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Abstract. In this paper generalizations of Heilbronn’s triangle prob-
lem are considered. By using results on the independence number of
linear hypergraphs, for fixed integers £ > 3 and any integers n > k

a o(n% ") time deterministic algorithm is given, which finds distribu-

tions of n points in the unit square [0, 1]2 such that, simultaneously for
j=3,...,k, the areas of the convex hulls determined by any j of these

n points are 2((logn)t/ =2 /pi-D/G=2),

1 Introduction

Distributions of n points in the unit square [0, 1] such that the minimum area of
a triangle determined by three of these n points is large have been investigated
by Heilbronn. Let Az(n) denote the supremum over all distributions of n points
in [0,1]® of the minimum area of a triangle among n points. Since no three
of the points 1/n - (i mod n,i? mod n), i = 0,...,n — 1, are collinear, we infer
Az(n) = 2(1/n?), provided n is prime, as has been observed by Erdés. For
a while this lower bound was believed to be also the upper bound. However,
Komlés, Pintz and Szemerédi [14] proved that As(n) = 2(logn/n?), see [7] for
a deterministic polynomial time algorithm achieving this lower bound. Upper
bounds on As(n) were given by Roth [19]-[22] and Schmidt [23] and, improving
these earlier results, the currently best upper bound As(n) = O(2°V108™ /p8/7)
for a constant ¢ > 0, is due to Komlds, Pintz and Szemerédi [13]. We remark
that the expected value of the minimum area of a triangle formed by three of
n uniformly at random and independently of each other distributed points in
[0, 1] has been shown in [12] to be equal to ©(1/n?).

Variants of Heilbronn’s triangle problem in higher dimensions were investigated
by Barequet [3,4], who considered the minimum volumes of simplices among n
points in the d-dimensional unit cube [0, 1]%, see also [15] and Brass [8]. Recently,
Barequet and Shaikhet [5] considered the on-line situation, where the points have
to be positioned one after the other and suddenly this process stops. For this
situation they obtained for the supremum of the minimum volume of (d+1)-point
simplices among n points in [0, 1]% the lower bound §2(1/n(@+1)In(d=2)+2)

A generalization of Heilbronn’s triangle problem to k-gons, see Schmidt [23],
asks, given an integer k > 3, to maximize the minimum area of the convex
hull of any k distinct points in a distribution of n points in [0, 1]?. In partic-
ular, let Ag(n) be the supremum over all distributions of n points in [0, 1]



of the minimum area of the convex hull determined by some k of n points.
For k = 4, Schmidt [23] proved the lower bound Ag(n) = 2(1/n3/?), and in
[7] the lower bound Ag(n) = 2(1/n*~1/%=2)) has been shown for fixed in-
tegers k > 3. Also in [7] a deterministic polynomial time algorithm was given
which achieves this lower bound. This has been improved in [16] to Agx(n) =
2((logn)'/k=2) jn(k=1)/(k=2)) for any fixed integers k > 3.

We remark that for & a function of n, Chazelle proved in [9] in connection with
some range searching problems Ag(n) = ©(k/n) for logn < k < n.

In [17] a deterministic polynomial time algorithm has been given, which finds
for fixed integers £ > 2 and any integers n > k a distribution of n points in
the unit square [0, 1]?> such that, simultaneously for j = 2,..., k, the areas of
the convex hulls of any j among the n points are £2((logn)'/U=2) /nl—=1/G=2)),
Recently, in [18] these (simultaneously achievable) lower bounds on the minimum
areas of the convex hull of any j among n points in [0, 1]* have been improved
by using (non-discrete) probabilistic arguments by a polylogarithmic factor to
2((logn)'/G=2) /nl=1/G=2)) for j = 3,... k. (Note that Ay(n) = O(1/n'/?).)
While this was an existence argument, here we give a deterministic polynomial
time algorithm, which provides such a configuration of n points in [0, 1]2.

Theorem 1. Let k > 3 be a fized integer. For each integer n > k one can
find deterministically in time o(n®*~*) some n points in the unit square [0, 1]?
such that, simultaneously for j = 3,...,k, the minimum area of the convex hull
determined by some j of these n points is 2((logn)'/U=2) /nG-1/G=2)),

Concerning upper bounds, we remark that for fixed j > 4 only the simple bounds
Aj(n) = O(1/n) are known, compare [23].

2 The Independence Number of Linear Hypergraphs

In our considerations we transform the geometric problem into a problem on
hypergraphs.

Definition 1. A hypergraph is a pair G = (V,E) with vertez-set V' and edge-
set £, where E C 'V for each edge E € £. For a hypergraph G the notation
G = (V,E U ---U&) means that &; is the set of all i-element edges in G,
i =2,....k. A hypergraph G = (V, &) is called k-uniform if |E| = k for each
edge E € £. The independence number a(G) of G = (V,E) is the largest size of
a subset I C'V which contains no edges from &.

For hypergraphs G a lower bound on the independence number «(G) is given by
Turédn’s theorem for hypergraphs, see [24].

Theorem 2. Let G = (V,E U --- U &) be a hypergraph on |V| = N vertices
with average degree t:=' =i -|&;|/|V| for the i-element edges, i = 2,..., k. Let
ti, = maz {t; |2 <i<k}>1/2

Then, the independence nunber a(G) of G satisfies

a(G) = N/ (4 ti,)- (1)



An independent set I CV in G with |I| > N/(4-t;,) can be found deterministi-
cally in time O(|V| + |E2| + - - + |Ekl)-

For fixed positive integers & > 2 one can show by Theorem 2 and Lemmas
2 and 4 (see below), that one can find deterministically in polynomial time
n points in [0,1]> such that the areas of the convex hulls of any j of these
n points are 2(1/nU=1/(=2)) simultaneously for j = 2,...,k, compare [17].
However, we want to obtain better lower bounds. To achieve this, we consider
the independence number of hypergraphs, which do not contain cycles of small
lenghts.

Definition 2. A j-cycle in a hypergraph G = (V,&) is a sequence E1, ..., E; of
distinct edges Eq,...,E; € £, such that E; N Ejyq #0 fori=1,...,j —1, and
E;NE; #0, and a sequence vy, ...,v; of distinct vertices with viy1 € £ NE;itq
fori=1,...,7—1, and v1 € & NE;. An unordered pair {E,E'} of distinct
edges E,E' € £ with |[ENE'| > 2 is called a 2-cycle. For a hypergraph G =
(V,E3U---U&) a2-cycle {E,E'} in G is called (2;(g,1,7))-cycle if and only if
|[ENE'|=g,and E€ & and E' € &5 for2 < g <i<j but g <j. A hypergraph
G = (V,&) is called linear if it does not contain any 2-cycles, and it is called
uncrowded if it does not contain any 2-, 3- or 4-cycles.

For k-uniform uncrowded hypergraphs the next lower bound on the independence
number, which has been proved by Ajtai, Komlés, Pintz, Spencer and Szemerédi
[1], is better than the one in (1), see also [2] and [10], and compare [6] and [11]
for a deterministic polynomial time algorithm.

Theorem 3. Let k > 3 be a fized integer. Let G = (V, &) be an uncrowded k-
uniform hypergraph with |V | = N vertices and average degree t*~1 := k- |E|/N.
Then, for some constant Cy, > 0 the independence number a(G) of G satisfies

a(G) > Oy - (N/t) - (log t) =T . (2)

Hence, for fixed integers k > 3 and uncrowded k-uniform hypergraphs with aver-
age degree t*~! the lower bound (2) improves (1) by a factor of @((logt)"/(*=1)).
We use the following extension of Theorem 3 — instead of an uncrowded hyper-
graph we require only a linear one —, see [17].

Theorem 4. Let k > 3 be a fized integer. Let G = (V,E U ---U&E) be a linear
hypergraph with |V| = N such that the average degrees t: ' := i -|&]|/|V]| for
the i-element edges satisfy t:=' < ¢; - S*=' - (log S)#=0/(k=1) " where ¢; > 0 are
constants with ¢; < 1/32 - (’f:ll)/(lo(g(k_i))/(k_l) k5),i=3,... k.

Then for some constant Cy, > 0, the independence number a(G) of G satisfies

a(G) > Gy s - (log S, (3)

An independent set of size 2((N/S) - (log S)"/*=1) can be found deterministi-
cally in time O(N - S*+~2),



Both Theorems 3 and 4 are best possible for a certain range of the parameters
k < T < N as can be seen by a random hypergraph argument.

Theorem 4 is helpful in our situation, since one has to take care only of the
2-cycles and not of 3- and 4-cycles anymore.

3 A Deterministic Algorithm

Here we prove Theorem 1. To give a polynomial time algorithm, which for fixed
integers k > 3 finds for any integers n > k deterministically n points in the
unit square [0,1]? such that simultaneously for j = 3,...,k, the areas of the
convex hulls of any j of these n points are £2((logn)'/=2) /nl=1/=2)) e
discretize the unit square [0, 1]? by considering the standard 7' x T-grid, i.e., the
set {(i,j) € Z*|0 < i,j < T — 1}, where T = n'*# for some constant 5 > 0,
which will be specified later.

For distinct grid-points P, in the T' x T-grid let PQ denote the line through
P and @ and let [P, Q)] denote the segment between P and Q. Let dist (P, Q) :=
((Pz —2)* + (py — qy)?)*/? denote the Euclidean distance between the grid-points
P = (ps,py) and Q = (¢, qy). For grid-points Py,..., P, in the T' x T-grid let
area (Py,..., ;) be the area of the convex hull of the points Py, ..., P. A strip
centered at the line PQ of width w is the set of all points in R?, which are at
Euclidean distance at most w/2 from the line PQ. Let <; be a total order on
the T' x T-grid, which is defined as follows: for grid-points P = (p,,p,) and Q =
(¢z,qy) in the T x T-grid let P <; Q <= (ps < ¢z) or (pz = ¢, and p, < qy).
First notice the following simple fact.

Lemma 1. Let Py,..., P be grid-points in the T x T-grid, | > 3.

(i) Then, it is area (Py,..., P) > area (Py,...,P—1).

(ii) If area (P1,...,P;) < A, then for any distinct grid-points P;, P; every grid-
point Py, k = 1,...,1, is contained in a strip centered at the line P;P; of
width (4 - A)/dist (P, P;).

For suitable constants ¢ >0, j =3,...,k, we set

oy /G-2)
_c;-T? - (logn)!
A= b )

Then, it is 0 < Az < --- < Ay for n > ng. We form a hypergraph G =
G(As,...,Ay) = (V,EQUEUE U -+ UE), which contains two types of 3-
element edges, and (one type of) j-element edges, j =4, ..., k. The vertex-set V'
of G consists of the T grid-points in the T x T-grid. The edge-sets are defined as
follows. For distinct grid-points P, @, R € V in the T x T-grid let {P,Q, R} € &
if and only if P, @Q, R are collinear. Moreover, for j = 3,...,k, and distinct grid-
points Py,...,P; € V in the T' x T-grid let {Py,...,P;} € &; if and only if
area (Pi,...,P;) < A; and no three of the grid-points P, ..., P; are collinear.



We want to find a large independent set in this hypergraph G = (V, &) U & U
E4U---UE&), as an independent set I C V in G corresponds to |I| many grid-
points in the T' x T-grid, such that the areas of the convex hulls of any j distinct
grid-points from these |I| points are bigger than A;, j = 3,...,k. To find a
suitable induced subhypergraph of G to which Theorem 4 may be applied, in a
first step we estimate the numbers |£J| and |€;], j = 3,...,k, of 3- and j-element
edges, respectively, and the numbers of 2-cycles in G. Then in a certain induced
subhypergraph G* of G we omit one vertex from each 3-element edge in £ and
from each 2-cycle. The resulting induced subhypergraph G** contains no 2-cycles
anymore, hence is linear, and then we may apply Theorem 4 to G**.

3.1 The Numbers of Edges in G
The next estimate is quite crude but it suffices for our purposes.

Lemma 2. The number |EY| of 3-element edges in the hypergraph G = (V,EJ U
E3UELU---U&) satisfies

€3] < T°. ()

Proof. For grid-points P,@,R € V we have {P,Q, R} € £J if and only if P,Q, R
are collinear. Each line is determined by two grid-points in the T' x T-grid, for
which there are at most T choices each, and each line contains at most T grid-
points, and the upper bound 7° on the number of collinear triples follows. O

To estimate |&;|, j = 3,...,k, we use the following result from [7].

Lemma 3. For distinct grid-points P = (pz,py) and R = (rg,ry) with P <, R
from the T' x T-grid, where s :==r, —p, > 0 and h :=r, — p,, it holds:

(a) There are at most 4 - A grid-points @ in the T x T-grid such that
(i) P<;Q </ R, and
(it) P,Q, R are not collinear, and area (P,Q, R) < A.

(b) The number of grid-points Q in the T x T-grid which fulfill only (ii) from
(a) is at most (12- A-T)/s for s > 0, and at most (12-A-T')/|h| for |h| > s.

Lemma 4. For j = 3,...,k, the numbers |E;| of unordered j-tuples Py, ..., P;
of distinct grid-points in the T x T-grid with area (Pi,...,P;) < A;, where no

three of the grid-points Py, ..., P; are collinear, satisfy for some constants c; > 0:
j—2
€51 < e A2 T, (6)
Proof. Let Py, ..., P; be grid-points, no three on a line, in the T" x T-grid with
area (Pi,...,P;) < A;. We may assume that P, <; --- <; P;. For P, =
(P12, P1y) and P = (pjz;pjy) 1ot s := iz —pre 2 0 and h:= pjy — piy.
Then s > 0, as otherwise P, ..., P; are collinear.

There are T2 choices for the grid-point P;. Given P;, any grid-point P; with
Py <; P; is determined by a pair (s, h) # (0,0) of integers with 1 < s < T and



—T < h<T.ByLemma 1 (i) we have area (P, P;, P;) < A;fori=2,...,j—1
Given the grid-points P; and P;, since Py <; P; <; P; fori=2,...,57 —1, by
Lemma 3 (a) there are at most 4 - A; choices for each grid-point P;, hence for a
constant ¢; > 0:

T T
EI<T?-Y 0 > (4 A4;)77 <y AT 0
s=1 h=-T

By (6) the average degrees t;i*l for the j-element edges £ € &;, j =3,...,k, of
G satisfy

B = GV < e AT T = (150)7 (™)

3.2 The Numbers of 2-Cycles in G

Let 83,(4,i,5)(9) denote the number of (2; (g, 1, j))-cycles, 2 < g <i < j < k with
g < j in the hypergraph G, i.e., the number of unordered pairs {E, E'} of edges
with £ € & and E' € £ and |[ENE'| = g.

Lemma 5. For2 < g <i<j <k with g <j, there exist constants ¢,y ; ;) >
such that the numbers sa,(y;)(G) of (2;(g,1,7))-cycles in the hypergraph G
(V,EQUESUELU -+ U &) fulfill

$2:(9.1.)(G) < Cogig) - AL -Af“’ -T*- (log T)?. (8)

0

Proof. Let the grid-points, which correspond to the vertices of an i-element edge
E € & and a j-element edge E' € &; and also yield a (2;(g,1,j))-cycle in G,
2<g<i<j<kwithg<gj, beP,...,Pand P,...,P;,Q441,-..,Q;, where
after renumbering P; <; --- <; P, and no three of the grid-points Pi,...,P;
and of Pi,..., Py, Qg41,...,Q; are collinear, thus area (Pi,...,P;) < A; and
area (Pr,..., Py, Qg41,...,Q;) < Aj.

There are T choices for the grid-point P;. Given the grid-point Py = (p1,4,pP1,)s
any pair (s,h) # (0,0) of integers determines at most one grid-point P, =
(p1,z + 8,p1,y + h) in the T x T-grid. By symmetry we may assume that s > 0
and 0 < h < s < T, which is taken into account by an additional constant
factor ¢’ > 1. Given the grid-points P, and Py, since area (Py, Py, P;) < A; for
f=2,...,9—1by Lemma 1, and P, <; Py <; P;, by Lemma 3 (a) there are at
most 4 - A; choices for each grid-point Py in the 7" x T-grid, hence the number
of choices for the grid-points Py,..., Py is at most

T? . (4 A;)972. 9)

For the convex hulls of the grid-points Pi,..., P; and Pi,..., Py, Qg41,...,Q;
let their (w.r.t <;) extremal points be P',P" € {P,...,P;} and Q',Q" €
{P1,...,P;,Qqg+1,...,Q;}, respectively, ie., for P' <; P" and Q' <; Q" we
have P' <; Pr,..., P < P" and Q' <y Pry. oy, Py, Qginy -0+, Q5 <1 Q.

Given the grid-points P; <; - -+ <; P, there are three possibilities for the convex
hulls of the grid-points P,..., P; and Py,...,P;,Qj41,.-., Q% each:



(i) Pi and P, are extremal, or
ii) exactly one grid-point, P; or P,, is extremal, or
g g
(iii) neither P, nor P, is extremal.

We restrict our calculations to the convex hull of P, ..., P; as the considerations
for the convex hull of Py,..., Py, Qg+41,...,Q; are essentially the same.

In case (i) the grid-points P; and P, are extremal for the convex hull of P, ..., P;,
hence Py <; Pyyq,...,P; <; P;. By Lemma 3 (a), since area (P, P, P;) < A;,
l=g+1,...,i, and no three of the grid-points P, ..., P; are collinear, there are
at most 4- A; choices for each grid-point P;, hence the number of choices for the
grid-points Py41, ..., P; is at most

case (i): (4-A;)9. (10)

In case (ii) exactly one of the grid-points P; or P, is extremal for the convex hull
of Py,...,P;. By Lemma 3 (b) there are at most (12 - A4; - T') /s choices for the
second extremal grid-point P’ or P”. Having fixed this second extremal grid-
point, for each grid-point Py11,...,P; # P',P" there are by Lemma 3 (a) at

most 4 - A; choices, hence the number of choices for the grid-points Py41,...,P;
is at most
case (ii): (4-A)797112- 4, T) /s = ((4-4,)79-3-T)/s. (11)

In case (iii) none of the grid-points Py, P, is extremal for the convex hull of
Pi,...,P;. By Lemma 1 (ii) all grid-points P,1, ..., P; are contained in a strip
S;, which is centered at the line P; P, of width (4 - A;)/vh? + s2. Consider the
parallelogram Py = {(pz,py) € Si | P1,e < Pe < Pg,z} Within the strip S;, where
Pl = (pLz;pl,y) and Pg = (pg,wapgw) and s = Pg,e —Pl,z-

We divide the strip S; within the T' x T-grid into pairwise congruent, parallelo-
grams Py, P;", Py, i =1,...,1 < |T/s] + 2, each of side-lengths (4- A;)/s and
Vh? + s? and of area 4 - A;, where for ¢ > 1 all parallelograms P; are on the
left of the parallelogram Py, and all parallelograms P;' are on the right of Py,
in particular P;" := {(ps,py) € Si | Pgx + (i —1) 5 < pp < pyo +i -5} and
P i={(ps,py) € Si |Prw—1-s<py <p1p—(i—1) s} By Lemma 3 (a) each
parallelogram 73;' or P;” contains at most 4 - A; grid-points P, where Py, P;, P
are not collinear. Each extremal grid-point, P’ or P", is contained in some paral-
lelogram P;r or P, for some ¢ > 1, since by our assumption neither P, € Py nor
P, € Py are extremal. Each grid-point P = (p,,p,) € P;f UP;, i > 1, satisfies
|pe — P12z > sor |p, —pje| >i-s. Thus, if P € P UP; or P" € P UP;,
by Lemma 3 (b) there are at most (12 - A; - T')/(i - s) choices for the second
extremal grid-point. Having chosen both extremal grid-points P’ and P" in at
most (4-A;)-((12- A4;-T)/(i-s)) = (48 A7 -T)/(i - s) ways, for the grid-points
Pyi1,...,P; # P',P" there are by Lemma 3 (a) at most (4 - A;)*~9~2 choices.
Hence, in case (iii) the number of choices for the grid-points Pyy1,...,P; is at



most

|T/s]|+2 )
) 48 - A2.T
iii): 4_44iz—g—2_ i —
case (iii) ( ) ;:1 —

[T/s]+2
s 3T 1 o 9-T-logT
= (4-A4;)9. . S<(4-A)e I E e
(g 2003 @Ay :

(12)

i=1

By (10)—(12) and using T' > s, in cases (i)—(iii) altogether the number of choices
for the grid-points Pyy1, ..., FP; is at most

3-T 5-T-logT
+ +
s s

9-T -logT
—

-y (1 ) <y (13)

Similar to (13), for the number of choices of the grid-points Qg41,...,Q; the
following upper bound holds:

(4-A;)779-9-T-1ogT)/s. (14)

Hence with (9), (13) and (14) for 2 < ¢ < i < j < k and g < j we obtain for
constants c', ca.(g.q.5) > 0:

° 4Al i_g‘g'T'IO T
Sz;(g,aj)(g)SC'-TQ-(4'Ai)g_2'ZZ<( : s & )

s=1 h=0

((4-4;)779-9-T -logT <
5 <
-1
I gii—g—2 | Ai=2  pi—g 4 2
<8l 4TI AT AT T (log T ) =
s=1 h=0
S C?;(g,i7j) . AZ_Q . A";-_g . T4 . (log T)3 O

3.3 Choosing a Subhypergraph in G

With probability p := T¢/t,(0) < 1, hence p = @(TE/(Agﬂk_Q)/(k_l) ST/ k1))
by (7), where ¢ > 0 is a small constant, we pick uniformly at random and
independently of each other vertices from V. Let V* C V be the random set of
the picked vertices and let G* = (V*,EY*UEFUESU- - -UEF) with E* := EIN[V*]?
and &7 :=&;N [V*}7, j = 3,...,k, be the on V* induced random subhypergraph
of G. Let E[V*[], E[I€Y" ], EIIE; |}, =3, k, and Efs(y ;5(G*)],2 < g <i <
j <k but g < j, be the expected numbers of vertices, collinear triples of grid-
points, j-element edges and (2;(g,1,j))-cycles, respectively, in G* = (V*,E9* U



E3UEFU---UES). By (5), (6), and (8) we infer for constants ¢, cg'c;-,c’z;(g%j) > 0:

2k—4 k-2
B[V =p-T?> (¢, - T* ) /A} (15)
’ 5k—11 3k=6
E[EY = p* €3] < (&) - T 139) /417 (16)
. ak—2j-d . . iCk=2)
E[E =p -1&| < (¢ - T 71 e 4172 /47 (17)
Els9,0.:.5)(G)] =079 - 82,04.0.(G) <
ak—a-2(iti—g) | 11 i il2 e
C{Z;(gﬂ',j) . o1 +e(iti—g) | (log T)? - Al 2 .A; g

IN

(18)

(k=2)(i+j—g)
k—1

Ay

By (15)—(18) and by Chernoft’s and Markov’s inequality we obtain a subhyper-
graph G* = (V*,E* UEFUEF U---UE}) of G such that

- k=2
Vo] > ((e1/2) - TH49) /4 (19)
0% 3 0 pi=ligse 5P
&7 < (k- c3 - T )/A, (20)
J J(k=2)
E| < (kP -y - TR T ATy 4, R (21)
4k—4-—2(i+j—g) s
k3 . C‘I2~ T teliti—g) | (IOgT) Al 2 A] g
521(9.00) (67) S o [CEDIEEEn) (22)
A k—1
k

This probabilistic argument can be turned into a deterministic polynomial time
algorithm by using the method of conditional probabilities. For 2 < g <i < j <
k but g < j, let Cyyq.4,5) be the set of all (i + j — g)-element subsets E'U E' of
V such that E € & and E' € &; and |[E N E'| = g. Let the grid-points in the
T x T-grid be P,..., Prz. To each grid-point P; associate a variable p; € [0, 1],
i=1,...,T% and let F(py,...,pr2) be a function defined by

T2
F(ply---,pTz) = 2p‘T2/2 . H (1 _ %) +
i=1

J(k 2)

Z{i,j k}egopi'Pj'Pk +zk: Z{zl, i YEE; Hz 1 Pi
(k3 - - 755 48y 4 57 (k3 - ¢, - TRoT e AT AT

(k= Q)L(H;J 9) it

" Z k Z{“, wlitj—g YEC; [LZ 7 pi

— % T74k—4 249=9) | (it j—g)e logT)3 - Ai=2. 49—9 )
2<g<i<i<kig<j K7 " Caygi5) (logT)? - Ai™7 - Aj

With the initialisation p; = -++ := ppr2 := p = T /ty, we infer by (15)—(18)
that F(p,...,p) < (2/6)1’112/2 +1/3, hence F(p,...,p) < 1 for p-T? > 10. By
using the linearity of F(p,...,pr2) in each p;, we minimize F(py,...,pr2) by
choosing step by step p; := 0 or p; := 1, ¢ = 1,...,T?, and finally we achieve



F(p1,...,py2) < 1. The set V* = {P; € V | p; = 1} yields an induced subhyper-
graph G* = (V*,E* UEF U ---U &) of G with £ =& N[V*ifori=3,...,k,
and £9* := £ N[V*]® which satisfies (19)-(22), as otherwise F(py,...,pr2) > 1
gives a contradiction. By (4)—(6) and (8) and using T = n**# for fixed 8 > 0,
the running time of this derandomization is given by

k
O(|V] + &3] + Z €51 + Z 1Cay(g,5,0)|) = OCo;2,8,1)) =

j=3 2<g<i<j<k;g<j

=04 T (log 7)) = O ((T*** - (logn)®) /n**~2) . (23)
Lemma 6. For each fixed 0 < e < (8—1)/(2-(1+B)) and B > 1 it is
€57 = o(IV"]) - (24)

Proof. By (19), (20) and using T = n'*? with constants ¢ > 0 and 8 > 1 we
have

€3] = o(IV"])
k—11 3k—=6 ok—a k=2
= T Jog T/AS = o(T*1 T< JAST)
s 2= (1H0-22) (logn)lfﬁ =o(1)
= 1+p6)-(1-2-¢) > 2,
which holds for e < (8 —1)/(2- (1 + 3)). O

Lemma 7. For 2 < g <i < j <k but g < j and each fired ¢ with 0 < & <
1t 18

J1—39
(79 1G9
52,(9,i,9) (G7) = o([V7]). (25)

Proof. For 2 < g <i < j<kbutg<jby(4), (19), (22) and using T = n'*?
with fixed 8, > 0 we infer

32;(g,i,j)(g*) =o(|V*])

AR 4 (i —g)e (logT)3 - Ai=2. AT~9 TET +e
i J _
= (E=2)(iti=g) =0 A%
4 =
k k
peAHB) (i+i—g-1) =5 (logn)4+§%gf“§;gfl = o(1)
=<~ /=9 : O

G=20+j—g—-1D1A+5)

By setting € := 1/(2-k? - (1+ 3)) and 8 > 1+ 1/k? all assumptions in Lemmas
6 and 7 and also p = T°¢/t(0) < 1 are fulfilled. We delete one vertex from
each edge E € £9*, and from each 2-cycle in G*. Let V** C V* be the set
of remaining vertices. By Lemmas 6 and 7 the induced subhypergraph G** =



(V€5 U--- U &) with £ = £ N [V™), j = 3,....k where [V**| =
(1—0(1)) - |V*| > |V*|/2, contains no edges from &2 and no 2-cycles anymore,
i.e., G** is a linear hypergraph. Since |£7*| < |£¥| with (19) and (21), the average
degrees tﬁ_l(l) for the j-element edges of G**, j =3, ..., k, fulfill by (4):

. . 4k—2j—4 | - - J’(k:2)
gy = L8 U Kl TR T ATy A R
J |V**| — ((0,1/4) - Tzkk:14+5)/A;§%? >
4-k%. e (c*)i—2 ) o
< C; (C]) .1 (logn)H. (26)

G-D(*=2)
cll . (c;; %’;2
As observed above, this subhypergraph G** is linear. By choosing S := ¢ - T*
for a large enough constant ¢ > 0, with 7' = n'*% with T = n!'*# by (26) the
assumptions in Theorem 4 are fulfilled, and we apply it, and, using (4) we find
in time

2

AT S12) = O(n - TURIE) = o(17) 27)

o(Tr
an independent set I of size

2k—4

11 = 2((V**(/S) - (log ) ) = Q((TFT+/(AF -T7)) - (logT*) =) =
= 2((n/(logn) =) - (log T) =) = Q(n),

since T = n'*t% and B,e > 0 are constants. By choosing the constants c; >0, =
3,...,k, in (4) sufficiently small, we obtain an independent set of size n, which
yields, after rescaling the areas A; by the factor T2, a desired set of n points in
[0, 1)% such that, simultaneously for j = 3,...,k, the areas of the convex hulls of
every j distinct of these n points are 2((logn)/U=2) /pli=1/G=2)) Adding the
times in (23) and (27) we get the time bound O(T*~* - (logn)5/n?*~2 + T?) =
(n(ZE=2) 2041y = o(nbk~4) for B > 1 + 1/k* small enough. O
We remark that the bound o(n%~*) on the running time might be improved a
little, for example by using a better estimate on the number of collinear triples of
grid-points in the 7' x T-grid or by a random preselection of grid-points. However,
we cannot do better than O(n*) for some constant ¢ > 0.
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