A Study of Malcode-Bearing Documents

Wei-Jen Li, Salvatore Stolfo, Angelos Stavrou, Elli Androulaki,
and Angelos D. Keromytis

Computer Science Department, Columbia University
weijen,sal,angel,elli,angelos}@cs.columbia.edu
J g g

Abstract. By exploiting the object-oriented dynamic composability of
modern document applications and formats, malcode hidden in otherwise
inconspicuous documents can reach third-party applications that may
harbor exploitable vulnerabilities otherwise unreachable by network-level
service attacks. Such attacks can be very selective and difficult to detect
compared to the typical network worm threat, owing to the complex-
ity of these applications and data formats, as well as the multitude of
document-exchange vectors. As a case study, this paper focuses on Mi-
crosoft Word documents as malcode carriers. We investigate the pos-
sibility of detecting embedded malcode in Word documents using two
techniques: static content analysis using statistical models of typical doc-
ument content, and run-time dynamic tests on diverse platforms. The
experiments demonstrate these approaches can not only detect known
malware, but also most zero-day attacks. We identify several problems
with both approaches, representing both challenges in addressing the
problem and opportunities for future research.

Keywords: Intrusion Detection, N-gram, Sandbox Diversity.

1 Introduction

In this paper, we focus on stealthy and targeted attacks where malcode is deliv-
ered to a host in an otherwise normal-appearing document. Modern documents
and the corresponding applications make use of embedded code fragments. This
embedded code is capable of indirectly invoking other applications or libraries
on the host as part of document rendering or editing. For example, a pie chart
displaying the contents of a spreadsheet embedded in a Word document will
cause Excel components to be invoked when the Word document is opened. As
a result, documents offer a convenient means for attackers to penetrate systems
and reach third-party host-based applications that may harbor vulnerabilities
which are not reachable, and thus not directly exploitable, remotely over the
network. Disturbingly, attackers are simply exploiting deliberate features that
are critical to the way modern document-handling applications operate, instead
of some temporary vulnerabilities or bugs.

Several cases have been reported where malcode has been embedded in docu-
ments (e.g., PDF, Word, Excel, and PowerPoint [1I2/3]) transforming them into
a vehicle for host intrusions. These trojan-infected documents can be served up

B. M. Himmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 231-250] 2007.
© Springer-Verlag Berlin Heidelberg 2007

232 W.-J. Li et al.

by any arbitrary web site or search engine in a passive “drive by” fashion, trans-
mitted over email or instant messaging (IM), or even introduced to a system by
other media such as CD-ROMs and USB drives, bypassing all the network fire-
walls and intrusion-detection systems. Furthermore, the attacker can use such
documents as a stepping stone to reach other systems, unreachable via the regu-
lar network. Hence, any machine inside an organization with the ability to open
a document can become the spreading point for the malcode to reach any host
within that organization. Indeed, a recent attack of this nature was reported
in [4] using Wikipedia. There is nothing new about the presence of viruses in
streams, embedded as attached documents, nor is the use of malicious macros
a new threat [56], e.g., in Word documents. However, simply disabling macros
does not solve the problem; other forms of code may be embedded in Word
documents, for which no easy solution is available other than not using Word
altogether.

The underlying problem is that modern document formats are essentially
object-containers (e.g., Object Linking and Embedding (OLE) format for Word)
of any executable object. Hence, one should expect to see any kind of code
embedded in a document. Since malcode is code, one cannot be entirely certain
that a piece of code detected in a document is legitimate or not, unless it is
discovered and embedded in an object that typically does not contain code.
Simply stated, modern document formats provide a convenient object-
container format and constitute thus a convenient and easy to use
“code-injection platform.”

To better illustrate the complexity of the task of identifying malcode in doc-
uments through a concrete study, we limit our investigation to Microsoft Word
document files; Word documents serve as a “container” for complex object em-
beddings that need to be parsed and executed to render the document for display.
In addition to the well known macro viruses, two further possible scenarios are
introduced bellow:

Execution strategies of embedded malcode: From the attackers perspec-
tive, the optimal attack strategy is to architect the injected code as an embedded
object that would be executed automatically upon rendering the document. In
addition to automated techniques such as the WMF, PNG and JPEG vulnera-
bilities, an attacker can also use social engineering whereby an embedded object
in a document, appearing as an icon, is opened manually by the user, launch-
ing an attack including attacks against third-party vulnerable applications. The
left-side screen shot of Fig.[dlis an example of a Word document with embedded
malcode, in this case a copy of the Slammer worm, with a message enticing a
user to click on the icon and launch the malcode.

Dormant malcode in multi-partite attacks: Another stealth tactic is to
embed malcode in documents that does not execute automatically nor by user
intervention when the document is opened, but rather lies dormant in the file
store of the target environment awaiting a future attack that would extract the
hidden malcode. This multi-partite attack strategy could be used to successfully

A Study of Malcode-Bearing Documents 233

embed an arbitrarily large and sophisticated collection of malcode components
across multiple documents. The right screen shot in Fig. [[ldemonstrates another
simple example of embedding a known malicious code sample, in this case also
Slammer, into an otherwise normal Word document. The document opens en-
tirely normally, with Slammer sitting idly in memory. Both infected files can
open normally in a Windows environment. However, the right one appears with
no discernible differences from a normal document while a different document
could incorporate this Slammer-laden document when it is opened, and invoke
the malcode contained therein. Although real-world attacks identical to our ex-
ample have not appeared, similar scenarios that combine multiple attacks have
been studied. Bontchev [5] discussed a new macro attack that can be created by
combining two known malicious macros. (e.g., a macro virus resides on a ma-
chine, another macro virus reaches it, and “mutates” into a third virus.) Filiol et
al. [7] analyzed the complexity of another type of viruses named k-ary viruses,
which combine actions of multiple attacks.

@l embed_object.doc - Microsoft Word E)E)X) | & modified. doc - Micresoft Word [A=1ES]
Fiz Edit View Insert Format Tools Table Window Help - X File Edt Yiew Insert Format Tools Table Window Help X
FinalshawingMarkup ~ show = & %3 & - K - (@~ L 7 Momsl+20pt .20 - B FinalShoningMarkup ~ Show= | & P Ty + v (A B 2 Memal+tept- 16 v B 2

DEH8 8RY B < == RS DESE8 8RY B QEOSH@ @ T v -

g J T ey EEET 4 B s 02"—5 . f . 2 . 3 B 4

5 o . This is 2 normal Microsoft Word document.
[This 15 a normal Microsoft Word document.

i 7 Table:
Sample Table T: — }ﬁg:l }(% } g }
7 [Row L [A [B | If: = - J
“|Row2 IC D | Chart:
2 This is 2 sample Excel chart
= 8
Embedded Object: i i

- = 6

CLICK HERE o [*

CLICK HERE to review the TAX savings you will 2
aclueve using the 401 (k) mvestment strategy. d

g
a0 ik

08 [| IO | B EERT] | I
praw~ [auoshapes- N\ W O E R 4l B @ - Z-A-==580d. Draw~ [} Auoshapes~ N\ w [O E [4l 4 [H-J-A-S=EEBE .,
Page i Sec i Ho A Lni ColL Engish (U5 OFf Page 1 Sec 1 1o At n1 col1 Englsh (U5 O

Fig. 1. Left: A screen shot of an embedded executable object to entice the user to
click and launch malcode. Right: Example of malicious code (Slammer) embedded in
a normal document.

Our aim is to study the effectiveness of two techniques that have been applied
in the context of “traditional” network worms: statistical analysis of content to
identify portions of input that deviate from expected normal content as esti-
mated from a training corpora, and detection of malicious behavior by dynamic
execution on multiple, diverse platforms. The challenge is to find a method to
inspect the binary content of any document file before it is opened to determine
whether it is suspicious and may indeed be infected with malicious code without

234 W.-J. Li et al.

a priori knowledge of the specific code in question or where it may be embedded
in the document.

Initially, we explore the detection capabilities of statical analysis techniques.
More specifically, we investigate the application of statistical modeling tech-
niques to characterize the typical content of documents. Our goal is to deter-
mine whether we can detect embedded malcode using statistical methods on
the binary file content. Furthermore, we introduce novel dynamic run-time tests
that attempt to expose the attackers’ actions through application diversity: we
open the files using a set of different implementations of document processing
application in a sandboxed environment. To quantify the detection capabili-
ties of statistical analysis, we perform a series of experiments where statistical
analysis is applied to labeled training documents to characterize both normal
and malicious document content. Our experiments show that statistical analy-
sis techniques outperform generic COTS Anti-Virus (AV) scanners. To further
improve our detection capability, we designed novel tests that harness the ap-
plication diversity to expose malicious byte-code. In these tests, documents are
opened in a diverse set of sandboxed and emulated environments exposing ma-
licious code execution. We show that in most cases, malicious code depend on
operating system or program characteristics for successful completion of its ex-
ecution. In the process of our experimentation, we discovered that attackers use
existing benign documents as vehicles for their attack. Thus, we can further im-
prove our classification if we use benign documents from the Web to train our
detectors since even small deviations from normality can expose an attack.

Our results indicate that both static statistical and dynamic detection tech-
niques can be employed to detect malicious documents. However, there are some
weaknesses that make each method incomplete if used in isolation. For statis-
tical analysis, we would like to be able to determine the “intent” and “effect”
of the malicious code. On the other hand, dynamic tests may fail to detect the
presence of stealthy malcode that is designed to hide its actions. Hence, neither
technique alone will solve the problem in its entirety. We posit that a hybrid
approach integrating dynamic and static analysis techniques will likely provide
a suitable solution.

Paper Organization: The next section discusses related work and research
reported in the literature. Section 3 describes the static statistical approach
including an overview of the byte-value n-gram algorithm, the SPARSEGui pro-
gram and the experimental results. We introduce the dynamic run-time tests
and the use of application diversity in Section 4. Section 5 concludes the paper
with suggestions that perhaps collaborative detection methods may provide a
fruitful path forward.

2 Background and Related Work

2.1 Binary Content File Analysis

Probabilistic modeling in the area of content analysis mainly involves n-gram
approaches [8I9IT0]; the file binary contents are measured and the distribution

A Study of Malcode-Bearing Documents 235

of the frequency of 1-gram, as well as each fixed size n-gram, is computed. An
early research effort in this area is the Malicious Email Filter [I1], using a naive
Bayes classifier algorithm applied to the binary content of email attachments
known to be viral. The classifier was trained on both “normal” executables and
known viruses to determine whether emails likely included malicious attachments
that should be filtered.

Others have applied similar techniques including, for example, Abou-Assaleh
et al. [12/13] to detect worms and viruses. Furthermore, Karim et al. suggest that
malicious programs are frequently related to previous ones [I4]. They define a
variation on n-grams called “n-perms” An n-perm represents every possible per-
mutation of an n-gram sequence, and n-perms can be used to match possibly
permuted malicious code. McDaniel and Heydari [I5] introduce algorithms for
generating “fingerprints” of file types using byte-value distributions of file con-
tent. However, instead of computing a set of centroid models, they compute a
single representative fingerprint for the entire class. This strategy may be un-
wise. Mixing the statistics of different subtypes and averaging of the statistics of
an aggregation of examples may tend to loose information. A report from AFRL
proposes the Detector and Extractor of Fileprints (DEF) process for data pro-
tection and automatic file identification [16]. By applying the DEF process, they
generate visual hashes, called fileprints, to measure the integrity of a data se-
quence, compare the similarity between data sequences, and to identify the data
type of an unknown file. Goel [17] introduces a signature-matching technique
based on Kolmogorov Complexity metrics, for file type identification.

2.2 Steganalysis

There exists a substantial literature on the subject of steganography, the means
of hiding secret messages embedded in otherwise normal appearing objects or
communication channels. We do not provide an analysis of this area since it is
not exactly germane to the topic of identifying embedded malcode in documents.
However, many of the steganalysis techniques that have been under investigation
to detect steganographic communication over covert channels may bear resem-
blance to the techniques we applied during the course of this research study.
For example, Provos’ work on defeating steganalysis [18] highlights the difficulty
of identifying “foreign” material embedded cleverly within media objects that
defeats statistical analysis while maintaining what otherwise appears to be a
completely normal-appearing objects, e.g., a sensible image.

The general class of steganographic embedding of secret messages may be
viewed as a “mimicry” attack, whereby the messages are embedded in such a
fashion as to mimic the statistical characteristics of the objects in which the
messages are embedded. Our task in this project was a more limited view of
the problem, to identify embedded “zero day malcode” inside documents. The
conjecture that drives our analysis is that code segments may be limited to a
specific set of statistical characterizations so that one may be able to differentiate
code from other material in which it is embedded; i.e., code embedded in an
image may appear to have a significantly different statistical distribution to

236 W.-J. Li et al.

that of the class of images used to transport it. Unfortunately, this tends not
to be true especially with a crafty adversary capable of generating obfuscation
techniques that shape the appearance of the code’s binary content to have a
user-chosen statistical distribution. One presumes that the attacker knows the
particular statistical modeling and testing technique applied while shaping their
embedded code to pass the test. Such techniques are being honed by adversaries
fashioning polymorphic attack engines that change a code segment and re-shape
it to fit an arbitrary statistical distribution, to avoid inspection and detection.

2.3 Polymorphic Code Generation Tools

Polymorphic viruses are nothing new; “1260” and the “Dark Avenger Mutation
Engine” were considered the first two polymorphic virus engines, written in the
early 90s. Early work focused on making detection by COTS signature scan-
ners less likely. Polymorphic worms with vulnerability-exploiting shellcode, e.g.,
ADMutate [19] and CLET [20], are primarily designed to fool signature-based
IDSes. CLET features a form of padding, called cramming, to defeat simple
anomaly detectors. However, cram bytes are derived from a static source, i.e.,
instructions in a file included with the CLET distribution; while this may be
customized to approach a general mimicry attack, it must be done by hand. An
engine crafted by Lee’s team at Georgia Tech [21I] had this purpose in mind; an
attack vector was morphed by padding bytes guided by a statistical distribution
learned by sniffing the environment in which the code would be injected, hence
allowing the code to have a “normal” appearing statistical characterization. This
engine targeted the 1-gram distributions computed by the PAYL anomaly de-
tector; the obfuscation and evasion technique was subsequently countered by
the Anagram sensor that implements higher-order n-gram analysis. The core
algorithm in the Anagram sensor is the basis of the zero-day malcode detec-
tion algorithm employed in SPARSEGui as described briefly later, and which we
consider to be related to the Shaner algorithm [22] devised to classify files into
their respective types. During the course of our tests using thousands of Word
documents provided, we found that performance was hard to improve without
carefully redistributing training data. In addition, Song et al. [23] also suggest
it is futile to compute a statistical model of malicious code, and hence identi-
fying malcode embedded in a document may not be the wisest strategy. Hence,
we also applied a dynamic test approach to compare against the static analysis
approaches, implemented as the VM-based test facility described in Section 4.

2.4 Dynamic Sandbox Tests

Sandboxing is a common technique for creating virtual environments where it is
safe to execute possibly unsafe code. For example, Norman Sandbox [24] simu-
lates an entire machine as if it were connected to a network. By monitoring the
Windows DLLs activated by programs, it stops and quarantines programs that
exhibit abnormal behavior. Since this is a proprietary commercial system, it is
unknown exactly how abnormal behavior is determined. Willems et al. present

A Study of Malcode-Bearing Documents 237

an automated system call analysis in a simulated environment, the CWSandbox
[25]. They use API hooking: system calls to the Win32 API are re-routed to
monitoring software that gathers all the information available to the operating
system. Instead of using a virtual environment, TTAnalyze [26] runs a CPU em-
ulator, QEMU, which runs on many host operating systems. Recently, Microsoft
Research developed BrowserShield [27], a system that performs dynamic instru-
mentation of embedded scripts. Similar in spirit to our approach, BrowserShield
is designed to detect embedded malcode implemented as HTML scripts which
would otherwise be undetectable using static analysis alone.

In this paper, we employ virtual machines running Word-processing applica-
tions on diverse platforms; in one case, the native implementation on Windows,
in another, a Windows emulation environment running under Linux hosted by
a virtual machine. This architecture is easy to implement, and provides a safe
means of learning expected behavior of Word document processing under dif-
ferent implementations, using the multiple platform diversity as an additional
source of information to identify malcode.

3 Statistical Analysis

As a first effort to identify malcode-infected documents, we used static inspection
of the statistical byte sequences of binary content. Our intuition is that the binary
content of malicious Word documents contains substantial portions of contiguous
byte sequences that are significantly different (abnormal) from typical/benign
Word documents. Our approach is reminiscent of corpus-based machine learn-
ing in natural language processing of human-generated content. The goal is to
explore the detection capabilities and limitations of statistical characterization
given the available training data. We will start by introducing the tools we used
to perform the static analysis and experiments.

3.1 The POI Parser and SPARSEGui

A document may contain many types of embedded objects. To achieve any rea-
sonable level of detection performance, we found it necessary to “parse” the
binary file format into its constituent embedded object structure and extract
the individual data objects, in order to model instances of the same types to-
gether, without mixing data from multiple types of objects.

We used the open-source Apache POI [28] application, a Java implementation
of the OLE 2 Compound Document, to decompose Word files into their exact,
correct constituent structures. The parsed object structures in the binary content
of the files will be referred “sections.” We further modified the POI software so
that the location of each object within a Word file is revealed. These sections
include header information, summary information, word document, CompObj,
1Table, data, pictures, PowerPoint document, macros, etc. Fig, [2] displays the
histograms of byte content of four common sections whose differences are easy
to observe.

238 W.-J. Li et al.

WordDocument 1Table

I]
| I 1

1 22 43 &4 95 105127 148 169 190 211 232 253 1 22 43 64 85 106127 148 169 190 211 232 2532

Macros Data

1 22 43 64 85 105127 148 169 190 211 232 253 1 22 43 64 85 1061327 148 169 190 211 232 253

Fig. 2. Byte occurrence frequency of WordDocument, 1Table, Macros, and Data. The
byte values were parsed from 120 benign Word documents containing macros. In these
plots, the byte value 0 and FF were removed because they occurred relatively much
more frequent than the others and will mess up the display.

SPARSEGui includes a number of the modeling techniques described and
calls upon the POI parser to provide the means of displaying detailed informa-
tion about the binary content of Word files as well as presenting experimental
results to the user. The experimental results in the remainder of this paper were
produced using this toolkit. This program was designed not only to implement
the methods described herein but also to provide a user-friendly interface which
can extend to analyst information for deeper inspection of a suspect Word file.
A screen shot is shown in Fig. Blin Section 3.4.

3.2 Statistical Content-Based Detection

To evaluate whether statistical binary content detectors can effectively detect
malcode embedded in documents, we used the Anagram [8] algorithm. Although
Anagram was originally designed to identify anomalous network packet payloads,
it is essentially an efficient approzimation of Shaner’s algorithm [22] enabling
us to detect malicious binary content. Anagram extracts and models high-order
n-grams (an n-gram is a sequence of contiguous n byte values) exposing signif-
icant anomalous bytes sequences. All necessary n-gram information is stored to
highly compact and efficient Bloom filters [29] reducing significantly the space
complexity of the detection algorithm. Contrary to the original 1-class modeling
technique applied to the PAYL algorithm [30], we introduce the same mutual-
information strategy as suggested by Shaner. Hence, we utilize both “good” and
“bad” models that are generated using labeled benign and malicious datasets, re-
spectively. In this way, we train one benign and one malicious model and classify
the files by comparing the score computed against both models.

As a next step, we had to determine the optimal n-gram size that best cap-
tures the corpus of our documents. To that end, we evaluated the detection
performance and storage requirements of all Anagram models with gram size

A Study of Malcode-Bearing Documents 239

from 4 to 8 bytes. Although larger sized grams can capture more fine-grained
information, they can significantly increase the space requirements of Anagram
both in terms of runtime memory and in terms of storage. Therefore, for higher
ordered grams, a larger Bloom filter is required to avoid having collision that can
lead to false positives. The detailed discussion of the size of grams and the use of
Bloom filters is beyond the scope of this paper since it depends on the memory
usage, the type of data analyzed, and the implementation of Bloom filters [31].
Based on the results of our experiments, we selected the 5-gram model, which
consumed reasonable memory and accurately detects attacks.

However, the performance of our statistical methodology was also dependent
upon the amount and quality of our training set: without a sufficient training
corpus, the detector may produce too many false positives. On the other hand,
using a very broad set of documents can produce an augmented and under-
trained normality model increasing our false negative rate. To minimize these
issues, we generated a model of what we considered as “normal” behavior us-
ing Anagram on benign documents. Our aim is to then use Anagram in testing
mode on unknown documents to ferret out documents with abnormal content,
indicative of zero-day malcode embedded within the document in question. We
posit that by generating organization or group specific benign and malicious be-
havior models, we can further facilitate the detection. The assumption is that
documents being created, opened and exchanged within a specific group should
be similar, and malicious documents’ byte content should be significantly dif-
ferent from them. For the benign data corpus, we collected 4825 samples from
two anonymous organizations using wget over their public facing web sites (1775
and 3050 documents for each group). In addition, we downloaded 2918 real-world
malicious documents from VX Heavens|[] [32].

We used two different approaches to build the normality models. The first
method is more coarse-grained and involves scanning and storing all the n-grams
from the collected documents creating two separate training sets: one for the be-
nign and one for the malicious model. In the testing/detection phase we compare
the n-grams obtained from the documents under test with both the benign and
malicious models generating a “similarity score.” This score is the ratio of the
number of testing n-grams that exist in the training models to the total number
of testing n-grams. Testing documents are classified according to the similarity
scores they receive from the two models. Documents that receive the same score
for both models are deemed malicious. The other approach involves generating
multiple normality models corresponding to different document sections instead
of using just a single model. Thus, the training documents are parsed and the
models are created using the parsed sections, one model for each section. Differ-
ent sections are text, tables, macros, and other more rare data objects. For each
of the section, a weight is assigned. During testing phase, we compare the grams
of each of the section from the unclassified document to the ones generated dur-
ing training. The final similarity scores for each testing document are computed

! These experimental datasets can be reached from our web site for interested readers:
http://wwwl.cs.columbia.edu/ids/SPARSE/Spring07TestFiles/

240 W.-J. Li et al.

by summing up all of the scores for the individual sections. Thus, we categorize
the document under question based on how similar it is to the benign and the
malicious section models. The advantage of this method is that different types
of embedded objects are not mixed together, so the classification will be more
accurate.

For this second method, it is essential to discover the appropriate weights for
each section. Although we can easily parse the documents into different sections,
we cannot identify which of the sections are malicious even when we know that
the whole document is malicious since a document can have section interdepen-
dencies. As a result, an appropriate weight for each section cannot be “learnt”
by repetitive training/testing. To address this problem, we use the normalized
byte size of each testing section as weight.

3.3 Performance Evaluation

We evaluated our statistical content-based techniques using the data we collected
on Web. Furthermore, we compared our approach to a COTS AV scanner to both
verify and measure our detection performance. In our experiments, we used a
standard 5-fold cross-validation scenario, in which data were equally split into
five groups, and when each group was tested, the other four were used as training
data. All of the pre-mentioned 4825 benign and 2918 malicious documents were
tested. In all of our experiments we used an Intel(R) Xeon(TM) CPU 2.40GHz,
with 3.6GB memory, running Fedora 3. Depending on the file size, the overhead
varied when training/testing a document. The average time to parse or test a
file was 0.226 seconds, and the standard deviation was 0.563 seconds. Table 1
presents the experimental results of both methods. The overall performance of
Method 2, taking advantage of the parser, was highly accurate and superior
to the performance of Method 1. However, the false positive rate of Method 2
was slightly higher than that of Method 1 because Method 2 provided a more
detailed comparison. Unfortunately, Method 2 created a more sensitive classifier
leading to a slight increase in false positives.

Table 1. Detection results of 5-fold cross-validation. Method 1: Train one single model
without parsing. Method 2: Train multiple models for the parsed sections.

Method 1 Method 2
TP/FN |92.32% / 7.68%|98.69% / 1.31%
FP/TN 0.02% / 99.98%10.15% / 99.85%

Total Accuracy 95.79% 99.22%

The most recently patched AV scanners have the signatures of all of the mal-
ware collected from VX Heavens rendering our dataset inappropriate for further
comparing our approach to general COTS AV scanners. Hence, we prepared a
second malicious dataset consisting of 35 (10 benign and 25 malicious) carefully
crafted files where ground truth was unknown to us before the test. A third-party
evaluator created this set of test files for a complete “blind test” of our analysis

A Study of Malcode-Bearing Documents 241

results. For this test, we trained one model over the 2918 malicious documents
and another model using one group of the benign documents we collected (both
groups of data had the same final result). After verifying the testing results
of these 35 files when ground truth was disclosed, 28 were correctly classified,
shown in the first column of Table 2. Note that the numbers in the table are
the actual numbers instead of percentages. We achieved zero false positive, but
a significant number of false negatives appeared.

Table 2. Detection results of the 35 files. Stat.1: Statistical test, Stat.2: Statistical test
with improved strategy, AV: COTS AV scanner

Stat. 1{Stat. 2| AV
TP/FN | 18/7 | 23/2 [17/8
FP/TN 0/10 | 0/10 |0/10

Total Correct| 28 33 27

Our statistical analysis technique performed slightly better than a COTS AV
scanner, whose result is shown in the third column of Table 2. Our success can be
attributed to the fact that we were able to model enough information from the
malicious document training set to at least “emulate” the AV scanners with up-
to-date signatures. Additionally, the strategy of computing normal models over
an organization’s specific set of normal documents produced a model that could
detect anomalous events, i.e., the zero-day attacks. However, in this 35-file test,
some small, well crafted malcode cleverly embedded in malicious documents were
very hard to detect mainly because of their relatively small size in comparison
to the whole documents. Statistics based detection mechanism performs poorly
in this case. Therefore, we introduce a further strategy.

3.4 File Content Differences Identify Embedded Malcode

It is possible that an adversary may carefully craft malcode and embed it within
a document chosen from a public source. In their effort to blend, attackers would
rather use existing public documents since crafting their own documents could
contain private or proprietary information that might identify them. Further-
more, an attacker may devise an attack without paying particular attention to
the viewable readable document text portion. Malicious documents may contain
what might be regarded as “gibberish” material. To generate a benign-looking
document, an attacker can mine random benign documents from the Web and
embed malcode in them. In that case, comparing the test document to the orig-
inal or even similar benign document found on the Web can narrow down the
detection region and increase the detection accuracy.

Fig.Blpresents a screen shot of SPARSEGui comparing an original benign host
document and the infected version of the same document. (The host document
was a document accessible on the Internet.) The left two charts represent the
byte values, ranging from -128 to 127, of these two documents, the original and

242 W.-J. Li et al.

infected one respectively. In addition to the byte values, the n-gram entropy
values, defined as the number of distinct byte values over an n-gram, are shown
in the right two charts. To clearly exhibit the anomalous portion, n is assigned
to 50 (i.e., 50-gram) in this figure. In this case, the infected document has a
clearly discriminable high entropy portion. Having observed several similar cases,
we also discovered that such portions bearing malcode usually contain foreign
grams, i.e., never-seen-before grams, which is displayed by using bold characters
in the bottom panel of Fig. Bl To evaluate if foreign grams or entropy of foreign
grams can provide information to locate suspicious code remains an item for
future work.

: sowist BES
| Parse A Doc I Load Experimental Files | Run Experiment | NGram Analysis

Byte Value

Entropy Distribution

f WWM%I J"L}';U’

2,800

Byte Value

o 2,500 5,000

Byte Sequence

Byte Value

7,500 a 5,000

Byte Sequence

7,500

tropy Distribution

i) |

7,800

g
Entropy

2
=

Byte Value

7.500 oNJS 5.000

Byte Sequence

o~ 2,500 5,000
Byte ence

Byte Content Infected Portion

00000310 || 00 00 OB 02 00 00 AE (1
00000320 11 00 00 S0 O1 00 OO 0O QO
00000330

o0 0o 3 01
00 00 50 01

16
0o

00000340
00000350
00000360
00000370
00000380
00000390
00000340
000003B0
000003C0
00000300

00 00 50 01 00 00 A1 F1
62 71 58 C§ B3 4D A2 A7
23 A8 4D 36 A1 E0 D2 5D
Th 20 21 SE
A3 4B FB 63
36 92 55 0B
Al B4 97 04 2F 49 57 &C
2F D2 E3 33 69 48 52 B3
04 2C 4R Al 33 A6 FB 60
9D 4B 31 21 1A C2 46 B4

1E D6 A6 B4 BA 18 E0
71 49 D7 8E F? 02 3F

84 35 15
3D TB FO
46 E3 32

9 C9 D5
&0 D8 66
€7 D6 F1
Ch RE D
27 87 6D

I
I
I
I
I
| 1B 8B 41 84
I
I
I
I
L

BEEE

nnnnAaEn D BN 30 03 FL_AT LT 41 DO oD 0

Fig.3. SPARSEGui screen-shot: parse a benign document and compare its infected
version

In the prior experiments, the detector produced 7 false negatives. It appears
that some of them were crafted based on random benign documents found on
the Web. Such “mimic attacks” could evade our statistical content-based de-
tector. Therefore, we developed the following detection strategy: we first parse
the inspected document (D1) by using SPARSEGui and take a portion of the
text as tokens in a Google search. In case where a document (D2) is found on
the Web to have at least 90% of its content in common with D1 (but less than

A Study of Malcode-Bearing Documents 243

100%), we extract the n-grams from D1 that do not appear in D2. Then, they
are computed against the trained Bloom filters and classified to which class it is
close, i.e., benign or malicious. Without increasing false positives, this strategy
detected 5 malicious documents that were misclassified in the previous 35-file
test. Shown in the second column of Table 2, the result was superior to the
tested COTS AV scanner.

The 35 test files were purposefully chosen and crafted to avoid detection by
statistical means. Even so, we were able to detect almost all of the malicious
documents without false positives. However, we did misclassify two malicious
documents. Given our performance under such an adverse testing set, we believe
that our results demonstrate that our approach has merit and warrants further
investigation to improve upon detection performance.

Additionally, our experiments reveal another principle: to validate whether
some portion of a document has embedded malcode, mutual collaboration across
sites could help identify hidden malcode. Sites that cooperate to detect malcode-
laden documents and that share suspect documents could validate that indeed
malcode hidden in documents has been discovered. The privacy-preserving shar-
ing of suspect documents among sites is posited as a useful next step in reducing
the threat posed by malicious documents appearing openly on the Internet.

A general observation for all the static statistical approaches is that they ex-
hibit inherent limitiations in detecting malicious documents. First, any machine
learning or statistical method for that matter, is entirely dependent upon the
amount and quality of the training corpus. In general, it is not known a priori if
the sample of data available to train and test models is truly representative of a
particular empirical distribution from which test cases will be drawn. Without
sufficient and representative training data, it is both practically and theoreti-
cally infeasible to compute a meaningfull statistical model. In addition, mali-
cious content can be crafted with extremely small portions of malcode spreading
throughout a section of a document. Compared to the entire file, which is usually
substantially larger, the embedded malcode is very hard to detect. The shorter
the sequence of code, the higher the likelihood that a static-analysis detector will
miss it. On the other hand, far too many false alarms may be generated if the
sensitivity of the detector is raised too high. Lastly, statistical tests may indeed
find portions of a document that contain code, but the binary content of the de-
tected foreign code may not identify the “intent” of embedded code. Hence, we
investigated an alternative dynamic run-time technique that can improve upon
the statistical content-based analysis.

4 Dynamic Run-Time Tests Using Environment Diversity

In this section, we introduce a series of dynamic tests that exploit the diversity of
emulation environments to expose malicious documents. Our goal is to determine
whether opening a malicious document under an emulated environment can force
the malicious code to exhibit easily discernible behavior which deviates from
normal and hence identify malicious documents. We show that this behavioral

244 W.-J. Li et al.

deviation clearly indicates the existence of malicious code inside the file under
inspection.

In this case, we did not implement complex instrumentation nor did we ap-
ply API hooking to monitor the execution of Word; the implementation of the
experimental test bed we built is straightforward: we open documents using the
same Microsoft Word executable on different environments both emulated and
non-emulated. To avoid damaging our system and to be consistent in applying
the same test environment to each file, we ran experiments in a virtual machine
(i.e., sandbox) with an identical setup for each test. After each file is tested,
we reload the VM image and test the next document. For our prototype, we
used VMware WorkStation software installed on the same host machine. For the
VM hosted operating system, we installed Linux (Fedora). In that hosted Linux
we installed CrossOver Office Standard 5.0.1, a Windows binary translator and
emulator. In addition, we had another VM hosting Windows XP and the same
version of Microsoft Office (Word 2003) that was used for CrossOver. Based on
the observables, we introduce a series of three tests which are referred to as Test
1 (OS crash), Test 2 (Unexpected changes), and Test 3 (Application failure).

4.1 Test 1 — OS Crashes

Applications need to interact with the operating system via libraries and system
calls in order to perform even the simplest tasks such as reading or writing a
file. In Windows, this happens through the loading of Dynamic Linked Libraries
(DLLs), which are loaded both at the beginning of the application’s execution
and on demand. In large programs, such as Microsoft Word or other applications
in the MS Office suite, the number of required DLLs is very large (two to three
dozen, depending on the application and the features used by the file loaded).
Some of these DLLs are necessary for the program to startup. Most of the rest of
the DLLs that the application loads at runtime are required to execute and ren-
der the embedded objects and macros after the document is opened. We use the
emulated Windows environment on Linux as a concept of changing the loading
order of DLLs from the original Windows. Then, the code exceptions depend-
ing on this exact order can be revealed. We conjecture that such exceptions,
which lead to program and system crashes, are indicative of malcode: normal,
non-attacking objects and macros should not depend on the loading order of the
DLLs but only on whether the needed DLLs are actually loaded. Based on this
hypothesis, a document is opened under the emulated environment to determine
if it crashes the application or the underlying operating system. If it does, we
declare the document as malicious.

4.2 Test 2 — Unexpected Changes to the Underlying Environment

Test 1 limits our ability to identify malicious documents because most malicious
documents may succeed in executing the embedded malcode yet may not crash
the test environment.

In the second test, we expand the set of what we deem as abnormal behavior to
include all easily observable malicious changes to the hosted operating system.

A Study of Malcode-Bearing Documents 245

We run the second test after applying the first test and only to documents
that fail to be labeled malicious in the first test. Thus, if the document can
be opened without any fault or catastrophic error, we examine all the platform
files generated or modified by the Word process, i.e., we compare the system
right before and after opening a testing document. Our goal is to determine if
there are unexpected differences recorded when the malcode embedded in some
malicious documents are executed but do not terminate the Word process with
a failure or crash.

However, executing the application on multiple environments by opening be-
nign documents may also produce differences in runtime behavior. Hence, there
is a small probability that a benign Word document might exhibit different exe-
cution behavior (but not failure) under an emulated platform. To minimize such
false positive errors, we first train 1000 benign and 1000 malicious documents
and gather all of the changes observed to the underlying systems after opening
the files. We then generate a list of expected (benign) and unexpected (mali-
cious) changes based on the nature of the document examined. These changes
include temporary file creation, data file change such as index.dat, and registry
modification. All changes, or the lack of changes, can be used to identify malcode
execution. Currently, 27 registry keys are checked in our model, some of them
are shown in Table 3, and a Java program is used to automatically verify the
changes.

Table 3. The list of registry keys that may be modified after opening a Word document

[HARDWARE//DESCRIPTION//System//CentralProcessor/ /0]
[Software//Classes/ /Interface//A4C46780-499F-101B-BB78-00A A00383CBB
//TypeLib]
[Software//Classes//TypeLib//00020430-0000-0000-C000-000000000046//2.0/ /0
//win32]

Software//Microsoft//Windows NT//CurrentVersion//Fonts]
System//CurrentControlSet//Control//Print//Environments//Windows NT x86
//Drivers//PS Driver]

Software//Microsoft//Office//11.0//Word]
Software//Microsoft//Office//11.0//Common//LanguageResources]
Software//Microsoft//Office/ /Common//Assistant]

Software//Wine/ /Fonts|

Software//Microsoft//Office//11.0//Word//Text Converters//Import//MSWord§]
[Software//Microsoft//VBA//6.0//Common]

When we applied Test 2 to classify the same documents in Test 1, we observed
a substantial increase in the true positive rate. This was something we expected
since we increased the set of what we deemed as abnormal behavior. However,
some malcode may be considerably more “quiet” and “stealthy” and not produce
any observable malicious changes to the underlying system. Hence, we apply a
third and final test to determine if any easily discernible application behavior
indicates the execution of malcode.

246 W.-J. Li et al.

4.3 Test 3 — Non-fatal Application Errors

When we first tested to the set of the malicious documents available, we discov-
ered some types of pop-up messages generated by Microsoft Word. These mes-
sages do not cause the OS or emulation environment to fail, but they are clear
indicators of malcode execution causing the application to gracefully terminate
only some part of the application execution. Users are presented with pop-up
windows requesting their input or intervention before they can proceed view-
ing the document. We use these pop-up messages as the last useful information
we can extract from the execution of Word and utilize it for dynamic detec-
tion of malicious documents. If both Test 1 and Test 2 fail to label a document
as malicious, we apply this final test to the document: we open the document
and observe the application output. If one of the known pop-up messages ap-
pears on the screen, we mark the document as malicious. However, some benign
documents, without embedded malcode, can spawn the same pop-up messages
because of improper macro design, rare embedded objects using different versions
of applications, or any incorrect use of embedded objects in a Word document.

4.4 Experiments and Analysis

We performed the first experiment by randomly choosing 400 benign and 400
malicious documents which were not in the set of the 1000 benign and 1000 ma-
licious training documents mentioned in Section 4.2. We used the “successive”
strategy as the following: Test 1 is first performed, Test 2 is performed only if the
testing document is labelled benign in Test 1, and Test 3 is performed only if the
testing document is labelled benign in Test 2. The terms “Test 1,” “Test 14-2,”
and “Test 1+2+3” represent the three steps of this successive strategy, respec-
tively. In addition to the successive strategy, we also evaluated indivisual Test 2
and Test 3 as shown in the last two columns of Table 4. Only a few malicious
documents were detected by Test 1, but Test 142 dramatically increased the
true positive rate. The best result we obtained - 97.12% accuracy - was when we
employed Test 14243, in which 777 documents out of 800 were correctly classi-
fied. However, when performing Test 14243 after Test 142, the number of false
positives increased by one. This false positive was actually a benign document
that requires a border-control feature which is not a default feature in Word.
Though Test 14243 doesn’t improve the performance much after Test 142, it
provides further coarse-grained analysis given that it determines if a document
contains macros that run automatically when the document is opened.

Table 4. Detection results of 400 benign and 400 malicious documents

Test1 Test1+2 Test14+24+3 | Only Test2 Only Test3
TP/FN 4/397 380/20 381/19 376/24 239/161
% 1%/99% | 95%/5% |95.25%/4.75%| 94%/6% |59.75%/40.25%
TN/FP 400/0 397/3 396/4 397/3 399/1
% 100%/0%(99.25%/0.75%| 99%/1% |99.25%/0.75%| 99.75%/0.25%
Total Accuracy| 50.5% 97.12% [97.12% 96.62% | 79.75%

A Study of Malcode-Bearing Documents 247

The overhead to test a document is approximately 170 seconds, including
cleaning up the image of previous test (1 sec.), duplicating the system image
for next comparison (30 sec.), delaying for the observation of Test 1 and 3 (40
seconds), and comparing the image for Test 2 (130 sec. because the size of the
compared image is 416MB). Although tests can be performed in parallel, the
current overhead is only acceptable to offline analysis.

The next experiment is the blind test using the 35 files. In this test, shown in
Table 5, we achieved 100% accuracy; all of the 35 files were correctly classified.
However, we do not believe that these tests constitute a complete set of dynamic
execution tests that are able to cover all possible malicious documents. First,
we have some false negatives when testing the dataset we collected. Second, a
stealthy successful attack may be crafted such that it produces no discernible
and easily viewable change to the execution environment, i.e., a logic bomb or
a multi-partite attack. In cases where malcode may attempt to install a rootkit
without any discernible external failures or message pop-ups, an additional test
would be necessary to compare the “dormant” virtual machine to its original
image and to compare each for possible rootkit installs. Alternatively, running a
fully instrumented “shadow” version of the binary of the Word application might
identify anomalous program execution at the very point the malcode attempts
to exploit a vulnerability or otherwise exhibits anomalous program behavior.

Table 5. Detection results of the 35 files. AV: COTS AV scanner.

AV |Test1|Test1+2|Test14+2+4-3|Only Test2|Only Test3
TP/FN |8/17|8/17| 25/0 25,/0 17/8 12/22
TN/FP_ |0/10[0/10] 0/10 0/10 0/10 0/10
Total Correct| 27 | 18 35 35 27 22

Overall, neither static statistical content-based analysis nor dynamic runtime
testing provides a 100% detection accuracy. A combination of both approaches
will likely provide more accurate performance. For example, as a preliminary
stage, objects embedded in a document can be extracted by the static parser
and then subjected to the dynamic tests so the specific malicious objects can
be detected. Moreover, these detected malicious objects or malcode can be sent
back to patch the static content-based detection models to improve accuracy.

5 Conclusion

Our intention was to provide a better understanding of the issues involved in
detecting zero-day malcode embedded in modern document formats. Although
the analysis we present is applicable to several other popular file formats, we
focused on Word files. Word documents constitute a large percentage of the files
exchanged globally both in private and in public organizations. Furthermore,
their rich semantics and the large variety of embedded objects make them an

248 W.-J. Li et al.

ideal attack vehicles against a wealth of applications. Unfortunately, modern
proprietary document formats, exemplified by Microsoft Word, are highly com-
plex and fundamentally provide a convenient and easy to use “code injection
platform”.

In an effort to explore our detection capabilities, we designed sensors using
two complementary detection strategies: static content-based statistical-learning
analysis and coarse-grained dynamic tests designed to exploit run-time environ-
ment diversity. For the static analysis, we employed Anagram an algorithm that
generates byte-code n-gram normality models of the training set. Anagram can
effectively generate a similarity score between the tested document and the nor-
mality model. We compare each document to both benign and malicious nor-
mality models and classify the documents based on their similarity scores to
those models. We found it necessary to “parse” the binary file format into its
constituent embedded object structure in order to extract the individual data
objects. Otherwise, the statistical characterizations of different kinds of objects
would be blended together, producing poor characterizations of what may be
“normal” content. Having a separate weighted model for each of the section of a
document increased our total accuracy to 99.22% from 95.79%. Unfortunately,
statistical anomaly detection techniques have some inherent limitations: they are
dependent on the training set, they require the malicious content to be signifi-
cantly large and they cannot reveal the “intent” of the malicious documents.

To address these issues, we performed several experiments where we imposed
a dynamic run-time environment using multiple COTS implementations of the
Word application encased in virtual machines. In some cases, it was immediately
obvious and trivial to observe that the document was poisoned; In other cases,
validation that the document harbored malcode was dependent upon the actions
of the application changing local files or registries. With well specified policies
that define unwanted, malicious, dynamic events have a high chance of detecting
malicious “intent” (or, at least, behavior) of the code embedded in documents.
However, detecting malicious documents by observing runtime behavior also has
weaknesses. On the one hand, improperly designed benign macros may cause
false alarms in Test 3; on the other hand, logic bombs or stealthily multi-partite
attacks may exhibit no abnormal runtime behavior either and thus would be
a false negative under dynamic tests. Hence, a deep file inspection using static
analysis is still warranted for such stealthy attack cases.

The experimental results indicate that no single static model, nor a single ap-
proach, will likely reach the gold standard of 100% detection accuracy, and 0%
false positive rate by static analysis alone and do so with a minimum of computa-
tional expense (e.g., a small overhead while simply opening the document). How-
ever, a combination of techniques, combining statistical analysis and dynamic
testing will likely provide reasonable operational value. For example, to amortize
the costs of testing documents, perhaps a preliminary stage (static parsing) that
extracts suspect embeddings in a document that are then subjected to dynamic
tests, which can be performed in parallel among instrumented application in-
stances, may achieve high accuracy and reasonable computational performance

A Study of Malcode-Bearing Documents 249

objectives. Furthermore, malcode detected by runtime dynamic tests can and
should be integrated in a feedback loop. Malcode that is extracted should be
used as training data to update static detection models to improve accuracy.
Finally, we conjecture that malcode crafted for a particular version of Word
may be reused in a number of publicly available documents. Hence, a collabo-
rative detection process may provide greater benefit. It may be harder for an
adversary to craft an attack that is undetectable by all such detectors. Thus,
collaboration among a large number of sites that each attempts by a variety of
different means to detect malcode embedded in documents would benefit each
other by exchanging suspicious content to correlate for common instances of
attack data. An alternative strategy might be to create a server farm running
many different versions of document applications and that are coordinated to
identify documents that harbor malcode, similar in spirit and scope to the Strider
Honeymonkey [35] project for collaborative malicious web site detection.

References

Leyden, J.: Trojan exploits unpatched Word vulnerability. The Register (May 2006)
Evers, J.: Zero-day attacks continue to hit Microsoft. News.com (September 2006)
Kierznowski, D.: Backdooring PDF Files (September 2006)

Broersma, M.: Wikipedia hijacked by malware. Techworld (November 2006)

http://www.techworld.com/news/index.cfm?RSS&NewsID=7254

5. Bontchev, V.: Possible Virus Attacks Against Integrity Programs and How to Pre-
vent Them. In: Proc. 2nd Int. Virus Bull. Conf. pp. 131-141 (1992)

6. Bontchev, V.: Macro Virus Identification Problems. In: Proc. 7th Int. Virus Bull.
Conf. pp. 175-196 (1997)

7. Filiol, E., Helenius, M., Zanero, S.: Open Problems in Computer Virology. Journal
in Computer Virology, pp. 5566 (2006)

8. Wang, K., Parekh, J., Stolfo, S.J.: Anagram: A Content Anomaly Detector Resis-
tant to Mimicry Attack. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS,
vol. 4219, Springer, Heidelberg (2006)

9. Stolfo, S.J., Li, W.-J., Wang, K.: Fileprints: Identifying File Types by n-gram
Analysis. In: 2005 IEEE Information Assurance Workshop (2005)

10. Li, W.-J., Wang, K., Stolfo, S.J.: Towards Stealthy Malware Detection. In: Jha,
Christodorescu, Wang (eds.) Malware Detection Book, Springer, Heidelberg (2006)

11. Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data Mining Methods for Detec-
tion of New Malicious Executables. In: IEEE Symposium on Security and Privacy,
Oakland, CA (May 2001)

12. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: Detection of New Malicious
Code Using N-grams Signatures. In: Proceedings of Second Annual Conference on
Privacy, Security and Trust, October 13-15, 2004 (2004)

13. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: N-gram-based Detection
of New Malicious Code. In: Proceedings of the 28th IEEE Annual International
Computer Software and Applications Conference, COMPSAC 2004. Hong Kong.
September 28-30,2004 (2004)

14. Karim, M.E., Walenstein, A., Lakhotia, A.: Malware Phylogeny Generation using

Permutations of Code. Journal in Computer Virology (2005)

W e

http://www.techworld.com/news/index.cfm?RSS&NewsID=7254

250

15.

16.
17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.
29.

30.

31.

32.
33.

34.

35.

W.-J. Li et al.

McDaniel, Heydari, M.H.: Content Based File Type Detection Algorithms. In: 6th
Annual Hawaii International Conference on System Sciences (HICSS’03) (2003)
Noga, A.J.: A Visual Data Hash Method. Air Force Research report (October 2004)
Goel, S.: Kolmogorov Complexity Estimates for Detection of Viruses. Complexity
Journal 9(2) (2003)

Steganalysis http://niels.xtdnet.nl/stego/

K2. ADMmutate (2001) Available from http://www.ktwo.ca/security.html
Detristan, T., Ulenspiegel, T., Malcom, Y., Underduk, M.: Polymorphic Shellcode
Engine Using Spectrum Analysis. Phrack (2003)

Kolesnikov, O., Lee, W.: Advanced Polymorphic Worms: Evading IDS by Blending
in with Normal Traffic. USENIX Security Symposium, Georgia Tech: Vancouver,
BC, Canada (2006)

Shaner: US Patent No. 5,991,714 (November 1999)

Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo, S.J.: On the Infea-
sibility of Modeling Polymorphic Shellcode for Signature Detection Tech. report
cucs-00707, Columbia University (February 2007)

Natvig, K.: SandboxII: Internet Norman SandBox Whitepaper (2002)

Willems, C., Freiling, F., Holz, T.: Toward Automated Dynamic Malware Analysis
Using CWSandbox. IEEE Security and Privacy Magazine 5(2), 32-39 (2007)
Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: proceedings of
the USENIX 2005 Annual Technical Conference, pp. 41-46 (2005)

Reis, C., Dunagan, J., Wang, H.J., Dubrovsky, O., Esmeir, S.: BrowserShield:
Vulnerability-Driven Filtering of Dynamic HTML. OSDI, Seattle, WA (2006)
POIFS: http://jakarta.apache.org/

Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422-426 (1970)

Wang, K., Cretu, G., Stolfo, S.J.: Anomalous Payload-based Worm Detection
and Signature Generation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, Springer, Heidelberg (2006)

Broder, A., Mitzenmacher, M.: Network Applications of Bloom Filters: A Survey.
In: Allerton Conference (2002)

http://vx.netlux.org/

Totel, E., Majorczyk, F., Me, L.: COTS: Diversity Intrusion Detection and Appli-
cation to Web Servers. RAID 2005 (2005)

Reynolds, J.C., Just, J., Clough, L., Maglich, R.: On-line intrusion detection and
attack prevention using diversity, generate-and-test, and generalization. In: Pro-
ceedings of the 36th Hawaii International Conference on System Sciences (2003)
Wang, Y.-M., Beck, D., Jiang, X., Roussev, R.: Automated Web Patrol with Strider
HoneyMonkeys: Finding Web Sites That Exploit Browser Vulnerabilities. In: NDSS
2006

http://niels.xtdnet.nl/stego/
http://www.ktwo.ca/security.html
http://jakarta.apache.org/
http://vx.netlux.org/

	Introduction
	Background and Related Work
	Binary Content File Analysis
	Steganalysis
	Polymorphic Code Generation Tools
	Dynamic Sandbox Tests

	Statistical Analysis
	The POI Parser and SPARSEGui
	Statistical Content-Based Detection
	Performance Evaluation
	File Content Differences Identify Embedded Malcode

	Dynamic Run-Time Tests Using Environment Diversity
	Test 1 -- OS Crashes
	Test 2 -- Unexpected Changes to the Underlying Environment
	Test 3 -- Non-fatal Application Errors
	Experiments and Analysis

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

