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Abstract. In this paper, Lebesgue decomposition type theorems for
non-additive measure are shown under the conditions of null-additivity,
converse null-additivity, weak null-additivity and o-null-additivity, etc..
In our discussion, the monotone continuity of set function is not required.
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1 Introduction

Lebesgue decomposition of a set function p is stated as: for another given set
function v, p is represented as p = p. + ps, where p. and ps are absolutely
continuous and singular with respect to v, respectively. In measure theory this
decomposition is a well-known fact, which is referred to as Lebesgue decompo-
sition theorem [2].

For the case of non-additive measure theory, the situation is not so simple.
There are many discussions on Lebesgue decomposition type theorems such as, a
version on submeasure (cf. [1]), a version on L-decomposition measure (cf. [5]), a
version on o-finite fuzzy measure (cf. [3]), and a version on signed fuzzy measure
(cf. [10]), and so on. In those discussion, the monotone continuity or autoconti-
nuity of set function are required. However we will try to weaken this condition.

In this paper, we shall show several versions of Lebesgue decomposition theo-
rems of non-additive measure p for another given non-additive measure v, where
w is converse null-additive or exhaustive, superadditive or order continuous, and
v is either weakly null-additive and continuous from below or o-null-additive.
In our discussion the monotone continuity of set function is not required, so
Lebesgue decomposition theorem is formulated in generality.
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by the Subject Building Foundation of Communication University of China (No.
XK060106).



2 Preliminaries

Let X be a non-empty set, R a o-ring of subsets of X, and (X, R) denotes the
measurable space.

Definition 2.1. A non-additive measure on R is an real valued set function
i R — [0,4+00) satisfying the following two conditions:

1) w®) =0
(2) AcBand A,BeR = u(A) < u(B). (monotonicity)

When a non-additive measure p is continuous from below, it is called a lower
semicontinuous fuzzy measure (cf. [8]). In some literature, a set function u sat-
isfying the conditions (1) and (2) of Definition 2.1 is called a fuzzy measure.

A set function p : R — [0,400) is said to be (i) ezhaustive (cf. [6]), if
HEIEMM(En) = 0 for any infinite disjoint sequence {E, },; (ii) order-continuous

(cf. [2]), if limy,— 00 pt(An) = 0 whenever A,, € R and A4, \, 0 (n — o0); (iii)
strongly order-continuous (cf. [4]), if lim, . p(A4,) = 0 whenever A,, A € R,
N\ A and p(A) = 0; (iv) to have property (S) (cf. [7]), if for any {A, }n=12.. CR
with lim,, 4 o p(Ay) = 0, there exists a subsequence {A,, }i=1,2,... of {Ap =12,
such that u(limsup A4,,,) = 0.

Definition 2.2. ([9]) Let p and v be two non-additive measures. We say that

(1) p is absolutely continuous of Type I with respect to v, denoted by u <; v,
if 4(A) = 0 whenever A € R, v(A) = 0;

(2) wis absolutely continuous of Type VI with respect to v, denoted by p <y v,
if for any € > 0, there exists ¢ > 0 such that ©(A) < € whenever A € R,
v(A) < 0.

Definition 2.3. ([1]) We say that p is singular with respect to v, and denote
p L v, if there is a set @ € R such that ¥(Q) = 0 and p(E — Q) = 0 for any
EcR.

For non-additive measures p and v, if p <yy v, then p <5 v. The inverse
statement may not be true.

Proposition 2.1. Let p and v be two non-additive measures. If p is strongly
order-continuous, v have property (S), then u <vyr v if and only if up <y v.

3 Null-Additivity of Set Function

The several kinds of null-additivity of non-additive measure play important role
in establishing Lebesgue decomposition type theorems of non-additive measure.
We recall them in the following.



Definition 3.1. ([8,9]) A set function p : R — [0,400) is said to be (i) null-
additive, if u(EUF) = p(FE) whenever E, F € R and pu(F) = 0; (ii) weakly null-
additive, if p(E U F) = 0 whenever E, F € R, u(E) = p(F) = 0; (iii) converse
null-additive, if p(A — B) = 0 whenever A € R, B € ANR, u(B) = u(A);
(iv) pseudo-null-additive, if u(BUC) = u(C), whenever A € R,B€ ANR,C €
ANTR, (A — B) = u(A).

Proposition 3.1. If u is null-additive, then it is weakly null-additive. If p is
pseudo-null-additive, then it is converse null-additive.

Definition 3.2. ([6]) A non-additive measure u is said to be o-null-additive,
if for every sequence {B;};=12 ... of pairwise disjoint sets from R and u(B;) =0
we have

+o00

I (Au U Bi> =u(A) VAeR.

i=1
Proposition 3.2. p is o-null-additive if and only if p is null-additive and p(B;) =
0(i=1,2,---) implies p(U % B;) = 0 for every sequence {B;}i=1,2.... of pairwise
disjoint sets from R.

4 Lebesgue Decomposition Theorems of Non-Additive
Measure

In this section we show the Lebesgue decomposition type theorems of non-
additive measure. Unless stated, in the following we always assume that all set
functions are non-additive measure.

Lemma 4.1. Let pu be converse null-additive non-additive measure on R. Then,
there is a set Q € R such that u(E — Q) = 0; and further, if u is null-additive,
then u(E) = p(Q N E) for any E € R.

Proof. Let a = sup{u(E) : E € R}. By the definition of «, we can choose a
sequence {E,(ll)}nzl,g’... from R such that for every n =1,2,- -,

1
a-—< w(EWD) < a.

“+oo
Denote @ = U E,(Ll), then @)1 € R. Thus we have
n=1

1
a——<pEY) <p@) <a,

n=1,2---. Let n — 400, we have pu(Q1) = a.
Similarly, there exists a sequence {Egz)}nzl,gw‘ from R such that

E® cX—-Q, VYn>1,



and
w(Q2) =sup{u(E) : E€R, ECX-—Qi}

+oo
where Q2 = U E®.

n=1
Let us denote @ = Q1 U Q2. Then @ € R, and

a=p(Q1) < (@) <sup{u(E) : EeR}

Therefore p(Q) = p(Q1) = . By the converse null-additivity of i, and noting
Q1N Q2 =0, we have u(Q2) = u(Q — Q1) = 0. Therefore, for any E € R, it is
follows from
EFE-QCE-Q1CX -
that
n(E = Q) < n(Q2) =0.
Thus, for any £ € R, we have u(E — @) = 0. When p is null-additive, then

p(E)=p((E—Q)U(ENQ) = n(QNE) for any E € R. The proof of the lemma
is now complete. O

Lemma 4.2. Let u be exhaustive non-additive measure on R. Then, there is
a set Q € R such that W(E — Q) = 0; and further, if p is null-additive, then
w(E) = pu(@QNE) forany E € R.

Proof. 1t is similar to the proof of Theorem 2 in [3] and Lemma 4.1 above.

The following theorems with their corollaries are several versions of Lebesgue
decomposition theorem for non-additive measure.

Theorem 4.1. (Lebesgue decomposition theorem) Let p1 and v be non-additive
measures on R. If i is either converse null-additive or exhaustive, v is weakly
null-additive and continuous from below, then there exists a set Q@ € R such that
those non-additive measures p. and s defined by

pe(E) = p(E - Q) and ps(E) =p(ENQ), YEER

satisfy pe <y v and ps L v, respectively.

Proof. Put Ry = {4 € R : v(A) = 0}. Then, R; is a o-subring of R by the
weak null-additivity and continuity from below of v. By using Lemma 4.1 and
4.2, we may take a set () € R1 such that

w(@Q) =sup{u(4) : Ae Ry} and wE-Q)=0, VEEeR;.

Now we take that p.(F) = u(E — Q) and ps(F) = p(ENQ), E € R, then p.
and ug satisfy the required properties:

pe(E)y=0 if v(E)=0



and
ps(E = Q) =p((E-Q)NQ) =p0) =0
forany F € R. O

From Proposition 3.1 and Theorem 4.1, we have the following corollary.

Corollary 4.1. If u is pseudo-null-additive, v is null-additive and continuous
from below, then there exists a set QQ € R such that those non-additive measures
e and s defined by

/JC(E) = p(E — Q) and ps(E) = :U’(Em Q)7 VEER
satisfy pe <y v and ps L v, respectively.

Definition 4.1. ([6]) A set function p: R — [0, +00) is called superadditive, if
for every A, B € R and ANB =10,

W(AUB) > u(A) + u(B).

Proposition 4.1. If u is superadditive, then it is converse null-additive and
ezhaustive.

Note that a condition of superadditivity do not imply the order continuity.
There is a counterexample: A superadditive non-additive measure is not neces-
sarily order continuous. Counterexample: Let p be the non-additive measure on
2V the power set of the set N of all the positive integers, defined by u(E) = 1
if E is cofinite (i.e., the complement of a finite set), 0 otherwise. Then obvi-
ously p is superadditive non-additive measure. However A,, = {n,n+1,---} for
n=1,2,--- decreasingly converges to the empty set, but the limit of {(A,)} is
equal to 1, not zero. This counterexample is noticed by the anonymous referee.

As a direct result of Proposition 4.1 and Theorem 4.1, we can obtain the
following theorem immediately.

Theorem 4.2. Let u and v be non-additive measures on R. If p is superaddi-
tive, v is weakly null-additive and continuous from below, then there exist non-
additive measures p. and ps on R such that p. <5 v, ps L v, and p > pe+ ps.

By using Proposition 3.2, similar to the proof of Theorem 4.1, we can prove
the following theorem.

Theorem 4.3. Let p and v be non-additive measures on R. If pu is either
converse null-additive or exhaustive, v is o-null-additive, then there exist non-
additive measures . and s on R such that p. <y v and pgs L v.

Corollary 4.2. Let p and v be non-additive measures on R. If u is superad-
ditive, v is o-null-additive, then there exist non-additive measures p. and ps on
R such that p. < v, ps Lv, and p > pe + pis-



Note that it is not required that v has the continuity from below in Theorem 4.3
and Corollary 4.2.

Combining Theorem 4.1 and Proposition 2.1, we can obtain the following
result.

Theorem 4.4. Let i and v be non-additive measures on R. If u is strongly
order continuous, v is weakly null-additive and continuous from below, and have
property (S), then there exists a set Q € R such that those non-additive measures
e and ps defined by

pe(E) = w(E - Q) and ps(E)=n(ENQ), YVEER

satisfy pe <yr v and ps L v, respectively.

Conclusions: There are several versions of Lebesgue decomposition theorem as
noted in the first section. Here we proved that Lebesgue decomposition type the-
orems for non-additive measure are shown under the conditions of null-additivity,
converse null-additivity, weak null-additivity and o-null-additivity. It should be
clarified these relations and also considered applications to the various fields.
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