosses w2 nor w3 crosses w4 in M . Obvi-
ously, (〈w1〉, i, b(w1)), (〈w2, w3〉, a(w2), b(w3)), and (〈w4〉, a(w4), j) are closed triples in M . Note
that a(w2) = b(w1) + 1 and a(w4) = b(w3) + 1. So, we recursively construct DM (〈w1〉, i, b(w1)),
DM (〈w2, w3〉, a(w2), b(w3)), andDM (〈w4〉, a(w4), j). We then let α(〈w1〉, i, b(w1)), α(〈w2, w3〉, a(w2), b(w3)),
and α(〈w4〉, a(w4), j) be the left, the middle, and the right child of α(L, i, j), respectively. We fur-
ther let the weight of the edge between α(L, i, j) and its left, its middle, and its right child be
d(s(u1), s(w1)), d(s(u1), s(w3)) + d(s(u2), s(w2)), and d(s(u2), s(w4)), respectively. We also call
α(L, i, j) a type-2.3.3 node.

Case 2.3.4: w3 crosses w4 in M but neither w1 crosses w2 nor w2 crosses w3 in M . Obvi-
ously, (〈w1〉, i, b(w1)), (〈w2〉, a(w2), b(w2)), and (〈w3, w4〉, a(w3), j) are closed triples in M . Note
that a(w2) = b(w1) + 1 and a(w3) = b(w2) + 1. So, we recursively construct DM (〈w1〉, i, b(w1)),
DM (〈w2〉, a(w2), b(w2)), andDM (〈w3, w4〉, a(w3), j). We then let α(〈w1〉, i, b(w1)), α(〈w2〉, a(w2), b(w2)),
and α(〈w3, w4〉, a(w3), j) be the left, the middle, and the right child of α(L, i, j), respectively. We
further let the weight of the edge between α(L, i, j) and its left, its middle, and its right child
be d(s(u1), s(w1)), d(s(u2), s(w2)), and d(s(u1), s(w3)) + d(s(u2), s(w4)), respectively. We also call
α(L, i, j) a type-2.3.4 node.

Case 2.3.5: Both w1 crosses w2 and w2 crosses w3 but w3 does not cross w4 in M . Obviously,
(〈w1, w2, w3〉, i, b(w3)) and (〈w4〉, a(w4), j) are closed triples in M . Note that a(w4) = b(w3) +
1. So, we recursively construct DM (〈w1, w2, w3〉, i, b(w3)) and DM (〈w4〉, a(w4), j). We then let
α(〈w1, w2, w3〉, i, b(w3)) and α(〈w4〉, a(w4), j) be the left and the right child of α(L, i, j), respectively.
We further let the weight of the edge between α(L, i, j) and its left (respectively, right) child
be d(s(u1), s(w1)) + d(s(u2), s(w2)) + d(s(u1), s(w3)) (respectively, d(s(u2), s(w4))). We also call
α(L, i, j) a type-2.3.5 node.

Case 2.3.6: Both w1 crosses w2 and w3 crosses w4 but w2 does not cross w3 in M . Obviously,
(〈w1, w2〉, i, b(w2)) and (〈w3, w4〉, a(w3), j) are closed triples in M . Note that a(w3) = b(w2) +
1. So, we recursively construct DM (〈w1, w2〉, i, b(w2)) and DM (〈w3, w4〉, a(w3), j). We then let
α(〈w1, w2〉, i, b(w2)) and α(〈w3, w4〉, a(w3), j) be the left and the right child of α(L, i, j), respectively.
We further let the weight of the edge between α(L, i, j) and its left (respectively, right) child
be d(s(u1), s(w1)) + d(s(u2), s(w2)) (respectively, d(s(u1), s(w3)) + d(s(u2), s(w4))). We also call
α(L, i, j) a type-2.3.6 node.

Case 2.3.7: Both w2 crosses w3 and w3 crosses w4 but w1 does not cross w2 in M . Obviously,
(〈w1〉, i, b(w1)) and (〈w2, w3, w4〉, a(w2), j) are closed triples in M . Note that a(w2) = b(w1) +
1. So, we recursively construct DM (〈w1〉, i, b(w1)) and DM (〈w2, w3, w4〉, a(w2), j). We then let

18

α(〈w1〉, i, b(w1)) and α(〈w2, w3, w4〉, a(w2), j) be the left and the right child of α(L, i, j), respectively.
We further let the weight of the edge between α(L, i, j) and its left (respectively, right) child
be d(s(u1), s(w1)) (respectively, d(s(u2), s(w2)) + d(s(u1), s(w3)) + d(s(u2), s(w4))). We also call
α(L, i, j) a type-2.3.7 node.

Case 2.3.8: For each integer h with 1 ≤ h ≤ 3, wh crosses wh+1 inM . Obviously, (〈w1, w2, w3, w4〉, i, j)
is a closed triple in M . So, we recursively construct DM (〈w1, w2, w3, w4〉, i, j). We then let
α(〈w1, w2, w3, w4〉, i, j) be the unique child of α(L, i, j). We further let the edge between α(L, i, j)
and its child be d(s(u1), s(w1)) + d(s(u2), s(w2)) + d(s(u1), s(w3)) + d(s(u2), s(w4)). We also call
α(L, i, j) a type-2.3.8 node.

Case 3: 3 ≤ |L| ≤ 4. Let h = |L|. Let u1, . . . , uh be the roots of M(L, i, j). Let 〈v1, v2〉 be
the block for (u1, u2)-crossing in M , and let 〈w2, w3〉 be the block for (u2, u3)-crossing in M . We
further distinguish two subcases as follows:

Case 3.1: u2 6= v2. Let sk be the leaf at which the rightmost planar path starting at v2
ends. Then, (〈u1, v2〉, i, k) and (〈u2, . . . , uh〉, k, j) are closed triples in M . So, we recursively con-
struct DM (〈u1, v2〉, i, k) and DM (〈u2, . . . , uh〉, k, j). Intuitively speaking, this means that we split
M(L, i, j) into two components along the path from v2 to sk and then construct their component
trees recursively. For convenience, we call the path a splitting path and associate it with α(L, i, j).
Now, to finish constructing DM (L, i, j), we just let α(〈u1, v2〉, i, k) and α(〈u2, . . . , uh〉, k, j) be the
left and the second child of α(L, i, j), respectively. We further let the weight of the edge between
α(L, i, j) and each of its child be 1

2d(sk, s(v2)). We also call α(L, i, j) a type-3.1 node.
Case 3.2: u2 = v2. Then, u2 6= w2. Let s` be the leaf at which the leftmost planar path

starting at w2 ends. Then, (〈u1, u2〉, i, `) and (〈w2, u3, . . . , uh〉, `, j) are closed triples in M . So,
we recursively construct DM (〈u1, u2〉, i, `) and DM (〈w2, u3, . . . , uh〉, `, j). Intuitively speaking, this
means that we split M(L, i, j) into two components along the path from w2 to s` and then con-
struct their component trees recursively. For convenience, we call the path a splitting path and
associate it with α(L, i, j). Now, to finish constructing DM (L, i, j), we just let α(〈u1, u2〉, i, `) and
α(〈w2, u3, . . . , uh〉, `, j) be the left and the second child of α(L, i, j), respectively. We further let
the edge between α(L, i, j) and each of its child be 1

2d(s`, s(w2)). We also call α(L, i, j) a type-3.2
node.

Lemma 3.6 The component tree D(M) of M is unique. Moreover, each pair of splitting paths
associated with nodes in D(M) are edge-disjoint.

Proof. The first assertion is obvious from the construction of D(M). We next prove the second
assertion. For each component M(L, i, j) of M , we define the left (respectively, right) boundary of
M(L, i, j) to be the path from the first (respectively, last) vertex in L to si (respectively, sj) in M .
By examining each case in the above construction of DM (L, i, j), we can see that if a splitting path
is used to split M(L, i, j) into two smaller components, the path does not traverse any edge on the
left or right boundary of M(L, i, j) and the splitting path becomes the left or right boundary of
each of the smaller components. So, it is impossible for two splitting paths to share an edge. 2

We define the weight of D(M) to be the total weight of edges in D(M).

Lemma 3.7 The weight of D(M) is at most 3 · c(M).

19

Proof. For each closed triple (L, i, j), let c(M(L, i, j)) be the total cost of edges in M(L, i, j),
and let c(DM (L, i, j)) be the total weight of edges in DM (L, i, j). Moreover, if there are one or
more splitting paths associated with α(L, i, j) or its descendants in DM (L, i, j), then let cp(L, i, j)
denote the total cost of edges on all the paths; otherwise, let cp(L, i, j) = 0.

To show the lemma, we first claim that for each closed triple (L, i, j), c(DM (L, i, j)) ≤ c(M(L, i, j))+
2 · cp(L, i, j). We prove the claim by induction on j − i. The claim is clearly true when j − i = 0.
So, suppose that j − i ≥ 1. If no splitting path is associated with α(L, i, j) in DM (L, i, j), then
by the inductive hypothesis and the definition of the weight(s) between α(L, i, j) and its child(ren)
in DM (L, i, j), it is clear that c(DM (L, i, j)) ≤ c(M(L, i, j)) + 2 · cp(L, i, j). Otherwise, by the
definition of the weights between α(L, i, j) and its children in DM (L, i, j),

c(DM (L, i, j)) ≤ c(DM (L1, i, k)) + c(DM (L2, k, j)) + c(P),

where P is the splitting path associated with α(L, i, j) and α(L1, i, k) and α(L2, k, j)) are the
children of α(L, i, j) in DM (L, i, j). Moreover, we have

c(DM (L1, i, k)) + c(DM (L2, k, j)) + c(P)

≤ c(M(L1, i, k)) + 2 · cp(L1, i, k) + c(M(L2, k, j)) + 2 · cp(L2, k, j) + c(P)

= c(M(L, i, j)) + 2 · cp(L1, i, k) + 2 · cp(L2, k, j) + 2 · c(P)

= c(M(L, i, j)) + 2 · cp(L, i, j), (3.1)

where the inequality follows from the inductive hypothesis and the first equality follows from the
fact that the edges shared by M(L1, i, k) and M(L2, k, j) are exactly the edges of P . This completes
the proof of the claim. The lemma follows from the claim and Lemma 3.6 immediately. 2

3.3 Constructing Models from Component Trees

For convenience, we will allow a duplication model to have unifurcate internal vertices from now
on. This does not cause any problem because we can obtain a real duplication model by repeating
merging the two edges incident to a unifurcate vertex into a single edge until there are no unifurcate
vertices in the model.

We inherit the notations in Sections 3.1 and 3.2. We show how to use D(M) to construct a
duplication model M ′ for s1s2 . . . sn such that c(M ′) equals the total weight of edges in D(M) (see
Figure 8 for an example). In the construction of M ′, we will only use the label and the type of
each node in D(M), i.e., we will not look at the topology and the vertices of M .

Recall that the label of each node β in D(M) is a triple (S, i, j), where S is an ordered nonempty
list of at most four (possibly not distinct) strings among s1, . . . , sn and i and j are two integers
with 1 ≤ i ≤ j ≤ n. For convenience, we call S the string list of β.

The construction of M ′ indeed involves constructing a rooted ordered forest M ′(β) for each
node β of D(M). We will maintain the invariant that M ′(β) has |S| roots, where S is the string
list of β.

We next detail the construction of M ′. We construct M ′ by processing the nodes of D(M) in a
bottom-up fashion. We first process each leaf β in D(M) by constructing M ′(β) as follows: Create
a new vertex and assign it the unique string in the string list of β.

20

t1
t2

t6t5

t4t3

t8t7

t12t11t10t9 t14t13

s1 s2 s3

s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

s4

s7 s12

Figure 8: The new duplication model M ′ constructed from the component tree in Figure 7(b).

Now, consider the processing of an internal node β in D(M). Let γ1, . . . , γh be the children
of β in D(M), where the ordering is from left to right. Suppose that M ′(γ1), . . . , M ′(γh) have
been constructed by processing γ1, . . . , γh. The processing of β will depend on its type. Since
the possible types of β one-to-one correspond to the cases in Section 3.2, we construct M ′(β) by
distinguishing several cases as follows:

Type 1.1 (cf. Case 1.1 in Section 3.2): We create a root vertex for M ′(β), assign it the unique
string in the string list of β, and connect it to the roots of M ′(γ1) by two new edges. Note that
the total cost of the two new edges is exactly the weight of the edge between β and γ1 in D(M).

Type 1.2 (cf. Case 1.2 in Section 3.2): We create a root vertex u for M ′(β), assign it the unique
string in the string list of β, connect it to the root v1 of M ′(γ1) and to the root v2 of M ′(γ2) so
that v1 and v2 become the left and the right child of u in M ′(β), respectively. Note that the total
costs of the new edges (u, v1) and (u, v2) in M ′(β) are exactly the total weight of the edges between
β and its children in D(M).

Type 2.1 (cf. Case 2.1 in Section 3.2): We connect M ′(γ1) and M ′(γ2) by making the left root
v2 of M ′(γ2) be the unique child of the rightmost leaf v1 of M ′(γ1). Note that the cost of the new
edge (v1, v2) in M ′(β) is exactly the total weight of the edges between β and its children in D(M).

Type 2.2 (cf. Case 2.2 in Section 3.2): We connect M ′(γ1) and M ′(γ2) by making the right root
v1 of M ′(γ1) be the unique child of the leftmost leaf v2 of M ′(γ2). Note that the cost of the new
edge (v2, v1) in M ′(β) is exactly the total weight of the edges between β and its children in D(M).

Type 2.3.1 (cf. Case 2.3.1 in Section 3.2): We create two root vertices u1 and u2 for M ′(β),
assign u1 the first string in the string list S of β, assign u2 the second string in S, connect u1 to
the root v1 of M ′(γ1) and to the root v3 of M ′(γ3) (so that v1 and v3 become the left and the right
child of u1 in M ′(β), respectively), and connect u2 to the root v2 of M ′(γ2) and to the root v4 of
M ′(γ4) (so that v2 and v4 become the left and the right child of u2 in M ′(β), respectively). Note
that the total cost of the new edges (u1, v1), (u2, v2), (u1, v3), and (u2, v4) in M ′(β) is exactly the
total weight of the edges between β and its children in D(M).

Type 2.3.2 (cf. Case 2.3.2 in Section 3.2): We create two root vertices u1 and u2 for M ′(β),
assign u1 the first string in the string list S of β, assign u2 the second string in S, connect u1 to
the left root v1,1 of M ′(γ1) and to the root v2 of M ′(γ2) (so that v1,1 and v2 become the left and
the right child of u1 in M ′(β), respectively), and connect u2 to the right root v1,2 of M ′(γ1) and
to the root v3 of M ′(γ3) (so that v1,2 and v3 become the left and the right child of u2 in M ′(β),
respectively). Note that the total cost of the new edges (u1, v1,1), (u2, v1,2), (u1, v2), and (u2, v3) in
M ′(β) is exactly the total weight of the edges between β and its children in D(M).

21

Type 2.3.3 (cf. Case 2.3.3 in Section 3.2): We create two root vertices u1 and u2 for M ′(β),
assign u1 the first string in the string list S of β, assign u2 the second string in S, connect u1 to
the root v1 of M ′(γ1) and to the right root v2,2 of M ′(γ2) (so that v1 and v2,2 become the left and
the right child of u1 in M ′(β), respectively), and connect u2 to the left root v2,1 of M ′(γ2) and
to the root v3 of M ′(γ3) (so that v2,1 and v3 become the left and the right child of u2 in M ′(β),
respectively). Note that the total cost of the new edges (u1, v1), (u2, v2,1), (u1, v2,2), and (u2, v3) in
M ′(β) is exactly the total weight of the edges between β and its children in D(M).

Type 2.3.4 (cf. Case 2.3.4 in Section 3.2): We create two root vertices u1 and u2 for M ′(β),
assign u1 the first string in the strings list S of β, assign u2 the second string in S, connect u1 to
the root v1 of M ′(γ1) and to the left root v3,1 of M ′(γ3) (so that v1 and v3,1 become the left and
the right child of u1 in M ′(β), respectively), and connect u2 to the root v2 of M ′(γ2) and to the
right root v3,2 of M ′(γ3) (so that v2 and v3,2 become the left and the right child of u2 in M ′(β),
respectively). Note that the total cost of the new edges (u1, v1), (u2, v2), (u1, v3,1), and (u2, v3,2) in
M ′(β) is exactly the total weight of the edges between β and its children in D(M).

Type 2.3.5 (cf. Case 2.3.5 in Section 3.2): We create two root vertices u1 and u2 for M ′(β),
assign u1 the first string in the string list S of β, assign u2 the second string in S, connect u1 to the
left root v1,1 and the right root v1,3 of M ′(γ1) (so that v1,1 and v1,3 become the left and the right
child of u1 in M ′(β), respectively), and connect u2 to the middle root v1,2 of M ′(γ1) and to the root
v2 of M ′(γ2) (so that v1,2 and v2 become the left and the right child of u2 in M ′(β), respectively).
Note that the total cost of the new edges (u1, v1,1), (u2, v1,2), (u1, v1,3), and (u2, v2) in M ′(β) is
exactly the total weight of the edges between β and its children in D(M).

Type 2.3.6 (cf. Case 2.3.6 in Section 3.2): We create two root vertices u1 and u2 for M ′(β),
assign u1 the first string in string list S of β, assign u2 the second string in S, connect u1 to the
left root v1,1 of M ′(γ1) and to the left root v2,1 of M ′(γ2) (so that v1,1 and v2,1 become the left and
the right child of u1 in M ′(β), respectively), and connect u2 to the right root v1,2 of M ′(γ1) and
to the right root v2,2 of M ′(γ2) (so that v1,2 and v2,2 become the left and the right child of u2 in
M ′(β), respectively). Note that the total cost of the new edges (u1, v1,1), (u2, v1,2), (u1, v2,1), and
(u2, v2,2) in M ′(β) is exactly the total weight of the edges between β and its children in D(M).

Type 2.3.7 (cf. Case 2.3.7 in Section 3.2): We create two root vertices u1 and u2 for M ′(β),
assign u1 the first string in the string list S of β, assign u2 the second string in S, connect u1 to the
root v1 of M ′(γ1) and to the middle root v2,2 of M ′(γ2) (so that v1 and v2,2 become the left and the
right child of u1 in M ′(β), respectively), and connect u2 to the left root v2,1 and the right root v2,3
of M ′(γ2) (so that v2,1 and v2,3 become the left and the right child of u2 in M ′(β), respectively).
Note that the total cost of the new edges (u1, v1), (u2, v2,1), (u1, v2,2), and (u2, v2,3) in M ′(β) is
exactly the total weight of the edges between β and its children in D(M).

Type 2.3.8 (cf. Case 2.3.8 in Section 3.2): We create two root vertices u1 and u2 for M ′(β),
assign u1 the first string in the string list S of β, assign u2 the second string in S, connect u1 to the
leftmost root v1,1 and the third leftmost root v1,3 of M ′(γ1) (so that v1,1 and v1,3 become the left
and the right child of u1 in M ′(β), respectively), and connect u2 to the second leftmost root v1,2
and the rightmost root v1,4 of M ′(γ1) (so that v1,2 and v1,4 become the left and the right child of
u2 in M ′(β), respectively). Note that the total cost of the new edges (u1, v1,1), (u2, v1,2), (u1, v1,3),
and (u2, v1,4) in M ′(β) is exactly the total weight of the edges between β and its children in D(M).

Type 3.1 (cf. Case 3.1 in Section 3.2): We connect M ′(γ1) and M ′(γ2) by making the right root

22

v1,2 of M ′(γ1) be the unique child of the leftmost leaf v2,1 of M ′(γ2). Note that the cost of the
new edge (v2,1, v1,2) in M ′(β) is exactly the total weight of the edges between β and its children in
D(M).

Type 3.2 (cf. Case 3.2 in Section 3.2): We connect M ′(γ1) and M ′(γ2) by making the leftmost
root v2,1 of M ′(γ2) be the unique child of the rightmost leaf v1,2 of M ′(γ1). Note that the cost of
the new edge (v1,2, v2,1) in M ′(β) is exactly the total weight of the edges between β and its children
in D(M).

Lemma 3.8 The cost of the new mode M ′ constructed from D(M) as above equals the total weight
of edges in D(M). Consequently, c(M ′) ≤ 3 · c(M).

Proof. We claim that for each node β with a label (S, i, j) in D(M), the rooted ordered forest
M ′(β) constructed as above satisfies that c(M ′(β)) equals the total weight of edges in DM (S, i, j)
and the leaves of M ′(β) are si, si+1, . . . , sj (from left to right). The claim can be easily shown by
induction on j − i and so its proof is omitted. The claim implies the first assertion in the lemma
immediately. The second assertion follows from the first and Lemma 3.7. 2

3.4 Computing an Optimal Component Tree

An obvious but very crucial property in the construction of M ′ from D(M) given in Section 3.3 is
that the construction of M ′ only depends on the label and the type of each node in D(M). This
motivates us to define component trees (independently of duplication models) for 〈s1, . . . , sn〉 and
to use dynamic programming to compute a minimum-weight component tree.

In order to define component trees (independently of duplication models) for 〈s1, . . . , sn〉, we
need to define several other terms first. An abstract quadruple is a quadruple (S, i, j, t), where S is
an ordered nonempty list of at most four strings among s1, . . . , sn, i and j are two integers with
1 ≤ i ≤ j ≤ n, and t satisfies the following conditions:

• t ∈ {0, 1.1, 1.2, 2.1, 2.2, 2.3.1, . . . , 2.3.8, 3.1, 3.2}.

• If t = 0, then i = j and S = {si}.

• If t ∈ {1.1, 1.2}, then |S| = 1 and j − i ≥ 1.

• If t ∈ {2.1, 2.2, 2.3.1, . . . , 2.3.8}, then |S| = 2 and j − i ≥ 3.

• If t ∈ {3.1, 3.2}, then 3 ≤ |S| ≤ 4 and j − i ≥ 2|S| − 1.

We call t the type of the abstract quadruple (S, i, j, t). For convenience, if t ∈ {0, 1.1, 1.2}, we say
that (S, i, j, t) is of type 1; if t ∈ {2.1, 2.2, 2.3.1, . . . , 2.3.8}, we say that (S, i, j, t) is of type 2; if
t ∈ {3.1, 3.2}, we say that (S, i, j, t) is of type 3.

We define component trees for abstract quadruples (S, i, j, t) by induction on j − i. In the base
case where j − i = 0, a component tree for (S, i, j, t) is a rooted tree with only one node (the root)
which is labeled with (S, i, j) and is of type t.

Consider the case where j − i ≥ 1. Suppose that S = 〈sh1 , . . . , shg〉. A component tree for
(S, i, j, t) is a rooted ordered tree D such that the root β is labeled with (S, i, j) and is of type t,
and the following conditions are satisfied:

23

• If t = 1.1, then β has only one child in D and the subtree rooted at the child in D is a
component tree for some type-2 abstract quadruple (S ′, i, j, t′).

• If t = 1.2, then β has two children γ1 and γ2 in D, the subtree rooted at γ1 in D is a component
tree for some type-1 abstract quadruple (S1, i, k, t1) with k < j, and the subtree rooted at γ2

in D is a component tree for some type-1 abstract quadruple (S2, k + 1, j, t2).

• If t = 2.1, then β has two children γ1 and γ2 in D, the subtree rooted at γ1 in D is a component
tree for some type-2 abstract quadruple (〈sh1〉, i, k, t1) with k < j, and the subtree rooted
at γ2 in D is a component tree for some type-2 abstract quadruple (〈sx, sh2〉, k, j, t2) with
1 ≤ x ≤ n.

• If t = 2.2, then β has two children γ1 and γ2 in D, the subtree rooted at γ1 in D is a
component tree for some type-2 abstract quadruple (〈sh1 , sx〉, i, `, t1) with 1 ≤ x ≤ n and
` < j, and the subtree rooted at γ2 in D is a component tree for some type-2 abstract
quadruple (〈sh2〉, `, j, t2).

• If t = 2.3.1, then β has four children γ1, . . . , γ4 in D, the subtree rooted at γ1 in D is a
component tree for some type-1 abstract quadruple (S1, i, k1, t1) with k1 < j, the subtree
rooted at γ2 in D is a component tree for some type-1 abstract quadruple (S2, k1 + 1, k2, t2)
with k2 < j, the subtree rooted at γ3 in D is a component tree for some type-1 abstract
quadruple (S3, k2 + 1, k3, t3) with k3 < j, and the subtree rooted at γ4 in D is a component
tree for some type-1 abstract quadruple (S4, k3 + 1, j, t4).

• If t = 2.3.2, then β has three children γ1, . . . , γ3 in D, the subtree rooted at γ1 in D is
a component tree for some type-2 abstract quadruple (S1, i, k, t1) with k < j, the subtree
rooted at γ2 in D is a component tree for some type-1 abstract quadruple (S2, k + 1, `, t2)
with ` < j, and the subtree rooted at γ3 in D is a component tree for some type-1 abstract
quadruple (S3, `+ 1, j, t3).

• If t = 2.3.3, then β has three children γ1, . . . , γ3 in D, the subtree rooted at γ1 in D is
a component tree for some type-1 abstract quadruple (S1, i, k, t1) with k < j, the subtree
rooted at γ2 in D is a component tree for some type-2 abstract quadruple (S2, k + 1, `, t2)
with ` < j, and the subtree rooted at γ3 in D is a component tree for some type-1 abstract
quadruple (S3, `+ 1, j, t3).

• If t = 2.3.4, then β has three children γ1, . . . , γ3 in D, the subtree rooted at γ1 in D is
a component tree for some type-1 abstract quadruple (S1, i, k, t1) with k < j, the subtree
rooted at γ2 in D is a component tree for some type-1 abstract quadruple (S2, k + 1, `, t2)
with ` < j, and the subtree rooted at γ3 in D is a component tree for some type-2 abstract
quadruple (S3, `+ 1, j, t3).

• If t = 2.3.5, then β has two children γ1 and γ2 in D, the subtree rooted at γ1 in D is a
component tree for some type-3 abstract quadruple (S1, i, k, t1) with |S1| = 3 and k < j,
and the subtree rooted at γ2 in D is a component tree for some type-1 abstract quadruple
(S2, k + 1, j, t2).

24

• If t = 2.3.6, then β has two children γ1 and γ2 in D, the subtree rooted at γ1 in D is a
component tree for some type-2 abstract quadruple (S1, i, k, t1) with k < j, and the subtree
rooted at γ2 in D is a component tree for some type-2 abstract quadruple (S2, k + 1, j, t2).

• If t = 2.3.7, then β has two children γ1 and γ2 in D, the subtree rooted at γ1 in D is a
component tree for some type-1 abstract quadruple (S1, i, k, t1) with k < j, and the subtree
rooted at γ2 in D is a component tree for some type-3 abstract quadruple (S2, k + 1, j, t2)
with |S2| = 3.

• If t = 2.3.8, then β has only one child in D and the subtree rooted at the child in D is a
component tree for some type-3 abstract quadruple (S ′, i, j, t′) with |S ′| = 4.

• If t = 3.1, then β has two children γ1 and γ2 in D, the subtree rooted at γ1 in D is a component
tree for some type-2 abstract quadruple (〈sh1 , sx〉, i, k, t1) with 1 ≤ x ≤ n and k < j, and
the subtree rooted at γ2 in D is a component tree for some type-(g − 1) abstract quadruple
(〈sh2 , . . . , shg〉, k, j, t2).

• If t = 3.2, then β has two children γ1 and γ2 in D, the subtree rooted at γ1 in D is a
component tree for some type-2 abstract quadruple (〈sh1 , sh2〉, i, k, t1) with k < j, and the
subtree rooted at γ2 in D is a component tree for some type-(g − 1) abstract quadruple
(〈sx, sh3 , . . . , shg〉, k, j, t2) with 1 ≤ x ≤ n.

Let (S, i, j, t) be an abstract quadruple, and let D be a component tree for (S, i, j, t). Note that
each node in D is labeled with a triple (L, k, `), where L is an ordered nonempty list of strings
among s1, . . . , sn and k and ` are integers with 1 ≤ k ≤ ` ≤ n. Moreover, each node in D has
a type among 0, 1.1, 1.2, 2.1, 2.2, 2.3.1, . . . , 2.3.8, 3.1, 3.2. Thus, we can use D to construct a
rooted ordered forest M ′D with |S| roots as described in Section 3.3. We define the weight of D to
be
∑
e c(e), where e ranges over all edges in M ′D and c(e) is the hamming distance between the two

strings assigned to the endpoints of e in M ′D.
We are now ready to use dynamic programming to compute a minimum-weight component tree

for each abstract quadruple (S, i, j, t). For simplicity, we only explicitly give formulas for computing
the minimum weight W (S, i, j, t) of a component tree for each abstract quadruple (S, i, j, t) as
follows.

• For each abstract quadruple q = (S, i, j, t) with t = 0, W (q) = 0.

• For each abstract quadruple q = (〈sh〉, i, j, t) with t = 1.1,

W (q) = min
q′

W (q′) + d(sh, sx) + d(sh, sy),

where q′ ranges over all type-2 abstract quadruples (〈sx, sy〉, i, j, t′).

• For each abstract quadruple q = (〈sh〉, i, j, t) with t = 1.2,

W (q) = min
i≤k<j

min
q1

min
q2

W (q1) +W (q2) + d(sh, sx) + d(sh, sy),

where q1 ranges over all type-1 abstract quadruples (〈sx〉, i, k, t1) and q2 ranges over all type-1
abstract quadruples (〈sy〉, k + 1, j, t2).

25

• For each abstract quadruple q = (〈sh1 , sh2〉, i, j, t) with t = 2.1,

W (q) = min
i<k<j

min
q1

min
q2

W (q1) +W (q2) + d(sk, sx),

where q1 ranges over all type-1 abstract quadruples (〈sh1〉, i, k, t1) and q2 ranges over all type-2
abstract quadruples (〈sx, sh2〉, k, j, t2).

• For each abstract quadruple q = (〈sh1 , sh2〉, i, j, t) with t = 2.2,

W (q) = min
i<`<j

min
q1

min
q2

W (q1) +W (q2) + d(s`, sx),

where q1 ranges over all type-2 abstract quadruples (〈sh1 , sx〉, i, `, t1) and q2 ranges over all
type-1 abstract quadruples (〈sh2〉, `, j, t2).

• For each abstract quadruple q = (〈sh1 , sh2〉, i, j, t) with t = 2.3.1,

W (q) = min
i≤k1<j

min
k1<k2<j

min
k2<k3<j

min
q1

min
q2

min
q3

min
q4

W (q1) +W (q2) +W (q3) +W (q4)

+ d(sh1 , sx1) + d(sh1 , sx3) + d(sh2 , sx2) + d(sh2 , sx4),

where q1 ranges over all type-1 abstract quadruples (〈sx1〉, i, k1, t1), q2 ranges over all type-
1 abstract quadruples (〈sx2〉, k1 + 1, k2, t2), q3 ranges over all type-1 abstract quadruples
(〈sx3〉, k2 + 1, k3, t3), and q4 ranges over all type-1 abstract quadruples (〈sx4〉, k3 + 1, k4, t4).

• For each abstract quadruple q = (〈sh1 , sh2〉, i, j, t) with t = 2.3.2,

W (q) = min
i+3≤k1<j

min
k1<k2<j

min
q1

min
q2

min
q3

W (q1) +W (q2) +W (q3)

+ d(sh1 , sx1) + d(sh1 , sx3) + d(sh2 , sx2) + d(sh2 , sx4),

where q1 ranges over all type-2 abstract quadruples (〈sx1 , sx2〉, i, k1, t1), q2 ranges over all type-
1 abstract quadruples (〈sx3〉, k1 + 1, k2, t2), and q3 ranges over all type-1 abstract quadruples
(〈sx4〉, k2 + 1, j, t3).

• For each abstract quadruple q = (〈sh1 , sh2〉, i, j, t) with t = 2.3.3,

W (q) = min
i≤k1<j

min
k1+4≤k2<j

min
q1

min
q2

min
q3

W (q1) +W (q2) +W (q3)

+ d(sh1 , sx1) + d(sh1 , sx3) + d(sh2 , sx2) + d(sh2 , sx4),

where q1 ranges over all type-1 abstract quadruples (〈sx1〉, i, k1, t1), q2 ranges over all type-2
abstract quadruples (〈sx2 , sx3〉, k1+1, k2, t2), and q3 ranges over all type-1 abstract quadruples
(〈sx4〉, k2 + 1, j, t3).

• For each abstract quadruple q = (〈sh1 , sh2〉, i, j, t) with t = 2.3.4,

W (q) = min
i≤k1<j

min
k1<k2<j

min
q1

min
q2

min
q3

W (q1) +W (q2) +W (q3)

+ d(sh1 , sx1) + d(sh1 , sx3) + d(sh2 , sx2) + d(sh2 , sx4),

where q1 ranges over all type-1 abstract quadruples (〈sx1〉, i, k1, t1), q2 ranges over all type-1
abstract quadruples (〈sx2〉, k1 + 1, k2, t2), and q3 ranges over all type-2 abstract quadruples
(〈sx3 , sx4〉, k2 + 1, j, t3).

26

• For each abstract quadruple q = (〈sh1 , sh2〉, i, j, t) with t = 2.3.5,

W (q) = min
i+5≤k<j

min
q1

min
q2

W (q1) +W (q2)

+ d(sh1 , sx1) + d(sh1 , sx3) + d(sh2 , sx2) + d(sh2 , sx4),

where q1 ranges over all type-3 abstract quadruples (〈sx1 , sx2 , sx3〉, i, k, t1) and q2 ranges over
all type-1 abstract quadruples (〈sx4〉, k + 1, j, t2).

• For each abstract quadruple q = (〈sh1 , sh2〉, i, j, t) with t = 2.3.6,

W (q) = min
i+3≤k<j

min
q1

min
q2

W (q1) +W (q2)

+ d(sh1 , sx1) + d(sh1 , sx3) + d(sh2 , sx2) + d(sh2 , sx4),

where q1 ranges over all type-2 abstract quadruples (〈sx1 , sx2〉, i, k, t1) and q2 ranges over all
type-2 abstract quadruples (〈sx3 , sx4〉, k + 1, j, t2).

• For each abstract quadruple q = (〈sh1 , sh2〉, i, j, t) with t = 2.3.7,

W (q) = min
i≤k<j

min
q1

min
q2

W (q1) +W (q2)

+ d(sh1 , sx1) + d(sh1 , sx3) + d(sh2 , sx2) + d(sh2 , sx4),

where q1 ranges over all type-1 abstract quadruples (〈sx1〉, i, k, t1) and q2 ranges over all type-3
abstract quadruples (〈sx2 , sx3 , sx4〉, k + 1, j, t2).

• For each abstract quadruple q = (〈sh1 , sh2〉, i, j, t) with t = 2.3.8,

W (q) = min
q′

W (q′) + d(sh1 , sx1) + d(sh1 , sx3) + d(sh2 , sx2) + d(sh2 , sx4),

where q′ ranges over all type-3 abstract quadruples (〈sx1 , . . . , sx4〉, i, j, t′).

• For each abstract quadruple q = (〈sh1 , . . . , shg〉, i, j, t) with t = 3.1,

W (q) = min
i+3≤k<j

min
q1

min
q2

W (q1) +W (q2) + d(sk, sx),

where q1 ranges over all type-2 abstract quadruples (〈sh1 , sx〉, i, k, t1) and q2 ranges over all
type-(g − 1) abstract quadruples (〈sh2 , . . . , shg〉, k, j, t2).

• For each abstract quadruple q = (〈sh1 , . . . , shg〉, i, j, t) with t = 3.2,

W (q) = min
i+3≤k<j

min
q1

min
q2

W (q1) +W (q2) + d(sk, sx),

where q1 ranges over all type-2 abstract quadruples (〈sh1 , sh2〉, i, k, t1) and q2 ranges over all
type-(g − 1) abstract quadruples (〈sx, sh3 , . . . , shg〉, k, j, t2).

Obviously, the minimum weight of a component tree for 〈s1, . . . , sn〉 is minqW (q), where q

ranges over all type-1 abstract quadruples (S, 1, n, t). Moreover, a rough estimate gives a running
time of O(n11 + mn2). Indeed, we can lower the time complexity to O(n8 + mn2) by modifying
the above dynamic programming appropriately (although we omit the details here to save space).
Thus, we have the following lemma:

27

Lemma 3.9 We can compute a minimum-weight component tree for 〈s1, . . . , sn〉 in polynomial
time.

Combining Lemmas 3.1, 3.8, and 3.9, we have the following theorem:

Theorem 3.10 There is a polynomial-time approximation algorithm for 2-DHR that achieves a
ratio of 6.

Acknowledgements

Zhi-Zhong Chen is supported in part by the Grant-in-Aid for Scientific Research of the Ministry
of Education, Science, Sports and Culture of Japan, under Grant No. 17500012. Lusheng Wang
and Zhanyong Wang are fully supported by a grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China [Project No. CityU 120905].

References
[1] G. Benson and L. Dong. Reconstructing the Duplication History of a Tandem Repeat. Proceedings of the

Seventh International Conference on Intelligent Systems for Molecular Biology (ISMB-99), pp. 44-53,
1999.

[2] T. Boby, A. -M. Patch, and S. J. Aves. TRbase: A Database Relating Tandem Repeats to Disease Genes
for the Human Genome, Bioinformatics, Advance Access published on October 12, 2004.

[3] W. Fitch. Phylogenies Constrained by Cross-over Process as Illustrated by Human Hemoglobins in a
Thirteen Cycle, Eleven Amino-Acid Repeat in Human Apolipoprotein A-I. Genetics, Vol. 86, pp. 623-
644, 1977.

[4] D. Jaitly, P. E. Kearney, G. Lin, and B. Ma. Methods for Reconstructing the History of Tandem Repeats
and Their Application to the Human Genome. J. Comput. Syst. Sci., Vol. 65 , pp. 494-507, 2002.

[5] F. Lillo, S. Basile, and R. N. Mantegna. Comparative Genomics Study of Inverted Repeats in Bacteria.
Bioinformatics, Vol. 18, pp. 971 - 979, 2002.

[6] J. Macas, T. Mszros, and M. Nouzov. PlantSat: A Specialized Database for Plant Satellite Repeats.
Bioinformatics, Vol. 18, pp. 28 - 35, 2002.

[7] H. H. Otu and K. Sayood. A New Sequence Distance Measure for Phylogenetic Tree Construction.
Bioinformatics, Vol. 19, pp. 2122 - 2130, 2004.

[8] S. Subramanian, R. K. Mishra, and L. Singh. Genome-Wide Analysis of Bkm Sequences (GATA Re-
peats): Predominant Association with Sex Chromosomes and Potential Role in Higher Order Chromatin
Organization and Function. Bioinformatics, Vol. 19, pp. 681-685, 2003.

[9] M. Tang, M. S. Waterman, and S. Yooseph. Zinc Finger Gene Clusters and Tandem Gene Duplication.
Journal of Computational Biology, Vol. 9, pp. 429-446, 2002.

[10] L. Wang, T. Jiang, and E. L. Lawler. Approximation Algorithms for Tree Alignment with a Given
Phylogeny. Algorithmica, Vol. 16, pp. 302-315, 1996.

[11] B. Widegren, U. Arnason, and G. Akusjarvi. Characteristics of a Conserved 1,579-bp Highly Repetitive
Component in the Killer Whale, Ornicus Orca. Mol. Biol. Evol., Vol. 2, pp. 411-419, 1985.

28

[12] A. H. Wyman and R. White. A Highly Polymorphic Locus in Human DNA. Proc. Natl. Acad. Sci., Vol.
77, pp. 6745-6758, 1980.

[13] L. Zhang, B. Ma, L. Wang, and Y. Xu. Greedy Method for Inferring Tandem Duplication History.
Bioinformatics, Vol. 19, pp. 1497-1504, 2003.

29

