
Generating Implied Boolean Constraints
via Singleton Consistency

Roman Barták

Charles University in Prague, Faculty of Mathematics and Physics

Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic
roman.bartak@mff.cuni.cz

Abstract. Though there exist some rules of thumb for design of good models
for solving constraint satisfaction problems, the modeling process still belongs
more to art than to science. Moreover, as new global constraints and search
techniques are being developed, the modeling process is becoming even more
complicated and a lot of effort and experience is required from the user. Hence
(semi-) automated tools for improving efficiency of constraint models are
highly desirable. The paper presents a low-information technique for
discovering implied Boolean constraints in the form of equivalences,
exclusions, and dependencies for any constraint model with (some) Boolean
variables. The technique is not only completely independent of the constraint
model (therefore a low-information technique), but it is also easy to implement
because it is based on ideas of singleton consistency. Despite its simplicity, the
proposed technique proved itself to be surprisingly efficient in our experiments.

Keywords: implied constraints, reformulation, singleton consistency, SAT.

1 Introduction

Problem formulation is critical for efficient problem solving in formalisms like SAT
(satisfiability testing), LP (linear programming), or CS (constraint satisfaction). LP
and SAT formalisms are quite restricted, to linear inequalities in LP and logical
formulas in SAT. Hence problem formulation is studied for a long time in LP and
SAT because it is not always easy to express real-life constraints using linear
inequalities or logical formulas. We cay say that the problem formulation is the core
of courses for normal users of LP and SAT, while the solving techniques are studied
primarily by experts and researchers contributing to improving the solving techniques.
Opposite to SAT and LP, the CS formalism is very rich concerning its expressivity
(any constraint can be directly modeled there). Hence the users get a big freedom in
expressing their problems as constraint satisfaction problems which has some
negative consequences. First, because the solvers need to cover the generality of the
problem formulation, it is hard to improve their efficiency, and, actually, we have not
observed the dramatic increase of speed of constraint solvers similar to SAT and LP
solvers. Second, the main burden on efficient problem solving is on the user who
must understand the details of the solving process to formulate the problem in an

efficient way. Note that sometimes a small change in the model, such as adding a
single constraint, may dramatically influence efficiency of problem solving which
makes the modeling task even more complicated. There exist some rules of thumb
how to design efficient constraint models [10,13], but constraint modeling is still
assumed to be more art than science. There exist some automated techniques for on-
fly problem re-formulation such as detecting and breaking symmetries during search
(for a short survey see [13]) or no-good recording (introduced in [14] and formally
described in [6]). Usually the problem (re-)formulation is up to the user by using
techniques such as adding symmetry breaking or implied constraints, encoding parts
of the problem using specialized global constraints, or adding dominance rules.

In this paper, we address the problem of fully automated generation of useful
implied constraints in constraint satisfaction problems. Informally speaking, by a
useful implied constraint we mean a constraint than is deduced from the existing
model (hence implied) and that positively contributes to faster problem solving (hence
useful). A fully automated technique means that the implied constraints are generated
for any given constraint model without any user intervention. According to the
principle that the best constraint model will be the one in which information is
propagated first [10] we are trying to generate implied constraints that propagate more
than the existing constraints (remove more inconsistencies from the model). Recall
that more inconsistencies can be easily removed from any constraint model by
applying a stronger consistency technique, for example by using path consistency
instead of arc consistency. However, the main problem with stronger consistency
techniques is their time and space complexity which disqualifies these techniques
from being used repeatedly in the nodes of the search tree. Naturally, stronger
consistency techniques can be applied once before the search starts but then their
effect is limited to removing initially inconsistent values from variables’ domains. We
propose to exploit information from these stronger consistency techniques in the form
of implied constraints that are deduced during the initial consistency process and
added to the constraint model. In particular, we propose to use singleton arc
consistency [5] to deduce new constraints between Boolean variables in the problem.
The rationale for using singleton arc consistency (SAC) is that this meta-technique is
easy to implement on top of any constraint model (singleton consistency is a meta-
technique because it works on top of other “plain” consistency techniques such as arc
consistency or path consistency). The reasons for restricting to Boolean variables are
twofold. First, singleton consistency is an expensive technique especially when
applied to variables with large domains so Boolean variables seem to be a good
compromise. Second, we need to specify the particular form of constraints that we are
learning, which is easier for Boolean variables. To be more specific, at this stage we
are learning only the equivalence, implication, and exclusion constraints. In [1] we
already showed that SAC over Boolean variables contributes a lot to removing initial
inconsistencies so our hope is that the constraints derived from SAC can further help
in problem solving.

The paper is organized as follows. After giving the initial motivation for our work,
we will define more formally the used notions and techniques. Then we will present
the core of the proposed technique and the paper will be concluded by an
experimental section showing the benefits and detriments of the proposed method.

For now, we can reveal that despite the simplicity of the proposed method, the
experiments showed surprising speed-ups for some problems.

2 Motivation

In [2] we proposed a novel constraint model for description of temporal networks
with alternative routes similar to [4]. Briefly speaking, this model consists of a
directed acyclic graph or in general a Simple Temporal Network [7], where the nodes
are annotated by Boolean validity variables. There are special constraints between the
validity variables describing logical relations between the nodes (we call them parallel
and alternative branching). These constraints specify which nodes should be selected
together to form one of the possible alternative routes through the network. Figure 1
shows an example of alternative branching together with a constraint model
describing the relations between the validity variables

Fig. 1. A simple graph with alternative branching (left) and its formulation as a constraint
satisfaction problem (left) over the validity variables.

The above model is useful for description of manufacturing scheduling problems, but
it suffers from several drawbacks. The main issue is that the problem of deciding
which nodes are valid in the network is NP-complete in general [2]. Hence, opposite
to Simple Temporal Networks [7] we cannot expect a complete polynomial constraint
propagation technique that removes all inconsistencies from the constraint model. For
example, the constraint model in Figure 1 cannot discover, using standard
(generalized) arc consistency, that VA = 1 if VD is set to 1 (and vice versa). In [3] we
proposed some pre-processing rules that can deduce implied constraints improving
the filtering power of the constraint model. In particular, we focused on discovering
(some) equivalent nodes, that is, the nodes whose validity status is identical in all
feasible solutions (such as nodes A and D in Figure 1). Unfortunately, we also
showed there that the problem whether two nodes are equivalent is also NP-hard. Our
pre-processing rules from [3] are based on contracting the graph describing the
problem and it is not easy to implement them and to extend them to other problems.
Moreover, this method is looking only for equivalent nodes and ignores other useful
relations such as dependencies and exclusions.

The above problem is not the only problem combining Boolean and temporal
variables. Fages [8] studies a constraint model for describing and solving min-cutset
problems and log-based reconciliation problems. Again, there are Boolean validity
variables, which can be connected by dependency constraints in case of log-based
reconciliation problems, and ordering variables describing the order of the nodes in a
linear sequence of nodes (to model acyclicity of the selected sub-graph). We believe

B

A D

C

ALT ALT
VA = VB + VC

VD = VB + VC

that there are many other real-life problems where Boolean variables are combined
with numerical variables. Our learning method might be useful for such problems to
discover implied constraints between the Boolean variables that also take in account
the other constraints. Naturally, we can learn implied constraints in problems with
Boolean variables only, such as SAT problems.

3 Preliminaries

A constraint satisfaction problem (CSP) P is a triple (X, D, C), where X is a finite set
of decision variables, for each xi ∈ X, Di ∈ D is a finite set of possible values for the
variable xi (the domain), and C is a finite set of constraints. A constraint is a relation
over a subset of variables that restricts possible combinations of values to be assigned
to the variables. Formally, a constraint is a subset of the Cartesian product of the
domains of the constrained variables. We call the variable Boolean if its domain
consists of two values {0, 1} (or similarly {false, true}). A solution to a CSP is a
complete assignment of values to the variables such that the values are taken from
respective domains and all the constraints are satisfied. We say that a constraint C is
(generalized) arc consistent if for any value in the domain of any constrained
variable, there exist values in the domains of the remaining constrained variables in
such a way that the value tuple satisfies the constraint. This value tuple is called a
support for the value. Note that the notion arc consistency is usually used for binary
constraints only, while generalized arc consistency is used for n-ary constraints. For
simplicity reasons we will use the term arc consistency independently of constraint’s
arity. The CSP is arc consistent (AC) if all the constraints are arc consistent and no
domain is empty. To make the problem arc consistent, it is enough to remove values
that have no support (in some constraint) until only values with a support (in each
constraint) remain in the domains. If any domain becomes empty then the problem
has no solution. We say that a value a in the domain of some variable xi is singleton
arc consistent if the problem P|xi=a can be made arc consistent, where P|xi=a is a CSP
derived from P by reducing the domain of variable xi to {a}. The CSP is singleton arc
consistent (SAC) if all values in variables’ domains are singleton arc consistent.
Again, the problem can be made SAC by removing all SAC inconsistent values from
the domains. Figure 2 shows an example of a CSP and its AC and SAC forms.

Fig. 2. A graph representation of a CSP, an arc consistent problem, and a singleton arc
consistent problem (from left to right).

{a,b}

{a,b}

{a,b,c}{c}
≠ ≠

≠

≠

≠

{a,b,c}

{a,b,c}

{a,b,c} {c}
≠ ≠

≠
≠

≠

{a,b}

{a,b}

{c} {c}
≠ ≠

≠
≠

≠

CSP AC SAC

Assume now the constraint satisfaction problem with Boolean variables A, B, C, and
D and with constraints A = B + C and D = B + C (like in Figure 1). This problem is
both AC and SAC. Now assume that we assign value 1 to variable A. The problem
remains AC but it is not SAC because value 0 cannot be assigned to variable D. This
is an example of weak domain pruning in our temporal networks with alternatives. If
we now include constraint A = D and make the extended problem AC then value 0 is
removed from the domain of D by AC. Clearly, any assignment satisfying the original
constraints also satisfies this added constraint. Hence we call this constraint implied,
because the constraint is logically implied by the original constraints (sometimes,
these constraints are also called redundant). Our goal is to find such implied
constraints that contribute to stronger domain filtering.

4 Learning via SAC

As we already mentioned in the introduction and motivation, our original research
goal was to easily identify some equivalent nodes in the temporal networks with
alternatives. Recall, that finding all equivalent nodes is an NP-hard problem [3] so we
focused only on finding equivalences similar to those presented in Figure 1 (nodes A
and D). An easy way, how to identify such equivalences, is a trial-and-error method
similar to shallow backtracking or SAC. Basically, we will try to assign values to
pairs of variables and if we find that only identical values can be assigned to the
variables then we deduce that the variables are equivalent (they must be assigned to
the same value in any solution). As a side effect, we can also discover some
dependencies between the variables (if 1 is assigned to B then 1 must be assigned to
A) and exclusions between the variables (either B or C must be assigned to 0 or in
other words it is not possible to assign 1 to both variables B and C).

We will now present the learning method for an arbitrary constraint satisfaction
problem P. Recall, that we will only learn specific logical relations between the
Boolean variables of P. We will gradually try to assign values to variables and each
time we try the assignment, this assignment is propagated to other variables (the
problem is made AC). If the assignment leads to a failure then we know that the other
value in the domain must be assigned to the variable (recall that we are working with
Boolean variables). The whole learning process consists of two stages.

First, we collect information about which variables are instantiated after assigning
value 1 to some variable A. We distinguish between directly instantiated variables,
that is, those variables that are instantiated by making the problem P|A=1 arc consistent
(one value in the variable domain is refuted by AC so the other value is used), and
indirectly instantiated variables, that is, those variables where we found their value
by refuting the other value in a SAC-like style (AC did not prune the domain, but
when we try to assign a particular value to the variable it leads to a failure so the other
value is used). Informally speaking, if we assign value 1 to variable A and make the
problem arc consistent then all variables that are newly instantiated are directly
instantiated variables. Indirectly instantiated variables are those variables B that are
not instantiated by AC in P|A=1 but for which only one value is compatible with A = 1
because if the other value is assigned to B, it leads to a failure after making the

problem AC (see procedure Learn below). More formally, let B be a non-
instantiated (free) Boolean variable in AC(P|A=1), where AC(P) is the arc consistent
form of problem P (inconsistent values are removed from the domains of variables). If
P|A=1,B=0 is not arc consistent then value 0 cannot be assigned to B, hence value 1 must
be used for B. Symmetrically, we can deduce that value 0 must be assigned to B if
P|A=1,B=1 is not arc consistent. Together, we can deduce which value must be used for
B if value 1 is assigned to A. If both values for B are feasible then no information is
deduced. If no value for B is feasible then value 1 cannot be used for A and hence A
must be instantiated to 0. Note that information about indirectly instantiated variables
is very important because it will help us to deduce implied constraints that improve
propagation of the original constraint model. More formally, we are looking for
implied constraints C such that AC(P|C) ⊂ AC(P), where P|C is a problem P with
added constraint C and the subset relation means that all domains in AC(P|C) are
subsets of relevant domains in AC(P) and at least one domain in AC(P|C) is a strict
subset of the relevant domain in AC(P). In other words, constraint C helps in
removing more inconsistencies from problem P.

The learning stage deduces three types of implied constraints. If B = 0 is indirectly
deduced from the assignment A = 1 and A = 0 is indirectly deduced from the
assignment B = 1 then the pair {A, B} forms an exclusion, which is an implied
exclusion constraint (A = 0 ∨ B = 0). Notice that this constraint really improves
propagation because for example if 1 is assigned to A then the constraint immediately
deduces B = 0, while the original set of constraints deduced no pruning for B.
Similarly, if B = 1 is indirectly deduced from the assignment A = 1 then B depends on
A, which is an implied dependency constraint (A = 1 ⇒ B = 1). Again, this constraint
improves propagation. Note that we introduce this constraint only if variables A and
B are not found to be equivalent. The equivalent variables are found using the
following procedure. We construct a directed acyclic graph where the nodes
correspond to the variables and the arcs correspond to the dependencies between the
variables. These dependencies are found in the first stage, we assume both direct
dependencies discovered by the AC propagation and indirect dependencies discovered
by the SAC-like propagation. Strongly connected components of this graph form
equivalence classes of variables. Note that if A and B are in a strongly connected
component then (A = 1 ⇒* B = 1) and (B = 1 ⇒* A = 1), where ⇒* is a transitive
closure of relation ⇒. All equivalent variables must be assigned to the same value in
any solution so we can put equality constraint between these variables.

The following code of procedure Learn shows both the data collecting stage and
the learning stage of our method. BoolVars(P) is a set of not-yet instantiated Boolean
variables in P, doms(P) are domains of P, DX = {V} means that the domain of
variable X consists of one element V, and AC(P) is the arc consistent form of problem
P (AC(P) = fail if problem P cannot be made arc consistent).

The main advantage of the proposed method is simplicity and generality. Thanks to
meta-nature of singleton consistency it can be implemented easily in any constraint
solver and it works with any constraint satisfaction problem (even if global
constraints and non-Boolean variables are included). The time complexity of the data
collection stage is O(n2.|AC|), where n is the number of Boolean variables and |AC| is
the complexity to make the problem arc consistent. Strongly connected components
of the dependency graph can be found in time not greater than O(n2) and exclusions

and dependencies are generated in time O(n2). Clearly, majority of time to learn
implied constraints by the above method is spent by collection information using the
SAC-like method.

procedure Learn (P: CSP)
 for each A in BoolVars(P) do // data collecting stage
 Q ← AC(P|A=1)
 Direct(A) ← { X/V | DX = {V} in doms(Q)}
 for each B in BoolVars(Q) s.t. A ≠ B & Q ≠ fail do
 if AC(Q|B=0) = fail then
 Q ← AC(Q|B=1)
 else if AC(Q|B=1) = fail then
 Q ← AC(Q|B=0)
 end for
 Indirect(A) ← { X/V | DX = {V} in doms(Q)} – Direct(A)
 if Q = fail then
 P ← AC(P|A=0)
 if P = fail then stop with failure
 end for
 // learning stage
 G ← (BoolVars(P), {(A,B) | B/1 ∈ Direct(A) ∪ Indirect(A)})
 Equiv ← StronglyConnectedComponents(G)
 Excl ← { {A,B} | B/0 ∈ Indirect(A) & A/0 ∈ Indirect(B)}
 Deps ← { (A,B) | B/1 ∈ Indirect(A) & ¬ {A,B} ⊆ X ∈ Equiv}
 return (Equiv, Excl, Deps)
end Learn

5 Implementation and Experiments

To evaluate whether our learning technique is useful for problem solving we
implemented the learning technique in SICStus Prolog 3.12.3 and tested it on 1.8 GHz
Pentium 4 machine running under Windows XP. Note that we used a naïve (non-
optimal) implementation of the SAC algorithm that is called SAC-1 [5]. This
algorithm simply assigns a value to the variable and propagates this assignment via
standard arc-consistency algorithm. The algorithm does not pass any data structures
between several runs which makes it non-optimal. Nevertheless, its greatest
advantage is that the implementation is very easy and can be realized in virtually any
constraint solver. For the experiments we used existing benchmarks for min-cutset
problems [11] and a dozen of benchmarks for SAT problems [9].

5.1 Learning for CSP

In our first experiment, we compared efficiency of the original constraint model for
min-cutset problems from [8] with the same constraint model enhanced by the learned
implied constraints. Note that these constraint models contain both Boolean variables

(validity) and integer variables (ordering of nodes). Recall that the min-cutset
problem consists of finding the largest subset of nodes such that the sub-graph
induced by these nodes does not contain a cycle. So it is an optimization problem. We
used the data set from [11] with 50 activities and a variable number of precedence
relations. Figure 3 shows the comparison of above models both in the runtime
(milliseconds) and in the number of backtracks. It is important to say that the runtime
for the enhanced model consists of the time to learn the implied constraints and the
time to solve the problem to optimality (using the branch-and-bound method). The
time to learn the implied constraints is negligible there (from 80 to 841 milliseconds)
and hence we do not show that time separately in the graphs. We used the well-known
Brélaz variable ordering heuristic also known as dom+deg heuristic (the variables
with the smallest domain are instantiated first, ties broken by preferring the most
constrained variables).

1000

10000

100000

1000000

10000000

100000000

1000000000

100 150 200 250 300 500 600 700 800 900

number of precedences

ru
nt

im
e

(m
s)

original

enhanced

1000

10000

100000

1000000

10000000

100000000

1000000000

100 150 200 250 300 500 600 700 800 900

number of precedences

ba
ck

tr
ac

ks

original

enhanced

Fig. 3. Comparison of runtimes (milliseconds) and the number of backtracks for the original
model of min-cutset problems and the model enhanced by the learned implied constraints with
the Brélaz variable ordering heuristic.

The graphs in Figure 3 show a significant decrease of the runtime and of the number
of backtracks, which is a promising result especially taking in account that the time to
learn is included in the overall time. This decrease is mainly due to the learned
exclusion constraints which capture cycles in the graph (one node in the exclusion
must be invalid to make the graph acyclic). Clearly, the Brélaz heuristic is also
influenced by adding constraints to the model so the implied constraints may change
the ordering of variables during search and hence influence efficiency. As we want to
see also the effect of implied constraints on pruning the search space, we need to use
exactly the same search procedure for both models. The straightforward approach is
to use a static variable ordering. Figure 4 shows the comparison of both models using
the static variable ordering heuristic. Again, we used the branch-and-bound method to
solve the problem to optimality. Due to time reasons, we used a cut-off limit
300 000 000 milliseconds (>83 hours) for a single run so the most complex problems
(200 - 300, and 600 precedences) were not solved to optimality for the original model
and hence information about the number of backtracks is missing.

1000

10000

100000

1000000

10000000

100000000

1000000000

100 150 200 250 300 500 600 700 800 900

number of precedences

ru
nt

im
e

(m
s)

original

enhanced

1000

10000

100000

1000000

10000000

100000000

1000000000

100 150 200 250 300 500 600 700 800 900

number of precedences

ba
ck

tr
ac

ks

original

enhanced

Fig. 4. Comparison of runtimes (milliseconds) and the number of backtracks for the original
model of min-cutset problems and the model enhanced by the learned implied constraints with
the static variable ordering heuristic (a logarithmic scale).

Again, the enhanced model beats the original model and shows a significant speedup.
Moreover, by comparing both experiments, we can see that the learned constraints not
only pruned more the search space by stronger domain filtering (which was our
original goal) but in combination with the Brélaz heuristic they also make the search
faster by focusing the search algorithm to critical (the most constrained) variables.

5.2 Learning for SAT Problems

Because our method works primarily with Boolean variables, the natural benchmark
to test efficiency of the method was using SAT problems. We take several problem
classes from [9], namely logistics problems from AI planning, all-interval problems,
and quasigroup (Latin square) problems and encoded the problems in a
straightforward way as CSPs. The choice of problem classes was driven by the idea
that structured problems may lead to more and stronger implied constraints. It would
be surely better to do more extensive tests with other problem classes, but a limited
computation time forced us to select only few most promising classes. Again we used
the Brélaz variable ordering heuristic in the search procedure which was backtracking
search with maintaining arc consistency. Table 1 summarizes the results, it shows the
problem size (the number of Boolean variables), the number of backtracks and the
time to solve the problems (for the enhanced model the time includes both the time to
learn as well as the time solve the problem), and the time for learning.

Table 1. Comparison of solving efficiency of the original and enhanced constraint models for
selected SAT problems (the smallest #backtracks / runtime is in bold).

original enhanced instance size
backtracks runtime

(ms)
backtracks overall time

(ms)
time to learn

(ms)
logistics.a 828 >159827502 >60000000 4 53677 53657
logistics.b 843 >107546059 >60000000 38494 91622 65955
logistics.c 1141 >95990563 >60000000 26195 165537 150776
logistics.d 4713 >38809049 >60000000 5738102 28866167 16116604
ais6 61 16 10 3 400 390
ais8 113 178 120 523 3435 3155
ais10 181 3008 2914 118 14911 14811
ais12 265 66119 80386 140 49091 48921
qg1-07 343 26 811 0 146371 146291
qg1-08 512 331474 12445947 1791551 59608683 886605
qg2-07 343 34 1061 0 178987 178906
qg2-08 512 213992 8005862 213992 7980054 1053394
qg3-08 512 26 170 22 68018 67908
qg3-09 729 357521 2216758 25246 343845 233917
qg4-08 512 2956 12839 367 68088 66556
qg4-09 729 614 3925 86 225324 224934
qg5-09 729 1525 22573 0 1933 1933
qg5-10 1000 119894 2647697 0 61318 61318
qg5-11 1331 >1741008 >60000000 0 855000 854880
qg5-12 1728 >1195753 >60000000 0 6467810 6467810
qg5-13 2197 >802393 >60000000 41641 23622817 21695532
qg6-09 729 177 2304 0 51143 51113
qg6-10 1000 12234 238493 0 63732 63732
qg6-11 1331 1668478 34617658 4545 3233200 3153716
qg6-12 1728 >2512643 >60000000 586472 22669216 7159264
qg7-09 729 0 40 0 53337 53297
qg7-10 1000 348 6930 0 46557 46557
qg7-11 1331 27777 674701 0 429658 429658
qg7-12 1728 >2239230 >60000000 148648 10344354 6560683
qg7-13 2197 261 14101 525428 31893597 13893597

The experimental results show some interesting features of the method. First, the
model enhanced by the learned implied constraints was frequently solved faster and
using a smaller number of backtracks than the original model. The smaller number of
backtracks is not that surprising, because the implied constraints contribute to pruning
the search space. However, a shorter overall runtime for the enhanced model is a nice
result, especially taking in account that the overall runtime includes the time to learn
the implied constraints. The speed-up is especially interesting in the logistics
problems, where the learning method deduced many exclusion constraints (probably
thanks to the nature of the problem) which contributed a lot to decreasing the search
space. The few examples when solving required more backtracks for the enhanced
model (ais8, qg1-08, and qg7-13) can be explained by “confusing” the variable
ordering heuristic by the implied constraints. Figure 3 and 4 showed that adding
implied constraints influenced significantly the Brélaz variable ordering heuristic
which is clear – the labeled variables have Boolean domains so the not-yet
instantiated variables are ordered primarily by using the number of constraints in

which they are involved. It may happen that in some problems this may lead to a
wrong decision as no heuristic is perfect for all problems. It will be interesting to
study further how the added implied constraints influence structure-guided variable
ordering heuristics.

A second interesting feature is that for several quasigroup problems which have no
feasible solution, the learning method proved infeasibility (in italics in Table 1) so no
subsequent search was necessary to solve the problem. Again in most problems it was
still faster than using the original constraint model. Finally, though we almost always
improved the solving time, the overhead added by the learning method (the additional
time to learn) was not negligible and the total time to solve the problem was
sometimes worse than using the original model. This is especially visible in simple
problems, where we spent a lot of time by learning, while in the meantime the
backtracking search found easily the solution in the original model. This leads to a
straightforward conclusion that if the original constraint model is easy to solve, it is
useless to spent time by improving the model, for example by adding the implied
constraints. Of course, the open question is how to find if the model is easy to solve.

5.3 Reformulation for SAT Solvers

In the previous section, we used SAT problems to demonstrate how the proposed
learning method improves the solving time for these problems. However, we modeled
the SAT problems using constraints and we used constraint satisfaction techniques to
solve such models (combination of backtrack search and constraint propagation),
which is surely not the best way to solve SAT problems. In the era of very fast SAT
solvers, it might be interesting to find out if the implied constraints, that we learned
using a constraint model, can also improve efficiency of the SAT solvers. We used
one of the winning solvers in the SAT-RACE 2006 competition, RSat [12], to validate
our hypothesis, that the learned constraints may also improve efficiency of SAT
solvers. Table 2 shows the comparison of the number of backtracks, the number of
decision (choice) points, and runtime for the original SAT problem and for the SAT
problem with the added implied constraints. Again, we used the problem classes from
[9].

There is clear evidence that the implied constraints decrease significantly the
number of choice points of the RSat solver (and in most cases also the number of
backtracks). This is an interesting result, because the RSat solver is using different
solving techniques than the CSP solvers, to which our learning algorithm is targeted.
Nevertheless, regarding the runtime the situation is different. Thought the difference
is not big, the model enhanced by the implied constraints is slower in most cases. This
may be explained by the additional overhead for processing a larger number of
clauses. Note that for some models, the percent of the implied constraints is 20-30%
of the original number of constraints so if the solver is fast, this increase of the model
size will surely influence the runtime. Still, it is interesting to see that the learned
implied constraints are generally useful to prune the search space and perhaps, for
more complicated problems, their detection may pay-off even if we assume time to
learn these constraints (Table 1).

Table 2. Comparison of solving efficiency of the original model and the model with learned
constraints solved by RSAT solver (the smallest #backtracks / #decisions / runtime is in bold).

original enhanced instance
backtracks decisions runtime

(ms)
backtracks decisions runtime

(ms)
logistics.a 137 1394 40 31 176 50
logistics.b 251 2019 60 119 558 90
logistics.c 238 2999 75 126 617 80
logistics.d 33 547 130 42 377 1022
ais6 14 46 5 0 11 0
ais8 20 74 10 0 22 10
ais10 1142 1877 90 0 37 20
ais12 19 152 25 0 56 30
qg1-07 105 134 140 44 72 130
qg1-08 4732 5608 1542 18288 20528 8142
qg2-07 35 54 130 37 53 130
qg2-08 14017 16270 6228 45678 52308 31320
qg3-08 122 175 40 122 153 50
qg3-09 57294 65736 26137 38434 44384 19027
qg4-08 638 737 100 586 667 110
qg4-09 8 30 60 6 23 60
qg5-11 44 78 230 0 4 370
qg5-13 38617 48396 36111 32971 38733 39046
qg6-09 0 15 70 0 3 130
qg6-12 12386 14426 7731 11171 13230 7761
qg7-09 1 7 70 0 3 130
qg7-12 4052 5042 1862 3360 4104 1912
qg7-13 2716 4139 1592 1375 1935 1131

5.4 Learning Efficiency

The critical feature of the proposed method is efficiency of learning, that is, how
much time we need to learn the implied constraints. In our current implementation,
this time is given be the repeated calls to the SAC algorithm so the time depends a lot
on the number of involved Boolean variables and also on the complexity of
propagation (the number of constraints). The following figure shows the time for
learning as a function of the number of involved Boolean variables for experiments
from the previous sections (plus some additional SAT problems).

Clearly, due to the complexity of SAC, the proposed method is not appropriate for
problems with a large number of Boolean variables. Based on our experiments, as a
rough guideline, we can say that the method is reasonably applicable to problems with
less than a thousand of Boolean variables. This seems small for SAT problems, but
we believe it is a reasonable number of Boolean variables in CSP problems where
non-Boolean variables are also included.

10

100

1000

10000

100000

1000000

10000000

100000000

0 500 1000 1500 2000 2500

number of variables

tim
e

to
 le

ar
n

(m
s)

Fig. 5. Time to learn (in milliseconds) as a function of the number of involved Boolean
variables (a logarithmic scale).

4 Conclusions

In the paper we proposed an easy to implement method for learning implied
constraints over the Boolean variables in constraint satisfaction problems and we
presented some preliminary experiments showing a surprisingly good behavior of this
method. In the experiments we used naïve hand-crafted constraint models, that is, the
models that a “standard” user would use to describe the problem as a CSP, so the nice
speed-up is probably partly thanks to weak propagation in these models. Nevertheless,
recall the holly grail of constraint processing – the user states the constraints and the
solver provides a solution. For most users, it is natural to use the simplest constraint
model to describe their problem and we showed that for such models, we can improve
the speed of problem of solving.

To summarize the main advantages of the proposed method: it is easy to
implement, it is independent of the input constraint model, and it contributes to speed-
up of problem solving. The experiments also showed the significant drawback of the
method – a long time to learn (an expected feature due to using SAC techniques).
Clearly, the method is not appropriate for easy-to-solve problems where the time to
learn is much larger than the time to solve the original constraint model. On the other
hand, we did the majority of experiments with the SAT problems where all variables
are Boolean, while the method is targeted to problem where only a fraction of
variables is Boolean, such as the min-cutset problem. We believe that the method is
appropriate to learn implied constraints for the base constraint model which is then
extended by additional constraints to define a particular problem instance. So learning
is done just once while solving is repeated many times. Then the time to learn is
amortized by the repeated attempts to solve the problem. The time to learn can also be

decreased by identifying the pairs of variables that could be logically dependent. This
may decrease the number of SAC checks. We did some preliminary experiments with
the SAT problems, where we tried to check only the pairs of variables that are not “far
each from other”, but the results were disappointing – the system learned fewer
implied constraints. Still, restricting the number of checked pairs of variables may be
useful for some particular problems.

Note finally that the ideas presented in this paper for learning Boolean constraints
using SAC can be extended to learning other type of constraints using other
consistency techniques. However, as our experiments showed, it is necessary to find a
trade-off between the time complexity and the benefit of learning.

Acknowledgments. The research is supported by the Czech Science Foundation
under the contract no. 201/07/0205.

References

1. Barták, R.: A Flexible Constraint Model for Validating Plans with Durative Actions. In
Planning, Scheduling and Constraint Satisfaction: From Theory to Practice. Frontiers in
Artificial Intelligence and Applications, Vol. 117, IOS Press (2005), 39–48

2. Barták, R.; Čepek, O.: Temporal Networks with Alternatives: Complexity and Model. In
Proceedings of the Twentieth International Florida AI Research Society Conference
(FLAIRS 2007). AAAI Press (2007)

3. Barták, R.; Čepek, O.; Surynek, P.: Modelling Alternatives in Temporal Networks. In
Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Scheduling
(CI-Sched 2007), IEEE Press (2007), 129–136

4. Beck, J.Ch.; Fox, M.S.: Scheduling Alternative Activities. In Proceedings of the National
Conference on Artificial Intelligence, AAAI Press (1999), 680–687

5. Debruyne, R.; Bessière; C.: Some Practicable Filtering Techniques for the Constraint
Satisfaction Problem. In Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence (IJCAI), Morgan Kaufmann (1997), 412–417

6. Dechter, R.: Learning while searching in constraint satisfaction problems. In Proceedings of
the Fifth National Conference on Artificial Intelligence. AAAI Press (1986), 178–183

7. Dechter, R.; Meiri, I. and Pearl, J.: Temporal Constraint Networks. Artificial Intelligence
49 (1991) 61–95

8. Fages, F.: CLP versus LS on log-based reconciliation problems for nomadic applications.
In Proceedings of ERCIM/CompulogNet Workshop on Constraints, Praha (2001)

9. Hoos, H.H.; Stützle, T.: SATLIB: An Online Resource for Research on SAT. In SAT 2000,
IOS Press (2000) 283–292. SATLIB is available online at www.satlib.org.

10. Mariot, K.; Stuckey, P.J.: Programming with Constraints: An Introduction. The MIT Press,
(1998)

11. Pardalos, P.M.; Qian, T.; Resende, M.G.: A greedy randomized adaptive search procedure
for the feedback vertex set problem. Journal of Combinatorial Optimization, 2 (1999) 399–
412

12. Pipatsrisawat, T.; Darwiche, A.: RSat Solver, version 1.03.
http://reasoning.cs.ucla.edu/rsat/, accesessed in March 2007.

13. Smith, B.: Modelling. A chapter in Handbook of Constraint Programming, Elsevier (2006)
377–406

14. Stallman, R.M.; Sussman, G.J.: Forward reasoning and dependency-directed backtracking
in a system for computer-aided circuit analysis. Artificial Intelligence 9 (1997) 135–196

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B903C703B503B903C103B703BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002C0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020064506440627062606450629002006440644063906310636002006480627064406370628062706390629002006270644064506460627063306280629002006440648062B062706260642002006270644063906450644002E00200645064600200627064406450645064306460020062306460020064A062A064500200641062A062D00200648062B06270626064200200050004400460020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006800690076006100740061006C006F007300200064006F006B0075006D0065006E00740075006D006F006B0020006D00650067006200ED007A00680061007400F30020006D0065006700740065006B0069006E007400E9007300E900720065002000E900730020006E0079006F006D00740061007400E1007300E10072006100200061006C006B0061006C006D00610073002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A0061007000650077006E00690061006A010500630079006300680020006E00690065007A00610077006F0064006E0065002000770079015B0077006900650074006C0061006E00690065002000690020006400720075006B006F00770061006E0069006500200064006F006B0075006D0065006E007400F300770020006600690072006D006F0077007900630068002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E0432002C0020043E043104350441043F04350447043804320430044E04490438044500200433043004400430043D044204380440043E04320430043D043D044B04390020043F0440043E0441043C043E04420440002004380020043F0435044704300442044C002004340435043B043E0432044B044500200434043E043A0443043C0435043D0442043E0432002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF005400690063006100720069002000620065006C00670065006C006500720069006E0020006700FC00760065006E0069006C0069007200200062006900720020015F0065006B0069006C006400650020006700F6007200FC006E007400FC006C0065006E006D006500730069002000760065002000790061007A0064013100720131006C006D006100730131006E006100200075007900670075006E0020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /CZE <FEFF0049004500450045002000580050006c006f0072006500200066006f0072006d00610074>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

