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Abstract. In this paper generalizations of Heilbronn's triangle prob-lem are considered. By using results on the independence number oflinear hypergraphs, for �xed integers k � 3 and any integers n � ka o(n6k�4) time deterministic algorithm is given, which �nds distribu-tions of n points in the unit square [0; 1]2 such that, simultaneously forj = 3; : : : ; k, the areas of the convex hulls determined by any j of thesen points are 
((logn)1=(j�2)=n(j�1)=(j�2)).
1 Introduction
Distributions of n points in the unit square [0; 1]2 such that the minimum area ofa triangle determined by three of these n points is large have been investigatedby Heilbronn. Let �3(n) denote the supremum over all distributions of n pointsin [0; 1]2 of the minimum area of a triangle among n points. Since no threeof the points 1=n � (i mod n; i2 mod n), i = 0; : : : ; n � 1, are collinear, we infer�3(n) = 
(1=n2), provided n is prime, as has been observed by Erd�os. Fora while this lower bound was believed to be also the upper bound. However,Koml�os, Pintz and Szemer�edi [14] proved that �3(n) = 
(log n=n2), see [7] fora deterministic polynomial time algorithm achieving this lower bound. Upperbounds on �3(n) were given by Roth [19]{[22] and Schmidt [23] and, improvingthese earlier results, the currently best upper bound �3(n) = O(2cplogn=n8=7)for a constant c > 0, is due to Koml�os, Pintz and Szemer�edi [13]. We remarkthat the expected value of the minimum area of a triangle formed by three ofn uniformly at random and independently of each other distributed points in[0; 1]2 has been shown in [12] to be equal to �(1=n3).Variants of Heilbronn's triangle problem in higher dimensions were investigatedby Barequet [3, 4], who considered the minimum volumes of simplices among npoints in the d-dimensional unit cube [0; 1]d, see also [15] and Brass [8]. Recently,Barequet and Shaikhet [5] considered the on-line situation, where the points haveto be positioned one after the other and suddenly this process stops. For thissituation they obtained for the supremum of the minimum volume of (d+1)-pointsimplices among n points in [0; 1]d the lower bound 
(1=n(d+1) ln(d�2)+2).A generalization of Heilbronn's triangle problem to k-gons, see Schmidt [23],asks, given an integer k � 3, to maximize the minimum area of the convexhull of any k distinct points in a distribution of n points in [0; 1]2. In partic-ular, let �k(n) be the supremum over all distributions of n points in [0; 1]2



of the minimum area of the convex hull determined by some k of n points.For k = 4, Schmidt [23] proved the lower bound �4(n) = 
(1=n3=2), and in[7] the lower bound �k(n) = 
(1=n(k�1)=(k�2)) has been shown for �xed in-tegers k � 3. Also in [7] a deterministic polynomial time algorithm was givenwhich achieves this lower bound. This has been improved in [16] to �k(n) =
((log n)1=(k�2)=n(k�1)=(k�2)) for any �xed integers k � 3.We remark that for k a function of n, Chazelle proved in [9] in connection withsome range searching problems �k(n) = �(k=n) for log n � k � n.In [17] a deterministic polynomial time algorithm has been given, which �ndsfor �xed integers k � 2 and any integers n � k a distribution of n points inthe unit square [0; 1]2 such that, simultaneously for j = 2; : : : ; k, the areas ofthe convex hulls of any j among the n points are 
((log n)1=(j�2)=n(j�1)=(j�2)).Recently, in [18] these (simultaneously achievable) lower bounds on the minimumareas of the convex hull of any j among n points in [0; 1]2 have been improvedby using (non-discrete) probabilistic arguments by a polylogarithmic factor to
((log n)1=(j�2)=n(j�1)=(j�2)) for j = 3; : : : ; k. (Note that �2(n) = �(1=n1=2).)While this was an existence argument, here we give a deterministic polynomialtime algorithm, which provides such a con�guration of n points in [0; 1]2.
Theorem 1. Let k � 3 be a �xed integer. For each integer n � k one can�nd deterministically in time o(n6k�4) some n points in the unit square [0; 1]2such that, simultaneously for j = 3; : : : ; k, the minimum area of the convex hulldetermined by some j of these n points is 
((log n)1=(j�2)=n(j�1)=(j�2)).
Concerning upper bounds, we remark that for �xed j � 4 only the simple bounds�j(n) = O(1=n) are known, compare [23].
2 The Independence Number of Linear Hypergraphs
In our considerations we transform the geometric problem into a problem onhypergraphs.
De�nition 1. A hypergraph is a pair G = (V; E) with vertex-set V and edge-set E, where E � V for each edge E 2 E. For a hypergraph G the notationG = (V; E2 [ � � � [ Ek) means that Ei is the set of all i-element edges in G,i = 2; : : : ; k. A hypergraph G = (V; E) is called k-uniform if jEj = k for eachedge E 2 E. The independence number �(G) of G = (V; E) is the largest size ofa subset I � V which contains no edges from E.
For hypergraphs G a lower bound on the independence number �(G) is given byTur�an's theorem for hypergraphs, see [24].
Theorem 2. Let G = (V; E2 [ � � � [ Ek) be a hypergraph on jV j = N verticeswith average degree ti�1i := i � jEij=jV j for the i-element edges, i = 2; : : : ; k. Letti0 := max fti j 2 � i � kg � 1=2.Then, the independence nunber �(G) of G satis�es

�(G) � N=(4 � ti0): (1)



An independent set I � V in G with jIj � N=(4 � ti0) can be found deterministi-cally in time O(jV j+ jE2j+ � � �+ jEkj).
For �xed positive integers k � 2 one can show by Theorem 2 and Lemmas2 and 4 (see below), that one can �nd deterministically in polynomial timen points in [0; 1]2 such that the areas of the convex hulls of any j of thesen points are 
(1=n(j�1)=(j�2)) simultaneously for j = 2; : : : ; k, compare [17].However, we want to obtain better lower bounds. To achieve this, we considerthe independence number of hypergraphs, which do not contain cycles of smalllenghts.
De�nition 2. A j-cycle in a hypergraph G = (V; E) is a sequence E1; : : : ; Ej ofdistinct edges E1; : : : ; Ej 2 E, such that Ei \ Ei+1 6= ; for i = 1; : : : ; j � 1, andEj \ E1 6= ;, and a sequence v1; : : : ; vj of distinct vertices with vi+1 2 Ei \ Ei+1for i = 1; : : : ; j � 1, and v1 2 E1 \ Ej. An unordered pair fE;E0g of distinctedges E;E0 2 E with jE \ E0j � 2 is called a 2-cycle. For a hypergraph G =(V; E3 [ � � � [ Ek) a 2-cycle fE;E0g in G is called (2; (g; i; j))-cycle if and only ifjE \E0j = g, and E 2 Ei and E0 2 Ej for 2 � g � i � j but g < j. A hypergraphG = (V; E) is called linear if it does not contain any 2-cycles, and it is calleduncrowded if it does not contain any 2-, 3- or 4-cycles.
For k-uniform uncrowded hypergraphs the next lower bound on the independencenumber, which has been proved by Ajtai, Koml�os, Pintz, Spencer and Szemer�edi[1], is better than the one in (1), see also [2] and [10], and compare [6] and [11]for a deterministic polynomial time algorithm.
Theorem 3. Let k � 3 be a �xed integer. Let G = (V; Ek) be an uncrowded k-uniform hypergraph with jV j = N vertices and average degree tk�1 := k � jEkj=N .Then, for some constant Ck > 0 the independence number �(G) of G satis�es

�(G) � Ck � (N=t) � (log t) 1k�1 : (2)
Hence, for �xed integers k � 3 and uncrowded k-uniform hypergraphs with aver-age degree tk�1 the lower bound (2) improves (1) by a factor of �((log t)1=(k�1)).We use the following extension of Theorem 3 { instead of an uncrowded hyper-graph we require only a linear one {, see [17].
Theorem 4. Let k � 3 be a �xed integer. Let G = (V; E3 [ � � � [ Ek) be a linearhypergraph with jV j = N such that the average degrees ti�1i := i � jEij=jV j forthe i-element edges satisfy ti�1i � ci � Si�1 � (logS)(k�i)=(k�1), where ci > 0 areconstants with ci < 1=32 � �k�1i�1�=(10(3(k�i))=(k�1) � k6), i = 3; : : : ; k.Then for some constant Ck > 0, the independence number �(G) of G satis�es

�(G) � Ck � NS � (logS) 1k�1 : (3)
An independent set of size 
((N=S) � (logS)1=(k�1)) can be found deterministi-cally in time O(N � S4k�2).



Both Theorems 3 and 4 are best possible for a certain range of the parametersk < T < N as can be seen by a random hypergraph argument.Theorem 4 is helpful in our situation, since one has to take care only of the2-cycles and not of 3- and 4-cycles anymore.
3 A Deterministic Algorithm
Here we prove Theorem 1. To give a polynomial time algorithm, which for �xedintegers k � 3 �nds for any integers n � k deterministically n points in theunit square [0; 1]2 such that simultaneously for j = 3; : : : ; k, the areas of theconvex hulls of any j of these n points are 
((log n)1=(j�2)=n(j�1)=(j�2)), wediscretize the unit square [0; 1]2 by considering the standard T �T -grid, i.e., theset f(i; j) 2 Z2 j 0 � i; j � T � 1g, where T = n1+� for some constant � > 0,which will be speci�ed later.For distinct grid-points P;Q in the T � T -grid let PQ denote the line throughP and Q and let [P;Q] denote the segment between P and Q. Let dist (P;Q) :=((px�qx)2+(py�qy)2)1=2 denote the Euclidean distance between the grid-pointsP = (px; py) and Q = (qx; qy). For grid-points P1; : : : ; Pl in the T � T -grid letarea (P1; : : : ; Pl) be the area of the convex hull of the points P1; : : : ; Pl. A stripcentered at the line PQ of width w is the set of all points in R2, which are atEuclidean distance at most w=2 from the line PQ. Let �l be a total order onthe T �T -grid, which is de�ned as follows: for grid-points P = (px; py) and Q =(qx; qy) in the T � T -grid let P �l Q :() (px < qx) or (px = qx and py < qy).First notice the following simple fact.
Lemma 1. Let P1; : : : ; Pl be grid-points in the T � T -grid, l � 3.
(i) Then, it is area (P1; : : : ; Pl) � area (P1; : : : ; Pl�1).(ii) If area (P1; : : : ; Pl) � A, then for any distinct grid-points Pi; Pj every grid-point Pk, k = 1; : : : ; l, is contained in a strip centered at the line PiPj ofwidth (4 �A)=dist (Pi; Pj).
For suitable constants c�j > 0, j = 3; : : : ; k, we set

Aj := c�j � T 2 � (log n)1=(j�2)
n(j�1)=(j�2) > 1 : (4)

Then, it is 0 < A3 � � � � � Ak for n � n0. We form a hypergraph G =G(A3; : : : ; Ak) = (V; E03 [ E3 [ E4 [ � � � [ Ek), which contains two types of 3-element edges, and (one type of) j-element edges, j = 4; : : : ; k. The vertex-set Vof G consists of the T 2 grid-points in the T �T -grid. The edge-sets are de�ned asfollows. For distinct grid-points P;Q;R 2 V in the T �T -grid let fP;Q;Rg 2 E03if and only if P;Q;R are collinear. Moreover, for j = 3; : : : ; k, and distinct grid-points P1; : : : ; Pj 2 V in the T � T -grid let fP1; : : : ; Pjg 2 Ej if and only ifarea (P1; : : : ; Pj) � Aj and no three of the grid-points P1; : : : ; Pj are collinear.



We want to �nd a large independent set in this hypergraph G = (V; E03 [ E3 [E4 [ � � � [ Ek), as an independent set I � V in G corresponds to jIj many grid-points in the T �T -grid, such that the areas of the convex hulls of any j distinctgrid-points from these jIj points are bigger than Aj , j = 3; : : : ; k. To �nd asuitable induced subhypergraph of G to which Theorem 4 may be applied, in a�rst step we estimate the numbers jE03 j and jEj j, j = 3; : : : ; k, of 3- and j-elementedges, respectively, and the numbers of 2-cycles in G. Then in a certain inducedsubhypergraph G� of G we omit one vertex from each 3-element edge in E03 andfrom each 2-cycle. The resulting induced subhypergraph G�� contains no 2-cyclesanymore, hence is linear, and then we may apply Theorem 4 to G��.
3.1 The Numbers of Edges in G

The next estimate is quite crude but it su�ces for our purposes.
Lemma 2. The number jE03 j of 3-element edges in the hypergraph G = (V; E03 [E3 [ E4 [ � � � [ Ek) satis�es

jE03 j � T 5: (5)
Proof. For grid-points P;Q;R 2 V we have fP;Q;Rg 2 E03 if and only if P;Q;Rare collinear. Each line is determined by two grid-points in the T � T -grid, forwhich there are at most T 2 choices each, and each line contains at most T grid-points, and the upper bound T 5 on the number of collinear triples follows. ut
To estimate jEj j, j = 3; : : : ; k, we use the following result from [7].
Lemma 3. For distinct grid-points P = (px; py) and R = (rx; ry) with P �l Rfrom the T � T -grid, where s := rx � px � 0 and h := ry � py, it holds:
(a) There are at most 4 �A grid-points Q in the T � T -grid such that(i) P �l Q �l R, and(ii) P;Q;R are not collinear, and area (P;Q;R) � A.(b) The number of grid-points Q in the T � T -grid which ful�ll only (ii) from(a) is at most (12 �A �T )=s for s > 0, and at most (12 �A �T )=jhj for jhj > s.
Lemma 4. For j = 3; : : : ; k, the numbers jEj j of unordered j-tuples P1; : : : ; Pjof distinct grid-points in the T � T -grid with area (P1; : : : ; Pj) � Aj, where nothree of the grid-points P1; : : : ; Pj are collinear, satisfy for some constants cj > 0:

jEj j � cj �Aj�2j � T 4: (6)
Proof. Let P1; : : : ; Pj be grid-points, no three on a line, in the T � T -grid witharea (P1; : : : ; Pj) � Aj . We may assume that P1 �l � � � �l Pj . For P1 =(p1;x; p1;y) and Pk = (pj;x; pj;y) let s := pj;x � p1;x � 0 and h := pj;y � p1;y.Then s > 0, as otherwise P1; : : : ; Pj are collinear.There are T 2 choices for the grid-point P1. Given P1, any grid-point Pj withP1 �l Pj is determined by a pair (s; h) 6= (0; 0) of integers with 1 � s � T and



�T � h � T . By Lemma 1 (i) we have area (P1; Pi; Pj) � Aj for i = 2; : : : ; j�1.Given the grid-points P1 and Pj , since P1 �l Pi �l Pj for i = 2; : : : ; j � 1, byLemma 3 (a) there are at most 4 �Aj choices for each grid-point Pi, hence for aconstant cj > 0:
jEj j � T 2 � TX

s=1
TX

h=�T(4 �Aj)j�2 � cj �Aj�2j � T 4: ut
By (6) the average degrees tj�1j for the j-element edges E 2 Ej , j = 3; : : : ; k, ofG satisfy

tj�1j = j � jEj j=jV j � j � cj �Aj�2j � T 2 =: (tj(0))j�1: (7)
3.2 The Numbers of 2-Cycles in G

Let s2;(g;i;j)(G) denote the number of (2; (g; i; j))-cycles, 2 � g � i � j � k withg < j in the hypergraph G, i.e., the number of unordered pairs fE;E0g of edgeswith E 2 Ei and E0 2 Ej and jE \ E0j = g.
Lemma 5. For 2 � g � i � j � k with g < j, there exist constants c2;(g;i;j) > 0such that the numbers s2;(g;i;j)(G) of (2; (g; i; j))-cycles in the hypergraph G =(V; E03 [ E3 [ E4 [ � � � [ Ek) ful�ll

s2;(g;i;j)(G) � c2;(g;i;j) �Ai�2i �Aj�gj � T 4 � (log T )3: (8)
Proof. Let the grid-points, which correspond to the vertices of an i-element edgeE 2 Ei and a j-element edge E0 2 Ej and also yield a (2; (g; i; j))-cycle in G,2 � g � i � j � k with g < j, be P1; : : : ; Pi and P1; : : : ; Pg; Qg+1; : : : ; Qj , whereafter renumbering P1 �l � � � �l Pg and no three of the grid-points P1; : : : ; Piand of P1; : : : ; Pg; Qg+1; : : : ; Qj are collinear, thus area (P1; : : : ; Pi) � Ai andarea (P1; : : : ; Pg; Qg+1; : : : ; Qj) � Aj .There are T 2 choices for the grid-point P1. Given the grid-point P1 = (p1;x; p1;y),any pair (s; h) 6= (0; 0) of integers determines at most one grid-point Pg =(p1;x + s; p1;y + h) in the T � T -grid. By symmetry we may assume that s > 0and 0 � h � s � T , which is taken into account by an additional constantfactor c0 > 1. Given the grid-points P1 and Pg, since area (P1; Pf ; Pg) � Ai forf = 2; : : : ; g� 1 by Lemma 1, and P1 �l Pf �l Pg, by Lemma 3 (a) there are atmost 4 � Ai choices for each grid-point Pf in the T � T -grid, hence the numberof choices for the grid-points P1; : : : ; Pg�1 is at most

T 2 � (4 �Ai)g�2: (9)
For the convex hulls of the grid-points P1; : : : ; Pi and P1; : : : ; Pg; Qg+1; : : : ; Qjlet their (w.r.t �l) extremal points be P 0; P 00 2 fP1; : : : ; Pig and Q0; Q00 2fP1; : : : ; Pg; Qg+1; : : : ; Qjg, respectively, i.e. , for P 0 �l P 00 and Q0 �l Q00 wehave P 0 �l P1; : : : ; Pi �l P 00 and Q0 �l P1; : : : ; Pg; Qg+1; : : : ; Qj �l Q00.Given the grid-points P1 �l � � � �l Pg, there are three possibilities for the convexhulls of the grid-points P1; : : : ; Pi and P1; : : : ; Pj ; Qj+1; : : : ; Qk each:



(i) P1 and Pg are extremal, or(ii) exactly one grid-point, P1 or Pg, is extremal, or(iii) neither P1 nor Pg is extremal.
We restrict our calculations to the convex hull of P1; : : : ; Pi as the considerationsfor the convex hull of P1; : : : ; Pg; Qg+1; : : : ; Qj are essentially the same.In case (i) the grid-points P1 and Pg are extremal for the convex hull of P1; : : : ; Pi,hence P1 �l Pg+1; : : : ; Pi �l Pg. By Lemma 3 (a), since area (P1; Pl; Pg) � Ai,l = g+1; : : : ; i, and no three of the grid-points P1; : : : ; Pi are collinear, there areat most 4 �Ai choices for each grid-point Pl, hence the number of choices for thegrid-points Pg+1; : : : ; Pi is at most

case (i): (4 �Ai)i�g: (10)
In case (ii) exactly one of the grid-points P1 or Pg is extremal for the convex hullof P1; : : : ; Pi. By Lemma 3 (b) there are at most (12 � Ai � T )=s choices for thesecond extremal grid-point P 0 or P 00. Having �xed this second extremal grid-point, for each grid-point Pg+1; : : : ; Pi 6= P 0; P 00 there are by Lemma 3 (a) atmost 4 �Ai choices, hence the number of choices for the grid-points Pg+1; : : : ; Piis at most

case (ii): ((4 �Ai)i�g�1 � 12 �Ai � T )=s = ((4 �Ai)i�g � 3 � T )=s : (11)
In case (iii) none of the grid-points P1; Pg is extremal for the convex hull ofP1; : : : ; Pi. By Lemma 1 (ii) all grid-points Pg+1; : : : ; Pi are contained in a stripSi, which is centered at the line P1Pg, of width (4 �Ai)=ph2 + s2. Consider theparallelogram P0 = f(px; py) 2 Si j p1;x � px � pg;xg within the strip Si, whereP1 = (p1;x; p1;y) and Pg = (pg;x; pg;y) and s = pg;x � p1;x.We divide the strip Si within the T � T -grid into pairwise congruent parallelo-grams P0;P+i ;P�i , i = 1; : : : ; l � bT=sc + 2, each of side-lengths (4 � Ai)=s andph2 + s2 and of area 4 � Ai, where for i � 1 all parallelograms P�i are on theleft of the parallelogram P0, and all parallelograms P+i are on the right of P0,in particular P+i := f(px; py) 2 Si j pg;x + (i � 1) � s � px � pg;x + i � sg andP�i := f(px; py) 2 Si j p1;x� i � s � px � p1;x� (i� 1) � sg. By Lemma 3 (a) eachparallelogram P+i or P�i contains at most 4 � Ai grid-points P , where P1; Pj ; Pare not collinear. Each extremal grid-point, P 0 or P 00, is contained in some paral-lelogram P+i or P�i for some i � 1, since by our assumption neither P1 2 P0 norPg 2 P0 are extremal. Each grid-point P = (px; py) 2 P+i [ P�i , i � 1, satis�esjpx � p1;xj � i � s or jpx � pj;xj � i � s. Thus, if P 0 2 P+i [P�i or P 00 2 P+i [P�i ,by Lemma 3 (b) there are at most (12 � Ai � T )=(i � s) choices for the secondextremal grid-point. Having chosen both extremal grid-points P 0 and P 00 in atmost (4 �Ai) � ((12 �Ai � T )=(i � s)) = (48 �A2i � T )=(i � s) ways, for the grid-pointsPg+1; : : : ; Pi 6= P 0; P 00 there are by Lemma 3 (a) at most (4 � Ai)i�g�2 choices.Hence, in case (iii) the number of choices for the grid-points Pg+1; : : : ; Pi is at



most
case (iii): (4 �Ai)i�g�2 � bT=sc+2X

i=1
48 �A2i � Ti � s =

= (4 �Ai)i�g � 3 � Ts � bT=sc+2X
i=1

1i � (4 �Ai)i�g � 5 � T � log Ts :(12)
By (10){(12) and using T � s, in cases (i){(iii) altogether the number of choicesfor the grid-points Pg+1; : : : ; Pi is at most

(4 �Ai)i�g � �1 + 3 � Ts + 5 � T � log Ts
� � (4 �Ai)i�g � 9 � T � log Ts : (13)

Similar to (13), for the number of choices of the grid-points Qg+1; : : : ; Qj thefollowing upper bound holds:
((4 �Aj)j�g � 9 � T � log T )=s : (14)

Hence with (9), (13) and (14) for 2 � g � i � j � k and g < j we obtain forconstants c0; c2;(g;i;j) > 0:
s2;(g;i;j)(G) � c0 � T 2 � (4 �Ai)g�2 � TX

s=1
sX

h=0
� (4 �Ai)i�g � 9 � T � log Ts

� �
�� (4 �Aj)j�g � 9 � T � log Ts

� �
< 81 � c0 � 4i+j�g�2 �Ai�2i �Aj�gj � T 4 � (log T )2 � TX

s=1
sX

h=0
1s2

� c2;(g;i;j) �Ai�2i �Aj�gj � T 4 � (log T )3: ut
3.3 Choosing a Subhypergraph in G

With probability p := T "=tk(0) � 1, hence p = �(T "=(A(k�2)=(k�1)k � T 2=(k�1))by (7), where " > 0 is a small constant, we pick uniformly at random andindependently of each other vertices from V . Let V � � V be the random set ofthe picked vertices and let G� = (V �; E0�3 [E�3[E�4[� � �[E�k ) with E0�3 := E03\[V �]3and E�j := Ej \ [V �]j , j = 3; : : : ; k, be the on V � induced random subhypergraphof G. Let E[jV �j], E[jE0�3 j], E[jE�j j], j = 3; : : : ; k, and E[s2;(g;i;j)(G�)], 2 � g � i �j � k but g < j, be the expected numbers of vertices, collinear triples of grid-points, j-element edges and (2; (g; i; j))-cycles, respectively, in G� = (V �; E0�3 [



E�3 [E�4 [� � �[E�k ). By (5), (6), and (8) we infer for constants c01; c003 c0j ; c02;(g;i;j) > 0:
E[jV �j] = p � T 2 � (c01 � T 2k�4k�1 +")=A k�2k�1k (15)
E[jE0�3 j] = p3 � jE03 j � (c003 � T 5k�11k�1 +3")=A 3k�6k�1k (16)
E[jE�j j] = pj � jEj j � (c0j � T 4k�2j�4k�1 +j" �Aj�2j )=A j(k�2)k�1k (17)

E[s2;(g;i;j)(G�)] = pi+j�g � s2;(g;i;j)(G) �
� c02;(g;i;j) � T 4k�4�2(i+j�g)k�1 +"(i+j�g) � (log T )3 �Ai�2i �Aj�gj

A (k�2)(i+j�g)k�1k
:(18)

By (15){(18) and by Cherno�'s and Markov's inequality we obtain a subhyper-graph G� = (V �; E0�3 [ E�3 [ E�4 [ � � � [ E�k ) of G such that
jV �j � ((c01=2) � T 2k�4k�1 +")=A k�2k�1k (19)
jE0�3 j � (k3 � c003 � T 5k�11k�1 +3")=A 3k�6k�1k (20)
jE�j j � (k3 � c0j � T 4k�2j�4k�1 +j" �Aj�2j )=A j(k�2)k�1k (21)

s2;(g;i;j)(G�) � k3 � c02;(g;i;j) � T 4k�4�2(i+j�g)k�1 +"(i+j�g) � (log T )3 �Ai�2i �Aj�gj
A (k�2)(i+j�g)k�1k

:(22)
This probabilistic argument can be turned into a deterministic polynomial timealgorithm by using the method of conditional probabilities. For 2 � g � i � j �k but g < j, let C2;(g;i;j) be the set of all (i + j � g)-element subsets E [ E0 ofV such that E 2 Ei and E0 2 Ej and jE \ E0j = g. Let the grid-points in theT � T -grid be P1; : : : ; PT 2 . To each grid-point Pi associate a variable pi 2 [0; 1],i = 1; : : : ; T 2, and let F (p1; : : : ; pT 2) be a function de�ned by
F (p1; : : : ; pT 2) := 2p�T 2=2 � T 2Y

i=1
�1� pi2

�+
+

Pfi;j;kg2E03 pi � pj � pk(k3 � c03 � T 5k�11k�1 +3")=A 3k�6k�1 + kX
j=3

Pfi1;:::;ijg2Ej Qjl=1 pil
(k3 � c0j � T 4k�2j�4k�1 +j" �Aj�2j )=A j(k�2)k�1 +

+ X
2�g�i�j�k;g<j

A (k�2)(i+j�g)k�1k �Pfi1;:::;ii+j�gg2Cj Qi+j�gl=1 pil
k3 � c02;(g;i;j) � T 4k�4�2(i+j�g)k�1 +(i+j�g)" � (log T )3 �Ai�2i �Aj�gj :

With the initialisation p1 := � � � := pT 2 := p = T "=t0, we infer by (15){(18)that F (p; : : : ; p) < (2=e)pT 2=2 + 1=3, hence F (p; : : : ; p) < 1 for p � T 2 � 10. Byusing the linearity of F (p1; : : : ; pT 2) in each pi, we minimize F (p1; : : : ; pT 2) bychoosing step by step pi := 0 or pi := 1, i = 1; : : : ; T 2, and �nally we achieve



F (p1; : : : ; pT 2) < 1. The set V � = fPi 2 V j pi = 1g yields an induced subhyper-graph G� = (V �; E0�3 [ E�3 [ � � � [ E�k ) of G with E�i := Ei \ [V �]i for i = 3; : : : ; k,and E0�3 := E03 \ [V �]3 which satis�es (19){(22), as otherwise F (p1; : : : ; pT 2) > 1gives a contradiction. By (4){(6) and (8) and using T = n1+� for �xed � > 0,the running time of this derandomization is given by
O(jV j+ jE03 j+ kX

j=3 jEj j+
X

2�g�i�j�k;g<j jC2;(g;i;j)j) = O(jC2;(2;k;k)j) =
= O(A2k�4k � T 4 � (log T )3) = O �(T 4k�4 � (log n)5)=n2k�2� : (23)

Lemma 6. For each �xed 0 < " < (� � 1)=(2 � (1 + �)) and � > 1 it is
jE0�3 j = o(jV �j) : (24)

Proof. By (19), (20) and using T = n1+� with constants " > 0 and � > 1 wehave
jE0�3 j = o(jV �j)

(= T 5k�11k�1 +3" � log T=A 3k�6k�1k = o(T 2k�4k�1 +"=A k�2k�1k )
() n2�(1+�)(1�2") � (log n)1� 2k�1 = o(1)() (1 + �) � (1� 2 � ") > 2;

which holds for " < (� � 1)=(2 � (1 + �)). ut
Lemma 7. For 2 � g � i � j � k but g < j and each �xed " with 0 < " <j�g(i+j�g�1)(j�2)(1+�) it is

s2;(g;i;j)(G�) = o(jV �j): (25)
Proof. For 2 � g � i � j � k but g < j by (4), (19), (22) and using T = n1+�with �xed �; " > 0 we infer

s2;(g;i;j)(G�) = o(jV �j)
(= T 4k�4�2(i+j�g)k�1 +(i+j�g)" � (log T )3 �Ai�2i �Aj�gj

A (k�2)(i+j�g)k�1k
= o

0
@T 2k�4k�1 +"

A k�2k�1k
1
A

() n"(1+�)(i+j�g�1)� j�gj�2 � (log n)4+ j�gj�2� i+j�g�1k�1 = o(1)
() " < j � g(j � 2)(i+ j � g � 1)(1 + �) : ut

By setting " := 1=(2 � k2 � (1 + �)) and � > 1 + 1=k2 all assumptions in Lemmas6 and 7 and also p = T "=tk(0) � 1 are ful�lled. We delete one vertex fromeach edge E 2 E0�3 , and from each 2-cycle in G�. Let V �� � V � be the setof remaining vertices. By Lemmas 6 and 7 the induced subhypergraph G�� =



(V ��; E��3 [ � � � [ E��k ) with E��j := E�j \ [V ��]j , j = 3; : : : ; k, where jV ��j =(1 � o(1)) � jV �j � jV �j=2, contains no edges from E03 and no 2-cycles anymore,i.e., G�� is a linear hypergraph. Since jE��j j � jE�j j with (19) and (21), the averagedegrees tj�1j (1) for the j-element edges of G��, j = 3; : : : ; k, ful�ll by (4):
tj�1j (1) = j � jE��j jjV ��j � (j � k3 � c0j � T 4k�2j�4k�1 +j" �Aj�2j )=A j(k�2)k�1k

((c01=4) � T 2k�4k�1 +")=A k�2k�1k �
� 4 � k4 � c0j � (c�j )j�2

c01 � (c�k) (j�1)(k�2)k�1 � T (j�1)" � (log n) k�jk�1 : (26)
As observed above, this subhypergraph G�� is linear. By choosing S := c � T "for a large enough constant c > 0, with T = n1+� with T = n1+� by (26) theassumptions in Theorem 4 are ful�lled, and we apply it, and, using (4) we �ndin time

O((T 2k�4k�1 +"=A k�2k�1k ) � S4k�2) = O(n � T (4k�1)") = o(T 2) (27)
an independent set I of size
jIj = 
((jV ��j=S) � (logS) 1k�1 ) = 
((T 2k�4k�1 +"=(A k�2k�1k � T ")) � (log T ") 1k�1 ) =

= 
((n=(log n) 1k�1 ) � (log T ) 1k�1 ) = 
(n);
since T = n1+� and �; " > 0 are constants. By choosing the constants c�j > 0, j =3; : : : ; k, in (4) su�ciently small, we obtain an independent set of size n, whichyields, after rescaling the areas Aj by the factor T 2, a desired set of n points in[0; 1]2 such that, simultaneously for j = 3; : : : ; k, the areas of the convex hulls ofevery j distinct of these n points are 
((log n)1=(j�2)=n(j�1)=(j�2)). Adding thetimes in (23) and (27) we get the time bound O(T 4k�4 � (log n)5=n2k�2 + T 2) =(n(2k�2)(1+2�)+1)) = o(n6k�4) for � > 1 + 1=k2 small enough. utWe remark that the bound o(n6k�4) on the running time might be improved alittle, for example by using a better estimate on the number of collinear triples ofgrid-points in the T�T -grid or by a random preselection of grid-points. However,we cannot do better than O(nck) for some constant c > 0.
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