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Abstract. Data encapsulation is a familiar property in object-oriented
programming. It is not only useful for modelling things in the real world,
but it also facilitates reuse by enabling the creation of multiple instances
of the same class, each with its own identity and private data. For CBSE,
this kind of reuse is clearly also one of the key desiderata. However, it
must be achieved in conjunction with composition, which is central to
CBSE. In this paper we show how data encapsulation can be combined
with composition, by extending a component model we have defined
previously.

1 Introduction

Data encapsulation is a familiar property of objects, as in object-oriented pro-
gramming. It is not only useful for modelling things in the real world, but it
also facilitates reuse by enabling the creation of multiple instances of the same
class, each with its own identity and private data. For CBSE, this kind of reuse
is clearly also one of the key desiderata, since components are considered to be
reusable templates for multiple component instances. However, since composi-
tion is central to CBSE, the question is how to design composition mechanisms
or operators that make data encapsulation possible at every level of composition,
that is, how to make sure that every composite component created by composi-
tion encapsulates its own data. In this paper, we argue that this combination of
data encapsulation and composition is not possible in current component mod-
els; and then show that it can be achieved by extending a component model that
we have defined previously.

Current component models can largely be divided into two categories [9,5]: (i)
models where components are objects, as in object-oriented programming; (ii)
models where components are architectural units, as in software architectures
[14,1]. Exemplars of these categories are Enterprise JavaBeans (EJB) [3,12] and
architecture description languages (ADLs) [2,10] respectively. In models where
components are objects, components are assembled by method calls. However,
this is not (algebraic) composition, since an object O1 assembled with an object
O2 by calling a method in O2 will result in two objects, not one (composite)
object. Therefore, even though data encapsulation is possible in O1 and O2
separately, there is no composition mechanism that can compose O1 and O2
properly, let alone preserve data encapsulation.
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In component models where components are architectural units, port connec-
tions provide a composition mechanism, and composites can be defined. However,
data encapsulation is not always defined or possible. In fact, the role of data is
very unclear in architectural units. These units can represent both computation
and data, or just data, and data encapsulation is not considered as part of com-
position in general. Where architectural units have data ports, it could be argued
that these ports represent data encapsulation. Even in this case, however, it is
not clear whether data encapsulation is possible at every level of composition.

In this paper, we describe an approach to composition that allows data encap-
sulation at every level of composition. Our approach is based on a component
model [6] where composition operators are first-class citizens, and they also en-
able every component instance, in particular a composite component instance,
to encapsulate its own data.

2 Composition with Data Encapsulation

Components are intended for composition, and so they should be compositional,
i. e. if C1 and C2 are components, then a composition C3 of C1 and C2 must be a
component too. Furthermore, the composition should be defined as a composition
operator that composes components into new (composite) components. In other
words, in a component model, components and composition operators should be
first-class citizens. Any component model should have this property.

A good component model should also allow components to encapsulate data,
but to be really useful it should do so at every level of composition. We have
proposed a component model in [6] and in this paper we describe how we can
extend this model and use it to achieve this kind of data encapsulation.

For illustrative purposes, we shall consider a simple banking example.

Example 1. Consider a banking system with two bank consortia BC1 and BC2,
consisting of the sets of banks {B11, B12} and {B21, B22} respectively. Each
bank, in turn, consists of a set of branches, e.g. bank B21 has branches {BB211,
BB212}, and so on.

In our component model we would build up the system by composing com-
ponents using composition operators (see Fig. 2).

In our model, we have two kinds of components: atomic and composite com-
ponents. Composite components are built from atomic (and other composite)
components, but all components are templates, with no data except constants,

Bank Consortium BC2BC1

Bank Branch BB111 BB112 BB121 BB122 BB211 BB212 BB221 BB222

Bank B11 B12 B21 B22

Fig. 1. A banking example
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BC BC1 BC2
Bank copy
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Fig. 2. A component-based implementation of the banking system

but with code for the services they provide. Since components are templates, it
is meaningful and possible to make copies of components. For the bank system,
for a particular bank consortium, a bank branch can be an atomic component
with code for the usual operations like withdrawal, deposit and check balance.
This provides a template for all bank branches, and so we can construct many
bank branches (all the BB’s) as copies of this component.

Furthermore, in our model, it is possible to create instances from different
component copies. For example, bank branches BB111 and BB211, which are
different copies of BB11 (which is in turn a copy of the bank branch atomic
component), and which belong to different consortia, can be each instantiated
with their own address, sort code and customer accounts.

In our model, composite components, just like atomic components, can also
be copied (and the copies instantiated later). For example, two bank branches,
say BB11 and BB12, can be composed by a suitable composition operator to
produce a bank composite component B11. The latter is a template that contains
all the operations its sub-components provide. Therefore, it would make sense to
construct other bank components from this component by copying. The original
component as well as its copies contain, in addition to operations, some place
holders for private data that can be initialised when the complete (composite)
components are instantiated.

Similarly, a bank consortium component can be constructed by composing
bank components. In Fig.2, using a suitable composition operator, a bank com-
ponent composed with a copy of a bank component yields a bank consortium
component. This new component can be further composed with a copy of itself
to build the bank system.

It is worth noting that in the bank example, only one atomic component
(bank branch) and one composition operator are necessary to build the entire
bank system. Each composition in our implementation results in a properly
defined composite. Clearly our model provides proper composition mechanisms.
The question is whether we can also make it encapsulate data.

3 Our Component Model

Before we discuss how we extend our component model to enable data encapsu-
lation, in this section we briefly outline the model that we presented in [6].
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In our model, we have two kinds of basic entities: (i) computation units, and
(ii) connectors. A computation unit U encapsulates computation. It provides a
set of methods (or services). Encapsulation means that U ’s methods do not call
methods in other computation units; rather, when invoked, all their computation
occurs in U . Thus U could be thought of as a class that does not call methods
in other classes.

There are two kinds of connectors: (i) invocation, and (ii) composition. An
invocation connector is connected to a computation unit U so as to provide
access to the methods of U .

A composition connector encapsulates control. It is used to define and coordi-
nate the control for a set of components (atomic or composite). For example, a
sequencer connector that composes components C1, . . . , Cn can call methods in
C1, . . . , Cn in that order. Another example is a selector connector, which selects
(according to some specified condition) one of the components it composes, and
calls its methods.

Components are defined in terms of computation units and connectors. There
are two kinds of components: (i) atomic, and (ii) composite (see Fig. 3). An

IGIFFComputation
unit

Invocation
IFconnector

G

Encapsulation
(computation) (computation and control)

F

Encapsulation

(a) Atomic component (b) Composite component

connector
Composition Compositionality

Fig. 3. Atomic and composite components: encapsulation and compositionality

atomic component consists of a computation unit with an invocation connector
that provides an interface to the component. A composite component consists of
a set of components (atomic or composite) composed by a composition connector.
The composition connector provides an interface to the composite.

For example, in the bank system (Fig. 2) in Example 1, the atomic component
BB11, a bank branch, may be defined as shown in Fig. 4(a), with an invocation
connector IBB11, and a computation unit with the methods deposit, withdraw,
balance. The composite component B1, a bank, may be defined as shown in

...

Computation

Selector
connector

Atomic
componentbalance(...)

withdraw(...)
deposit(...)

Invocation
connector BB11I

(a) Atomic (Bank branch BB11) (b) Composite (Bank B1)

unit
BB11 BB12

B1

BankBank branch

Fig. 4. Sample atomic and composite components in the bank example
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Fig. 4(b), as a composition of the atomic components BB11 and BB12 using a
selector connector (denoted here by B1 too, for convenience). The bank consor-
tium composite component in Fig. 2 may also be composed (from banks) using a
selector connector, since the consortium has to choose the bank with the branch
to which the customer’s account belongs.

In our model, invocation and composition connectors form a hierarchy [8].
This means that composition is done in a hierarchical manner. Furthermore,
each composition preserves encapsulation. This kind of compositionality is the
distinguishing feature of our component model. An atomic component encap-
sulates computation (Fig. 3(a)), namely the computation encapsulated by its
computation unit. A composite component encapsulates computation and con-
trol (Fig. 3(b)). The computation it encapsulates is that encapsulated in its
sub-components; the control it encapsulates is that encapsulated by its compo-
sition connector. In a composite, the encapsulation in the sub-components is
preserved. Indeed, the hierarchical nature of the connectors means that compos-
ite components are self-similar to their sub-components; this property provides
a basis for hierarchical composition.

In the next section, we will show how to extend our model to include data
encapsulation.

4 Data Encapsulation

Our approach to data encapsulation is illustrated by Fig. 5. Basically, we want
to extend our model (Fig. 3) to allow each component (atomic or composite)
to define place-holders for its own data at design time. These place-holders are
indicated by patterned squares in Fig. 5. Thus, whereas in our current model,
a composite encapsulates computation and control (Fig. 3(b)), in the extended
model, a composite additionally encapsulates data (Fig. 5(b)).

Our extension is centred on the constructor of a component. We want to
be able to make copies of a component at design time, so that they all have
the same types of data place-holders. Copies of a component will also have the
same constructor as the of the original component. At run-time, we want to be
able to create an instance of a component or a copy by using the component’s
constructor, and we want to be able to initialise its data place-holders with
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Fig. 5. Data encapsulation
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Fig. 6. Data encapsulation in the bank example

actual data. This way, instances of different copies (atomic or composite) can
encapsulate their own private data.

For the bank example, this is illustrated by Fig. 6. In Fig. 6(a), a branch
component BB11 encapsulates its customers’ data. Using a suitable composition
connector, a bank component can be constructed from branch components BB11
and BB12, where both components are actually copies of the bank branch com-
ponent. As shown in Fig. 6(b), the bank (composite) component encapsulates its
own data which is separate from its sub-components’ data. The encapsulation
of the latter in each branch sub-component is preserved in the bank composite.

The process of instantiating a component (or a copy) often requires initial-
isation of encapsulated data. Such data can either be constants defined in the
component’s design phase; or data created at instantiation time. A component
therefore must have a constructor which enables data initialisation to be per-
formed. In our model, we use data constructors in the component constructor
for this purpose. Data constructors may require to read data from external re-
sources during the data initialisation process. Therefore, connectors must have
data I/O semantics to carry out their tasks. In our model, connectors are capable
of performing data I/O operations.

Initialisation of encapsulated data in the bank example is illustrated in Fig. 7.
A bank branch component must be initialised with the branch name which is
a constant string. It must also read and persist data about the process that
owns the branch component instance. The latter data may include date, process
account and network information, etc. For simplicity, we assume that the com-
ponent only logs its instantiation date. The invocation connector of a branch
component accesses these data values during component construction at run-
time. A bank component composed from two branches also has its own separate
constructor which performs its data initialisation operations. These operations
include, for example, setting the bank name as well as logging a record on the
instantiation date and other system data. As far as data is concerned, the bank
component and its sub-components set their initial data independently, each us-
ing its own constructor. In Fig. 7, bank component B1 reads bank name (B1 ) and
date (sysdate). Its sub-components perform similar data initialisation operations
when their instances are created. Initialisation performed by each connector of
B1 is indicated by arrows bearing data names.

Data encapsulation is a valuable notion for reuse by copying. A component
that encapsulates its data (in addition to computation and control) and has
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component−name := "B1"date−created := sysdate

component−name :="BB12"
date−created := sysdatedate−created := 

component−name :="BB11"
sysdate
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Fig. 7. Initialisation of encapsulated data

its own data constructor is a suitable unit for copying. A component in design
phase specifies its local data as place holders. Copying a component creates a new
component that encapsulates its own data (specifications). Data constructors of
copies perform data initialisation of each copy. Therefore, data encapsulation
enables copying of our components.

Furthermore, in a component-based system, it is often desirable to create
multiple instances of a component or to create instances of different copies of a
component. In the bank system, all branches are copies of a branch component.
Instantiating all these branches must be possible. In fact, without each branch
encapsulating its data together with a data constructor, it would be impossible
to have different instances from different copies. In our model, it is even possible
to make many copies of the same component, since instances maintain their own
data.

5 Implementation

In this section we show how we implement data encapsulation in our extended
component model, by using the bank example to show how a bank system can
be constructed from two connectors and one computation unit. First, we outline
our implementation of the extended component model using Oracle Database
10g Enterprise Edition, release 10.1.0.4.0. The choice of a database language is
natural, since we are concerned with data here.

5.1 Connectors and Components

We have implemented our extended component model as a repository that stores
computation units as well as templates for connectors and components (both
atomic and composite), at both design time and run-time. While the reposi-
tory depends on metadata that Oracle maintains on computation units, con-
nectors and component templates are stored as records in database tables, e.g.
CONNECTORS, COMPONENTS, ENC−DATA, ENC−DATA−INST, etc. The
repository provides services such as creating and copying components, searching,
browsing, and component instantiation. Components, connectors and computa-
tional units are coded in the PL/SQL programming language [13]. PL/SQL is
a 4GL programming language that is used by Oracle to specify its programs’
interfaces, so it is the obvious choice for us. However, PL/SQL lacks support
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PACKAGE BODY "BB" AS

IS BEGIN

RETURN bal;
END balance;

END BB;

FUNCTION withdraw (p_accnt_no CHAR, amnt NUMBER) RETURN CHAR;
...

...

...

PACKAGE "BB" AS

FUNCTION withdraw (p_accnt_no CHAR, amnt NUMBER) RETURN CHAR;
FUNCTION balance (p_accnt_no CHAR) RETURN INTEGER;

FUNCTION deposit (p_accnt_no CHAR, amnt NUMBER) RETURN CHAR;
END BB;

−−− Specification (interface)

−−− Implementation

Fig. 8. PL/SQL specification and implementation of bank branch package

for reflection, which is necessary for implementing our component model. So our
implementation of the repository has to compensate for this.

In our implementation, computation units are Oracle packages and connectors
are Oracle object types. A package is a database construct that groups logically
related PL/SQL types, variables, and subprograms (functions and procedures).
It can implement a computation unit in our component model provided its sub-
programs do not call subprograms in other packages. A package has two parts,
a specification and a body. The specification is the interface to the package. It
publishes the types, variables, constants, exceptions, cursors (record sets) and
subprograms. The body implements cursors and the subprograms. Fig. 8 shows
an example of a PL/SQL package. It is an outline of a package for a bank branch
in the bank example.

An object type is a user-defined composite data type representing a data
structure and subprograms to manipulate the data. It is like an object in an
object-oriented programming language. Like packages, object types are specified
in two parts, a specification (interface) and a body (implementation). Fig. 9
shows an example of an object type. It is an outline of the invocation connector
type, Invoker (see below).

We use object types to implement our connectors hierarchically. The root of
the hierarchy is the supertype CConnector, with three sub-types Invoker, Selec-
tor and Sequencer, for invocation connectors, selector connectors and sequencer
connectors respectively. For example, in Fig. 9, the Invoker type inherits from
CConnector (indicated by the keyword UNDER).

The super-type CConnector provides the implementation of the most impor-
tant procedure for data, the data constructor. This procedure creates and ini-
tialises data instances from data specifications in components. Constructors of
all sub-types of CConnector invoke the data constructor procedure to create and
initialise their components’ data instances. In a sub-type, the constructor starts
by creating and initialising its internal data. Then, it calls the data constructor
procedure which reads its component data specifications from the repository; and
creates and initialises the required data instances. This is illustrated in Fig. 9
for the constructor of Invoker. The call to data constructor is highlighted.
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    self.data_constructor(p_cuname); −− CREATE COMPONENT LOCAL DATA
  END;
END; −−− Invoker.

  CONSTRUCTOR FUNCTION invoker(p_cname VARCHAR2, p_cuname VARCHAR2)
      RETURN SELF AS RESULT,
END; −− Invoker specifications.

CREATE OR REPLACE TYPE "INVOKER" UNDER   CCONNECTOR   (
−−− Specification (interface)

CREATE OR REPLACE TYPE BODY "INVOKER" IS 
  CONSTRUCTOR FUNCTION invoker(p_cname VARCHAR2, p_cuname VARCHAR2)
    RETURN SELF AS RESULT IS
    l_data_value raw(16);
  BEGIN

−−− Implementation

    ... −− other initialization operations.
SELF.cuname := p_cuname;...

Fig. 9. PL/SQL specification of an invocation connector

An atomic component is constructed from a package for a computational unit
and an object type for an invocation connector. The invocation connector keeps a
reference to the computation unit’s name. For example, in Fig. 9, the variable cu-
name is assigned the user-provided computation unit name p cuname. The com-
ponent is created in the repository by executing a procedure which generates a
specification and stores it as records in the relevant repository database tables.
These records contain data on the component, its invocation connector, interface,
services and their return types and parameters, etc. At this point, the compo-
nent is in the design phase. Copying the component is equivalent to retrieving all
the component specification (records) and storing it back under a new component
name. The new name can be a unique user- or system-provided string. The compu-
tation unit must exist in the repository for this operation to complete successfully.

A composite component is constructed from existing components. The proce-
dure concerned takes three parameters: a string name for the new component,
a list containing the sub-components’ names and a connector type. The number
of components that can be composed depends on the semantics of the compo-
sition connector. This procedure generates and stores the specification of the
constructed component in a similar manner to the the procedure for construct-
ing atomic components. In our repository, a composite component is always
constructed from copies of other components. That is, if F and G are compo-
nents in the repository, then in a composite H of F and G, the sub-components
must be copies of F and G, each renamed by the repository. Thus the repository
is implemented in such a way that any composition operation leaves unchanged
the original components involved in the composition process.

5.2 Data Encapsulation

Once a component is constructed and stored in the repository, a set of operations
are available to support the specification of data intended for encapsulation in
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the component. Data specification for a component include information on the
properties of component’s encapsulated data elements such as their names, types,
state (persistent or transient), initial values, initial actions, etc. The specification
is used by the repository to create and manage data instances at run-time.

At design time, repository operations generate, update and store components’
data specifications in a repository database table named ENC DATA. The oper-
ation to encapsulate a data element in a component takes a parameter (a positive
integer value) for specifying the order for data instantiation. Names for data el-
ements must be unique in the scope of the component that owns them. Data
properties of a data element entry are set using either a generic procedure that is
used to define arbitrary data elements, or a compatible type-specific procedure,
e.g. for integer and string data elements. Copying a component in the repository
results in copying its data specification too. Accordingly, for a component to be
reusable, data initialisation must be delayed to the run-time phase, except when
data is not application specific.

BB111 BB111 BB111 BB112

Instantiation Copying

T11T11
Data definitions
(design phase)

T11 T12T11’’T11’
Data instances
(runtime)

Fig. 10. Encapsulated data in component copies and instances

At run-time, a component constructor is used to create an instance of the
component. This instance is uniquely identified in our run-time system by a CID
(component ID). During the construction process, the data constructor proce-
dure is invoked. It retrieves the component’s data specification stored in the
ENC DATA table; creates and initialises data instances; and stores these in-
stances in a global temporary data space. The initialisation of a data element
can either be achieved by a simple assignment of a constant or a computed
value. Computed values are specified as scripts (anonymous PL/SQL blocks)
and are executed by the run-time system during component construction. Data
instances stored in the data space are made available to their components by
reference. The repository identifies them via their CIDs. The global data space
is implemented as an Oracle global temporary table. Entries in this kind of ta-
bles pertaining to a particular component are automatically garbage collected
when the parent process of the component terminates. Further instantiations
of a component create new, different and independent data instances for each
component instance. Different instances of a component maintain their own data
instances at run-time. Fig. 10 shows encapsulated data in component copies and
instances in the bank example. Branch BB111 owns its data definition T11. A
copy BB112 has its own copy T11 of the data definition. Two instances of BB111
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own two different instances of data: T11’ and T11”. The two instances start with
the same data, but their data becomes different over time.

Component constructors must be capable of performing data I/O operations
required for data initialisation, among others. These operations (read, write) are
implemented as data connectors used to input and output data from various data
sources including the global temporary data space. The repository automatically
creates a data connector for each encapsulated data element, method parame-
ter and return value. For standard data sources such as relational databases, a
complete set of data connectors is available and ready for use. For non-standard
or unknown data sources, data connectors are created as stubs that must be
manually replaced before running the system. Data connectors for non-standard
data sources can be added to the repository and reused in building new systems.
Few of the current component models support relational data sources, and only
.NET supports additionally XML data sources [11].

5.3 The Bank System

Now, we can work out the implementation of a bank system based on the bank
example in Example 1 (Fig. 1) in detail. In particular, we demonstrate data
encapsulation and how our component model enables copying and multiple in-
stantiation of its components. We also show that the composition scheme in our
model preserves and propagates data encapsulation at every level of composition.

Consider a bank system consisting of the 2 consortia BC1 and BC2, as shown
in Fig. 1, with a simplified entity-relationship (ER) diagram as shown in Fig. 11.

Branches has_branch Banks has_banks Consortia has_cons Bank_system

Fig. 11. A simple ER diagram for the bank system

For simplicity, we choose to encapsulate only three data elements in each
component, namely, a component name, date of instantiation and data details.
A bank branch encapsulates separately its name (BRANCH−NAME), date and
customers’ data (CUSTOMERS). A bank component encapsulates data on its
branches (BRANCH) as well as the bank’s name (BANK−NAME) and date.
A consortium holds local data on its member banks (BANK), the name of the
consortium (CONST−NAME) and a date. The bank system holds local data on
all the consortia it has (CONST), its name (BNET) and a date. The date (named
SYS−DATE in each) is a place holder that stores the component’s instantiation
date. The date holds an initialisation script (PL/SQL anonymous block) that
can be executed by the run-time system to return the instantiation date. In Fig.
11, the relationships has-cons, has-banks and has-branch are data encapsulated
in the components bank system, consortia and banks respectively.

To build the system, we start with one computational unit BB (an Ora-
cle package), one invocation connector and one selector composition connector.
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EXEC REPOSITORY.CREATE_ATOMIC_COMPONENT(’BB111’, ’BB’);

EXEC REPOSITORY.ENCAPSULATE(’BB111’, ’SYS_DATE’, 0);

     (133, NULL, ’BEGIN :A:=ANYDATA.CONVERTDATE(SYSDATE);END;’,NULL);

...
EXEC REPOSITORY.SET_ENC_DATA_PROPERTIES(132, ’VARCHAR2’, ’T’);

EXEC REPOSITORY.ENCAPSULATE(’BB111’, ’BRANCH_NAME’, 0);

EXEC REPOSITORY.SET_ENC_DATA_VALUES

Fig. 12. The construction of atomic component BB111

EXEC REPOSITORY.SET_ENC_DATA_VALUES

L_LIST(1) := ’BB111’;
L_LIST(2) := ’BB111’;
L_REF_CONN := REPOSITORY.CREATE_COMPOSITE_COMPONENT(’B11’, ’SELECTOR’, L_LIST);
.....
EXEC REPOSITORY.ENCAPSULATE(’B11’, ’BANK_NAME’, 0);.....

     (145, NULL, ’BEGIN :A:=ANYDATA.CONVERTDATE(SYSDATE);END;’,NULL);

Fig. 13. The construction of composite component B11

These three elements are sufficient to build the entire bank system outlined
above. Our first component is an atomic component for a bank branch (BB111).
It is constructed from BB and an invocation connector (Fig. 12). In Fig. 12, the
first command creates the component, and the third defines one of its encapsu-
lated data elements, SYS DATE. This variable is stored in the repository with
a unique ID (integer) which is used at run-time in initialising the data element.
The last command assigns SYS DATE a script (’BEGIN...END;’) that returns
the system date when executed. This script is required in every branch compo-
nent, therefore it has been assigned to SYS DATE in the design phase. The rest
of BB111’s encapsulated data is not initialised until the final system has been
constructed.

We assume that the business logic for all bank branches is the same. There-
fore, bank components are constructed from copies of BB111. In Fig. 13 we
construct a bank component B11 using a selector connector to compose two
copies of BB111. The resulting composite component encapsulates its own data.
Its SYS−DATE is also initialised with the same script used for BB111. Data
encapsulated in B11 is independent of its sub-components’ data. Fig. 14 shows
a listing of B11 specification where data encapsulated in its sub-components has
not been influenced by the composition. The composition process has preserved
the sub-components’ encapsulated data and propagated data encapsulation to
the next level.

Similarly, a bank consortium component BC1 can be created in the same way.
We also define its encapsulated data. Finally, we create the bank system com-
ponent (BS) from two copies of BC1 and a definition of its local date. With this
step, the system is complete and it is possible to proceed with data initialisa-
tion. Data initialisation is based on knowledge provided by the repository on
the components’ encapsulated data. Many steps similar to those for initialising
SYS DATE are performed to make BS ready to run.
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

  
.        BRANCH                    3  P  TABLE

.        BRANCH_NAME         1  T  VARCHAR2  BB112

.        CUSTOMERS                3  P  TABLE

.       BRANCH_NAME         1  T  VARCHAR2  BB111

.       CUSTOMERS                3  P  TABLE

− BB112 renamed by the repository 

− BB111 renamed by the repository

− B11 renamed by the repository 

.       SYS_DATE                    2  T  DATE             BEGIN :A := ANYDATA.CONVERTDATE(SYSDATE)...

.        SYS_DATE                    2  T  DATE             BEGIN :A := ANYDATA.CONVERTDATE(SYSDATE)...

.        SYS_DATE                2  T  DATE                 BEGIN :A := ANYDATA.CONVERTDATE(SYSDATE)....

.        BANK_NAME           1  T  VARCHAR2     B11

.............
SQL> EXEC GET_DATA_SPECS(’BS’);         −− Listing of B11 component architecture & its data

        Data Name                  Q  S   Type                 Initial Value

Fig. 14. Data encapsulation in composite component B11

It is clear from the design phase process outlined above, how data encap-
sulation is supported by the composition scheme in our model. Composition
preserves data encapsulation and propagates it. Furthermore, reuse by copying
has been demonstrated in the creation of BS; all branches are copies of BB111,
banks are copies of B11 and consortia are copies of BC1.

At run-time, BS and its sub-components must first be initialised with data,
before BS can be instantiated. After this, creating a BS component results in
creating instances for all its sub-components. Each component constructor cre-
ates its independent data instances and stores them in a data space identified
by a CID. A data trace extracted from the run-time system for two instances of
B11 and B11’ shows different data instances for each component (Fig. 15).

The system can now receive client requests such as withdraw, deposit, balance,
etc. This is illustrated by Fig. 16. By getting its account information via an ATM,
the top-level connector reads the client’s consortium code (BCC) to decide which
consortium to direct control to. The consortium’s top-level connector (BC2)
reads the bank code (BC) to choose the bank. The bank then reads the client
sort code (SC) to determine the client’s bank branch. The bank branch reads the
service requested, account number and amount, processes the client’s request and
returns a report. In this process, each component’s top-level connector performs
the necessary I/O operations it needs to coordinate control flow to the right
bank branch. Fig. 16 shows a client request for (withdraw) to branch BB212.

SYS_DATE                                              229        29AF4BB598B960ABE0440003BA3A89CB
BRANCH_NAME     BB111                   230        29AF4BB598BB60ABE0440003BA3A89CB

BRANCH_NAME     BB112                   231        29AF4BB598BF60ABE0440003BA3A89CB
SYS_DATE                                              231        29AF4BB598C060ABE0440003BA3A89CB

SYS_DATE                                              230        29AF4BB598BC60ABE0440003BA3A89CB

BANK_NAME           B11                       229        29AF4BB598B860ABE0440003BA3A89CB

DATA_NAME           COMP. NAME   CID        References to data in data space

BANK_NAME          B11’                       232        29C6EA036AF801A1E0440003BA3A89CB
SYS_DATE                                              232        29C6EA036AF901A1E0440003BA3A89CB

Fig. 15. Data trace at run-time for two instances of B11
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BS BB212BC2 B21Components

Data I/O SC

Encapsulated
Data date

banks
date
branches

date
client’s data

Control ends

Control starts

name
date
consortia

name name name

Reportamount

withdraw
BCBCC account no.

Fig. 16. Processing a withdraw request for a BB212 client

6 Discussion and Related Work

In current component models, a component is either an object or an archi-
tectural unit [9,5]. Components that are objects in these models are not com-
positional and so data encapsulation in composites is not meaningful. How-
ever, data encapsulation does occur at the level of atomic components. In com-
ponent models where components are architectural units, composites are de-
fined and can be (new) entities in their own right. Therefore, in these models,
data encapsulation is potentially meaningful for both atomic and composite
components. Of these models, only Koala [15] and PECOS [4] address data
encapsulation.

In Koala, data is specified as attributes and data components. The latter are
modules (non-interface components). Initialisation of attributes is expressed as
either provides interfaces or requires interfaces. In a composition, both kinds of
interfaces must either be exposed via the interface of the composite, or satisfied
internally by a data component. Such a data component is encapsulated inside
the composite, which compromises reuse if the data encapsulated is application
specific. For example, to implement the bank system in Koala, encapsulated
data must be initialised at the composite level, thus breaching information pri-
vacy of customers of each branch. An alternative is to initialise data at the
level of each branch component. However, this compromises reuse. Therefore,
in Koala, composition and reuse are conflicting concerns. Furthermore, copying
and multiple instantiation are not supported because their components are C
modules.

PECOS models data as ports, attributes (properties) and connectors. A port
is a type containing a data type, range and direction. Attributes are constant
data that can be specified for any PECOS component. A connector is a data
type shared between two or more ports. Connections between components in
a composite can not cross the composite’s boundary. A connector between two
composites represents an independent variable which must be synchronised with
data variables held at the connected ports [4].

With respect to data, PECOS components can be classified as controllers
(with their own thread of control) or passive components. The first category in-
cludes active and event components. Composites in PECOS are hierarchical. In a
composite, the root must be a controller component. A controller holds data and
shares it with all the passive components it controls (its sub-components). This
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leads us to conclude that the general notion of data encapsulation is achieved
only at the level of composite components. Components’ ports are points for
passing, but not holding, data. Because of the need for data synchronisation
among components, data initialisation in PECOS is not recommended to be per-
formed in constructors, but rather in a special method provided by the model.
Copying is not possible in PECOS, but multiple instantiation is possible because
a component defines its encapsulated data and has its own data constructor
method to create its data instances.

In contrast to these models, our model provides a constructor which is the only
method needed for instantiating the component and its data. Data initialisation
occurs at the level of each component’s top-level connector, and not recursively,
as in Koala. Copying and multiple instantiation is supported because of our
approach to data in the model.

Our notion of data encapsulation is defined at the level of component models,
not at the level of programming languages. In particular, it should not be con-
fused with encapsulation in object-oriented languages, where objects can encap-
sulate private data. Our notion of data encapsulation comes with composition,
whereas data encapsulation in objects does not. No object-oriented language
provides a single programmatic operator for composition that preserves data
encapsulation in the way that our composition connectors do.

Furthermore, our notion of data encapsulation with composition leads to more
reuse, via copies and instances. In the bank example, we only need one atomic
component and one connector to build the whole system. This kind of increased
reusability is not found in other component models. For instance, in Koala, copies
and instances are not possible, and in PECOS, copies are not possible.

Finally, in [7] we defined data encapsulation in a different way. We defined
it as a way to handle data operations separately from all other operations in
component-based systems. This is unrelated to our definition here. Previously,
separating dataflow and control flow was our focus. In that context, our goal was
achieved by storing data in a global space, but only at the expense of encapsu-
lation. In the present work, we have achieved separation and encapsulation at
the same time.

7 Conclusion

In this work, we have encapsulated data in components. Our goals have been
achieved by extending the semantics of the composition connectors and, ac-
cordingly, the composition scheme, in the component model we proposed in
[6]. As a result, data encapsulation has not only become an invariant property
of the scheme but it is also propagated in composition to newly constructed
components (components are self-similar). Furthermore, data encapsulation has
enabled component copying at design time, and multiple instantiation at run-
time. Data encapsulation and reuse are not conflicting concerns in our model, in
contrast to other models. Therefore, our model provides truly reusable software
building blocks.
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