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Abstract. Recent advances in embedded processing architectures allow for new
powerful algorithms, which exploit the intrinsic parallelism present in image pro-
cessing applications. This paper describes the results of the mapping process of
stochastic image quantisation on a massively parallel processor. The problem
can be modeled in a parallel way. Despite the fact that the implementation is
IO bound, good speedups are achieved (16× compared to a standard image pro-
cessing package running on a Pentium processor).

1 Introduction

Océ Technologies develops document systems for the office as well as for the design
engineering market. Sample products are: printers, copiers, and scanners, which support
professionals in their daily work. In order to maintain competitiveness Océ is interested
in new algorithms and embedded architectures that raise quality and/or reduce devel-
opment effort. In this paper, we focus on a parallel architecture and a relatively new
algorithm in the context of business graphics. Business graphics are characterised by
large areas filled with a single colour. This type of information, such as presentation
sheets and charts (Fig. 1), is often scanned in an office environment. During scanning
the image is sampled, which leads to distortion. One of the possible distortions is blur-
ring, a kind of smearing, with the effect that more colours are introduced in a scan
than necessary (Fig. 1, rightmost image). Reducing the number of colours in such scans
is essential for image quality and can be useful as a first step in image compression.
This process is called colour quantisation. Popular quantisation algorithms include me-
dian cut and octree algorithms [1]. These algorithms use a statistical approach: they
count the occurrences of each colour and try to assign quantised colours using only
this (frequency) information. The quality can be improved by including spatial (inter-
pixel) relationships. In this paper we use one of the most recent image processing mod-
els, Markov Random Field (MRF) [2]. Simulated Annealing[3], which is an efficient
stochastic procedure to solve combinatorial optimisation problems, is used to execute
the MRF model in an iterative way till convergence is reached. Their combined advan-
tage comes from the little a priori information on the world model and their suitability
for parallel processing.
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Fig. 1. Typical office scan containing text and charts. Scanning introduces image degradation: the
number of unique grey-values increases from 10 to 229.

Present practice, however, makes such algorithms unusable since they are far too
inefficient when run on sequential machines. It is our intention to find an embedded
solution with a good performance-cost ratio, therefore we turn to massively parallel
computing to implement these powerful algorithms. In our case we address the perfor-
mance issues with the Aspex Linedancer processing array[4].

These considerations lead to the following research question:
How to map image quantisation, based on Simulated Annealing and using an MRF

image model, on a Linedancer massively parallel processing array?
This study will be presented here in the following manner. In Section 2 we intro-

duce the theoretical concepts that lie at the base of our quantisation algorithm, we give
a mathematical description of our image model and we briefly describe Simulated An-
nealing. The processor used in this research is also introduced. Next, Section 3 describes
the parallel model and the related complexity estimates. Then the implementation is
described in Section 4, followed by the results in Section 5. Finally, conclusions and
recommendations are given in Section 6.

2 Background

2.1 Image Model for Quantisation

The basic problem is to recover a limited set of colours from a scanned business graph-
ics original. The process, which reduces the number of colours by assigning them to a
limited number of classes in an image, is called quantisation. For simplicity we restrict
ourselves in this study to grey-value images since this does not alter the essence of both
algorithm and mapping. See Fig. 2 for a result of a state of the art quantisation algo-
rithm. To better observe quantisation artifacts, the quantised image is visualised in false
colours, see Fig. 2(b). A false colour image is an image that depicts a subject in colours
that magnifies the differences between values that are almost equal and, as a conse-
quence, is good visible for human perception. Note for example the ringing around
edges and the various speckles in Fig. 2(b), showing the substructure in the light and
dark parts barely visible in Fig. 2(c). This false colouring can be steered by a grey-value
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(a) Original image, 256
grey-values

(b) Resulting false colour
image, 4 grey-values,
dashed arrow indicates
ringing, the others
indicate speckles

(c) Resulting image, 4 grey-
values, ringing just visi-
ble

Fig. 2. Example of state of the art quantisation algorithm

histogram, which can reveal such a situation. See for example the two adjacent peaks as
depicted by the upper diagram in Fig. 3. The problem we want to solve here is to raise
the quality of the quantisation by a postprocessing step in an efficient way.

First, we introduce some basic concepts, followed by two specific image models
and conclude with a general image model based on the theory of MRF. The theory is
described extensively in [2], the image model itself is taken from [5].

Fig. 3. Estimation of classes with associated class means

A pixel si, j is denoted as a tuple (i, j), with i ∈ H = {0, . . . ,h − 1}, j ∈ W = {0, . . . ,
w − 1} in which w and h are the width and height of an image. We define Ni, j =
{(k, l)|

√
(k − i)2 +(l − j)2 ≤ δ,(k, l) �= (i, j)} as the neighbourhood Ni, j of pixel si, j.

Thus, Ni, j contains all pixels within distance δ from si, j , except si, j itself. See Fig. 4 for
a neighbourhood with radius δ = 2.

An image is defined on a grid of pixels S = {si, j|i ∈ H, j ∈ W}. The scanning pro-
cess produces grey-values that are assigned to pixels and denoted by γs ∈ {0, . . . ,255}.
A desired property of quantisation is that it resembles the colour or grey-value of the
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original. This so called fidelity, is optimised when the distance between grey-value and
the mean value of the quantisation class (e.g. µ0···3 in Fig. 3) is minimal for all pixels.

The purpose of quantisation is to determine the optimal quantisation class per pixel.
Each class corresponds to an ordered sub-set of γs (e.g. {30 · · ·40}) and this sub-set is
represented by their class means µgs (e.g. 36). These classes are identified by labels and
denoted by gs ∈ {0, . . . ,L − 1}, where L represents the number of quantisation classes
1 ≤ L � 256. L is determined by inspecting the dominant peaks in the histogram, see
for example Fig. 3 where L = 4.

A desired property of business graphics is the occurence of large planes with a single
colour or label. This property, called regularity, is optimised when the dissimilarity
between neighbouring labels is minimised.

The general MRF image model combines both the fidelity (grey-value) and the reg-
ularity (spatial relation) by simply minimising their weighted sum over all pixels. Find-
ing the optimal label assignment is computationally very hard. However, reasonably

(i,j)(i,j-1)

i

j

Fig. 4. Pixels in a grid with neighbour-
hood. The grey coloured pixels are all
neighbours of the central pixel (i, j).

Fig. 5. Aspex Semiconductor’s Linedancer

good solutions can be found by Simulated Annealing, an efficient procedure for solving
combinatorial optimisation problems [3]. The algorithm repetitively executes the MRF
model and searches a state (class-values or labels of all pixels in an image) where the
weighted sum, or energy, is minimal. Each iteration the label of a single pixel is ran-
domly chosen and its effect on the energy is computed. States which do decrease energy
are always accepted (deterministic acceptance), but occasionally also slight increases
are accepted in order to escape from local minima (probabilistic acceptance). In gen-
eral the combination of MRF and Simulated Annealing is considered a powerful generic
framework that can be used whenever an optimisation model can be constructed of a
problem. See for example half-toning in [6], a more complex application than quan-
tisation. For our purposes, however, the main advantage of this approach is that the
algorithm can be run in parallel for all pixels, as will be shown in Section 3.
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2.2 Associative Processing

Traditional computers rely on a memory that stores and retrieves data by its address
rather than by its content. In such an organisation (von Neumann architecture), every
accessed data word must travel individually between the processing unit and the mem-
ory. The simplicity of this retrieval-by-address approach has ensured its success, but
has also produced some inherent disadvantages. One is the von Neumann bottleneck,
where the memory-access path becomes the limiting factor for system performance. A
related disadvantage is the inability to proportionally increase the bandwidth between
the memory and the processor as the size of the memory scales up. Associative mem-
ory, in contrast, provides a naturally parallel and scalable form of data retrieval for both
structured data (e.g. sets, arrays, tables, trees and graphs) and unstructured data (raw text
and digitised signals). An associative memory can be extended to process the retrieved
data in place, thus becoming an associative processor. This extension is merely the ca-
pability of writing a value in parallel into selected cells [4]. Applications range from
handheld gaming, multi-media, wireless base stations, on-line transaction processing to
heavy image processing, pattern recognition and data mining [4,7].

Aspex’s Linedancer is an implementation of a parallel associative processor. The
approach taken by Aspex Semiconductor is to use many simple associative processors
in a SIMD arrangement (ASProCore). Each of the 4096 processing elements (PEs)
on the Linedancer device has about 200 bits of memory (of which 64 bits are fully
associative) and a single bit ALU, which can perform a 1 bit operation in 1 clock cycle.
Operations on larger data types take multiple clock cycles. The aggregate processing
power of the Linedancer depends entirely on parallel processing. For example: a 32-
bit add will take many more clock cycles compared to a high-end scalar processor, but
due to the parallelism 4096 additions can be performed in parallel. Multiple Linedancer
devices can be connected together to create an even wider SIMD array.

The Linedancer device (shown in Fig. 5) includes an intelligent DMA controller, to
ensure that data is moved in and out of the ASProCore concurrently with data process-
ing, and a RISC processor (Sparc), to issue high level commands to the ASProCore and
to set-up the DMA controller. All parts of the device run at the same clock frequency,
which can be up to 400 MHz.

A Linedancer is programmed in an extended version of C, with additional syntax for
controlling the ASProCore.

The reason Linedancer was chosen for this application is its scalable property to-
wards the number of labels that can be processed by using its associative functionality
(as opposed to other solutions, e.g. CNN [5]). Other reasons are scalable performance
and its attractive performance-cost ratio.

3 Specification of the Algorithm

The flow of the system is depicted in Fig. 6. The module denoted by MRF and Simulated
Annealing is the topic of this paper. To accelerate the Simulated Annealing procedure
we follow the Modified Metropolis Dynamics (MMD) approach as described exten-
sively in [5]. Contrary to MRF with its global energy, MMD strives for minimising a
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Fig. 6. Context of the quantisation module Fig. 7. The energy decrease of MRF
and MMD

local energy Es per pixel in parallel and therefore converges much faster when run-
ning on a parallel architecture. Although the MRF is in the long run somewhat better
in quality (i.e. lower energy), MMD offers a better ”quantisation result/compute time”
ratio[5]. Fig. 7 illustrates the convergence power of MMD. Let γs be the observed grey-
value image of pixel s, gs be the quantisation class or label of pixel s, and gr be the label
of a pixel in the neighbourhood of s, then the energy of pixel s for the MMD approach
is given by:

Es = (γs − µgs)
2

︸ ︷︷ ︸
fidelity

+ ∑
r∈Ns

βδ(gs,gr)

︸ ︷︷ ︸
regularity

, (1)

where

δ(gs,gr) =

{
−1 if gs = gr,

+1 if gs �= gr
(2)

Minimising the energy E will raise the quality of the quantisation. The fidelity term
depends on the class means µgs , which are constant, initialised by a previously exe-
cuted module in the pipeline, see Fig. 6. The regularity term prefers neighbours having
same labels (2), and β is a positive model parameter controlling the homogeneity of the
regions of the image.

The Simulated Annealing procedure is coded in Algorithm 1. Here g represents the
complete state of all pixels in an image and ĝ represents a randomly chosen state of all
pixels. An essential control variable in this algorithm is T or Temperature, named after
related concepts in Physics [3]. A desired property of this procedure is the controlled
and slow transition from a pseudo-stochastic to a deterministic phase. This transition
corresponds to the transition from a broad search for global minima to the homing in on
one –hopefully the best– minimum. Because T is high in the beginning, the system is
able to jump to states that do (not too excessively) increase the energy (line 8), allowing
escape from local minima. With T getting lower the system will behave more determin-
istic and fewer states that increase energy are accepted (lines 6 and 8). The threshold
α controls the degree of probabilistic acceptance. The procedure can start off with an
arbitrary state.

The values of parameters α, β and initial temperature T0 are obtained from literature
or based on preliminary computational experience. Typical values for these parameters
are: threshold α ∈ [0.01,1), regularity weighting β ∈ [1,100], temperature T0 ∈ [0,16],
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1: g ← initialisation state
2: for T ← T0,T0 ·C, . . . ,T0 ·Cn−1 do
3: ĝ ← randomly chosen quantisation state g
4: for all s ∈ S do
5: ΔEs ← E(ĝs)−E(gs)
6: if ΔEs ≤ 0 then {Deterministic acceptance}
7: gs ← ĝs

8: else if ΔEs ≤ T ·− lnα then {Probabilistic acceptance}
9: gs ← ĝs

10: end if
11: end for
12: end for

Algorithm 1. Modified Metropolis Dynamics

cooling factor C ∈ [0.95,1) and the number of iterations n ∈ [50,200]. The typical dy-
namic behaviour of MMD versus MRF is illustrated by Fig. 7. In contrast to MRF,
MMD settles around 100 iterations, independent of image size.

The complexity analysis of the sequential implementation of MRF is O(n · w · h).
Here w and h stand for the width and height of an image, respectively. The complexity
analysis of the parallel implementation of MMD is O

(
n·w·h
#PEs

)
, where #PEs stands for the

number of Processing Elements.

4 Implementation Restrictions and Choices

To map this quantisation scheme on a Linedancer several implementation concerns have
to be considered. Four of them: Look Up Table (LUT), tiling, bit-width of variables, and
random number generation, are described below.

For most fine grain SIMD systems the size of the local memory is limited. In order to
really be scalable in the number of labels, one must be able to retrieve the class means
µgs in an efficient way. The associative functionality of the Linedancer is very suitable
in providing lookup functionality for all PEs.

Choosing a pixel-per-PE scheme means that a single Linedancer can host a 64 × 64
tile of pixels. To process larger images we use tiling, i.e. we divide the image in small
chunks (of 64 × 64 pixels) that fit on the Linedancer. When running each tile, one after
another for all n iterations, without providing for inter-tile communication, maximum
speedup will be achieved but quality might be compromised. In order to counter this
loss of quality a multi-pass scheme is used. In this way tiles are fetched multiple times,
using overlapped fetch, effectively allowing for inter-tile communication.

The Linedancer does not support floating point arithmetic. For the various variables
an accuracy analysis is made for determining the necessary bit-width in an integer arith-
metic scheme. For the energy computation (1), the fidelity term takes the largest bit
budget because of the square operation of a subtraction of two 8-bit values. The energy
field is dimensioned to a 20-bit number representation, sufficient for storing the addition
result of both the fidelity and regularity terms.
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For every iteration a new state (ĝ) has to be generated in a random fashion. Pseudo
random generators based on Linear Feedback Shift Register (LFSR) have low memory
footprint and only need simple bit operations: XOR and Shift [8]. A 10 bit LFSR with
only two tap points generates a pseudo random number sequence with cycle length
210 − 1 = 1023, which is sufficient.

5 Results and Discussion

Table 1 summarises the timing results of three distinct implementations for L = 16
quantisation classes. Two of them implement the MMD scheme, one executed on a
2 GHz Pentium Xeon with 1 GB RAM and one on the Linedancer. For comparison also
a state of the art quantisation algorithm Octree[1] is used, which is part of the image
processing package ImageMagick. The current Linedancer implementation is 16 times
faster than Octree running on the above mentioned Pentium processor (and 128× faster
compared to MMD on a Pentium).

Table 1. Execution times of quantisation for L = 16 classes: Octree and the MMD version both
on a Pentium, and MMD on the Linedancer. All MMD processing is performed with n = 100
iterations.

# Pixels Time (ms)
Octree on Pentium MMD on Pentium MMD on Linedancer

10000 108 517 5.95
40000 343 2070 23.1
160000 1171 8420 80.3
640000 4406 34600 280
2560000 16796 138000 1080

To give an idea how many cycles the different parts of the algorithm take, we mea-
sured the number of cycles taken for different stages of the algorithm. The results can
be seen in Table 2. For the “For each neighbour”-parts, which take 3592 cycles each,
3200 (estimate based on a communication model) are spent on communication per part.
This is approximately 73% of a total of 8754 cycles for each iteration per tile. However,
clever reuse in communicating the neighbourhood could reduce this overhead, provided
some memory space is available for storing intermediate results. Then 55% of a reduced
total of 5207 cycles is spent in communication, yielding a speedup of 1.7.

A further improvement can be obtained by extending the Linedancer’s synchronous
inter-PE communication with a chordal ring, e.g. with an extra link for each PE with
distance 64. This would yield a total speedup of 3.0 and would turn this realisation into
a processing bound solution; only 20% of a reduced total of 2935 cycles is then spent
in communication.

In quality terms the improvement w.r.t. state of the art quantisation algorithms is
difficult to judge. The ringing at the edges and the speckles have disappeared when
comparing the image in Fig. 2(b) and the image of Fig. 8(a). But the redistribution of
classes lead to larger inhomogeneous areas and further study is needed to reduce this
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Table 2. Number of measured cycles used for each iteration per tile of the algorithm. Nesting
indicates loops, bold numbers indicate accumulated results.

Activity # Cycles
Preparation 70
Processing one tile

Calculate a new random labeling 44
For each label 352

y−µgs (16×) 22
Square 164
For each neighbour 3592

Add or subtract β (avg) (12×) 299.3
Load y 16
For each label 352

y−µgs (16×) 22
Square 164
For each neighbour 3592

Add or subtract β (avg) (12×) 299.3
Subtract energies, threshold values and update 70

Dump result 338
Total 8754

side-effect. The MMD implementation is single-pass, i.e. process each tile just once.
However, single-pass results in annoying artifacts as can be seen in Fig. 8(a). To counter
this, each tile can be processed multiple times, effectively allowing neighbouring tiles
to communicate their regularity information, see image in Fig. 8(b). This can be done
without performance degradation because on the Linedancer the dumping of the result
of a previous tile and the loading of the next one can be completely hidden in the
processing of the current tile.

6 Conclusions and Recommendations

An MMD implementation on the Linedancer has a high performance gain w.r.t. a state
of the art sequential algorithm (speedup 16×), even in the case of a multi-pass approach.
Careful engineering of the inter-PE communication could increase the speed by an extra
factor of 1.7. When the processing array is extended with a chordal ring interconnec-
tion structure, with extra chords connecting PEs at distance 64, then a total speedup of
approximately 3.0 can be obtained.

Though not the focus of this study some conclusions may be drawn on quality. First
of all MMD promotes the redistribution of classes to larger uniform areas than the
conventional method, as shown in the false coloured visualisations. The speckles and
ringing effects at edges have disappeared. However, the redistribution of classes leads
to larger inhomogeneous areas and further study is needed to reduce this side-effect.

From an architectural point of view we recommended an improvement in the inter-
PE communication of the Linedancer.
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(a) One pass, arrows indi-
cate tiling artifacts

(b) Two passes, no visible
artifacts

(c) Resulting image

Fig. 8. Quantisation by MMD on an image of 128 x 128 pixels, processed in chunks of 64 x 64
tiles
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