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Abstract. In this paper, Lebesgue decomposition type theorems for
non-additive measure are shown under the conditions of null-additivity,
converse null-additivity, weak null-additivity and σ-null-additivity, etc..
In our discussion, the monotone continuity of set function is not required.
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1 Introduction

Lebesgue decomposition of a set function µ is stated as: for another given set
function ν, µ is represented as µ = µc + µs, where µc and µs are absolutely
continuous and singular with respect to ν, respectively. In measure theory this
decomposition is a well-known fact, which is referred to as Lebesgue decompo-
sition theorem [2].

For the case of non-additive measure theory, the situation is not so simple.
There are many discussions on Lebesgue decomposition type theorems such as, a
version on submeasure (cf. [1]), a version on ⊥-decomposition measure (cf. [5]), a
version on σ-finite fuzzy measure (cf. [3]), and a version on signed fuzzy measure
(cf. [10]), and so on. In those discussion, the monotone continuity or autoconti-
nuity of set function are required. However we will try to weaken this condition.

In this paper, we shall show several versions of Lebesgue decomposition theo-
rems of non-additive measure µ for another given non-additive measure ν, where
µ is converse null-additive or exhaustive, superadditive or order continuous, and
ν is either weakly null-additive and continuous from below or σ-null-additive.
In our discussion the monotone continuity of set function is not required, so
Lebesgue decomposition theorem is formulated in generality.
⋆ This work was partially supported by the NSFC Grant No.70471063, as well as

by the Subject Building Foundation of Communication University of China (No.
XK060106).
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2 Preliminaries

Let X be a non-empty set, R a σ-ring of subsets of X, and (X,R) denotes the
measurable space.

Definition 2.1. A non-additive measure on R is an real valued set function
µ : R → [0, +∞) satisfying the following two conditions:

(1) µ(∅) = 0;
(2) A ⊂ B and A,B ∈ R ⇒ µ(A) ≤ µ(B). (monotonicity)

When a non-additive measure µ is continuous from below, it is called a lower
semicontinuous fuzzy measure (cf. [8]). In some literature, a set function µ sat-
isfying the conditions (1) and (2) of Definition 2.1 is called a fuzzy measure.

A set function µ : R → [0, +∞) is said to be (i) exhaustive (cf. [6]), if
lim

n→+∞
µ(En) = 0 for any infinite disjoint sequence {En}n; (ii) order-continuous

(cf. [2]), if limn→∞ µ(An) = 0 whenever An ∈ R and An ↘ ∅ (n → ∞); (iii)
strongly order-continuous (cf. [4]), if limn→∞ µ(An) = 0 whenever An, A ∈ R,
↘ A and µ(A) = 0; (iv) to have property (S) (cf. [7]), if for any {An}n=1,2,··· ⊂ R
with limn→+∞µ(An) = 0, there exists a subsequence {Ani}i=1,2,··· of {An}n=1,2,···
such that µ(lim supAni) = 0.

Definition 2.2. ([9]) Let µ and ν be two non-additive measures. We say that
(1) µ is absolutely continuous of Type I with respect to ν, denoted by µ ≪I ν,

if µ(A) = 0 whenever A ∈ R, ν(A) = 0;
(2) µ is absolutely continuous of Type VI with respect to ν, denoted by µ ≪VI ν,

if for any ϵ > 0, there exists δ > 0 such that µ(A) < ϵ whenever A ∈ R,
ν(A) < δ.

Definition 2.3. ([1]) We say that µ is singular with respect to ν, and denote
µ ⊥ ν, if there is a set Q ∈ R such that ν(Q) = 0 and µ(E − Q) = 0 for any
E ∈ R.

For non-additive measures µ and ν, if µ ≪VI ν, then µ ≪I ν. The inverse
statement may not be true.

Proposition 2.1. Let µ and ν be two non-additive measures. If µ is strongly
order-continuous, ν have property (S), then µ ≪VI ν if and only if µ ≪I ν.

3 Null-Additivity of Set Function

The several kinds of null-additivity of non-additive measure play important role
in establishing Lebesgue decomposition type theorems of non-additive measure.
We recall them in the following.
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Definition 3.1. ([8, 9]) A set function µ : R → [0, +∞) is said to be (i) null-
additive, if µ(E ∪F ) = µ(E) whenever E,F ∈ R and µ(F ) = 0; (ii) weakly null-
additive, if µ(E ∪ F ) = 0 whenever E,F ∈ R, µ(E) = µ(F ) = 0; (iii) converse
null-additive, if µ(A − B) = 0 whenever A ∈ R, B ∈ A ∩ R, µ(B) = µ(A);
(iv) pseudo-null-additive, if µ(B ∪C) = µ(C), whenever A ∈ R, B ∈ A∩R, C ∈
A ∩R, µ(A − B) = µ(A).

Proposition 3.1. If µ is null-additive, then it is weakly null-additive. If µ is
pseudo-null-additive, then it is converse null-additive.

Definition 3.2. ([6]) A non-additive measure µ is said to be σ-null-additive,
if for every sequence {Bi}i=1,2,··· of pairwise disjoint sets from R and µ(Bi) = 0
we have

µ

(
A ∪

+∞∪
i=1

Bi

)
= µ(A) ∀A ∈ R.

Proposition 3.2. µ is σ-null-additive if and only if µ is null-additive and µ(Bi) =
0 (i = 1, 2, · · ·) implies µ(∪+∞

i=kBi) = 0 for every sequence {Bi}i=1,2,··· of pairwise
disjoint sets from R.

4 Lebesgue Decomposition Theorems of Non-Additive
Measure

In this section we show the Lebesgue decomposition type theorems of non-
additive measure. Unless stated, in the following we always assume that all set
functions are non-additive measure.

Lemma 4.1. Let µ be converse null-additive non-additive measure on R. Then,
there is a set Q ∈ R such that µ(E − Q) = 0; and further, if µ is null-additive,
then µ(E) = µ(Q ∩ E) for any E ∈ R.

Proof. Let α = sup{µ(E) : E ∈ R}. By the definition of α, we can choose a
sequence {E(1)

n }n=1,2,··· from R such that for every n = 1, 2, · · ·,

α − 1
n

< µ(E(1)
n ) ≤ α.

Denote Q1 =
+∞∪
n=1

E(1)
n , then Q1 ∈ R. Thus we have

α − 1
n

< µ(E(1)
n ) ≤ µ(Q1) ≤ α,

n = 1, 2, · · ·. Let n → +∞, we have µ(Q1) = α.
Similarly, there exists a sequence {E(2)

n }n=1,2,··· from R such that

E(2)
n ⊂ X − Q1, ∀n ≥ 1,
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and
µ(Q2) = sup{µ(E) : E ∈ R, E ⊂ X − Q1}

where Q2 =
+∞∪
n=1

E(2)
n .

Let us denote Q = Q1 ∪ Q2. Then Q ∈ R, and

α = µ(Q1) ≤ µ(Q) ≤ sup{µ(E) : E ∈ R}.

Therefore µ(Q) = µ(Q1) = α. By the converse null-additivity of µ, and noting
Q1 ∩ Q2 = ∅, we have µ(Q2) = µ(Q − Q1) = 0. Therefore, for any E ∈ R, it is
follows from

E − Q ⊂ E − Q1 ⊂ X − Q1

that
µ(E − Q) ≤ µ(Q2) = 0.

Thus, for any E ∈ R, we have µ(E − Q) = 0. When µ is null-additive, then
µ(E) = µ((E−Q)∪ (E∩Q) = µ(Q∩E) for any E ∈ R. The proof of the lemma
is now complete. 2

Lemma 4.2. Let µ be exhaustive non-additive measure on R. Then, there is
a set Q ∈ R such that µ(E − Q) = 0; and further, if µ is null-additive, then
µ(E) = µ(Q ∩ E) for any E ∈ R.

Proof. It is similar to the proof of Theorem 2 in [3] and Lemma 4.1 above.

The following theorems with their corollaries are several versions of Lebesgue
decomposition theorem for non-additive measure.

Theorem 4.1. (Lebesgue decomposition theorem) Let µ and ν be non-additive
measures on R. If µ is either converse null-additive or exhaustive, ν is weakly
null-additive and continuous from below, then there exists a set Q ∈ R such that
those non-additive measures µc and µs defined by

µc(E) = µ(E − Q) and µs(E) = µ(E ∩ Q), ∀E ∈ R

satisfy µc ≪I ν and µs ⊥ ν, respectively.

Proof. Put R1 = {A ∈ R : ν(A) = 0}. Then, R1 is a σ-subring of R by the
weak null-additivity and continuity from below of ν. By using Lemma 4.1 and
4.2, we may take a set Q ∈ R1 such that

µ(Q) = sup{µ(A) : A ∈ R1} and µ(E − Q) = 0, ∀E ∈ R1.

Now we take that µc(E) = µ(E − Q) and µs(E) = µ(E ∩ Q), E ∈ R, then µc

and µs satisfy the required properties:

µc(E) = 0 if ν(E) = 0
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and
µs(E − Q) = µ((E − Q) ∩ Q) = µ(∅) = 0

for any E ∈ R. 2

From Proposition 3.1 and Theorem 4.1, we have the following corollary.

Corollary 4.1. If µ is pseudo-null-additive, ν is null-additive and continuous
from below, then there exists a set Q ∈ R such that those non-additive measures
µc and µs defined by

µc(E) = µ(E − Q) and µs(E) = µ(E ∩ Q), ∀E ∈ R

satisfy µc ≪I ν and µs ⊥ ν, respectively.

Definition 4.1. ([6]) A set function µ : R → [0, +∞) is called superadditive, if
for every A,B ∈ R and A ∩ B = ∅,

µ(A ∪ B) ≥ µ(A) + µ(B).

Proposition 4.1. If µ is superadditive, then it is converse null-additive and
exhaustive.

Note that a condition of superadditivity do not imply the order continuity.
There is a counterexample: A superadditive non-additive measure is not neces-
sarily order continuous. Counterexample: Let µ be the non-additive measure on
2N , the power set of the set N of all the positive integers, defined by µ(E) = 1
if E is cofinite (i.e., the complement of a finite set), 0 otherwise. Then obvi-
ously µ is superadditive non-additive measure. However An = {n, n + 1, · · ·} for
n = 1, 2, · · · decreasingly converges to the empty set, but the limit of {µ(An)} is
equal to 1, not zero. This counterexample is noticed by the anonymous referee.

As a direct result of Proposition 4.1 and Theorem 4.1, we can obtain the
following theorem immediately.

Theorem 4.2. Let µ and ν be non-additive measures on R. If µ is superaddi-
tive, ν is weakly null-additive and continuous from below, then there exist non-
additive measures µc and µs on R such that µc ≪I ν, µs ⊥ ν, and µ ≥ µc +µs.

By using Proposition 3.2, similar to the proof of Theorem 4.1, we can prove
the following theorem.

Theorem 4.3. Let µ and ν be non-additive measures on R. If µ is either
converse null-additive or exhaustive, ν is σ-null-additive, then there exist non-
additive measures µc and µs on R such that µc ≪I ν and µs ⊥ ν.

Corollary 4.2. Let µ and ν be non-additive measures on R. If µ is superad-
ditive, ν is σ-null-additive, then there exist non-additive measures µc and µs on
R such that µc ≪I ν, µs ⊥ ν, and µ ≥ µc + µs.
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Note that it is not required that ν has the continuity from below in Theorem 4.3
and Corollary 4.2.

Combining Theorem 4.1 and Proposition 2.1, we can obtain the following
result.

Theorem 4.4. Let µ and ν be non-additive measures on R. If µ is strongly
order continuous, ν is weakly null-additive and continuous from below, and have
property (S), then there exists a set Q ∈ R such that those non-additive measures
µc and µs defined by

µc(E) = µ(E − Q) and µs(E) = µ(E ∩ Q), ∀E ∈ R

satisfy µc ≪VI ν and µs ⊥ ν, respectively.

Conclusions: There are several versions of Lebesgue decomposition theorem as
noted in the first section. Here we proved that Lebesgue decomposition type the-
orems for non-additive measure are shown under the conditions of null-additivity,
converse null-additivity, weak null-additivity and σ-null-additivity. It should be
clarified these relations and also considered applications to the various fields.
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