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Abstract. In this paper, we consider a map labeling problem to maxi-
mize the number of independent labels in the plane. We first investigate
the point labeling model that each label can be placed on a given set
of anchors on a horizontal line. It is known that most of the map la-
beling decision models on a single line (horizontal or slope line) can
be easily solved. However, the label number maximization models are
more difficult (like 2SAT vs. MAX-2SAT). We present an O(n log Δ)
time algorithm for the four position label model on a horizontal line
based on dynamic programming and a particular analysis, where n is
the number of the anchors and Δ is the maximum number of labels
whose intersection is nonempty. As a contrast to Agarwal et al.’s re-
sult [Comput. Geom. Theory Appl. 11 (1998) 209-218] and Chan’s re-
sult [Inform. Process. Letters 89(2004) 19-23] in which they provide
(1 + 1/k)-factor PTAS algorithms that run in O(n log n + n2k−1) time
and O(n log n + nΔk−1) time respectively for the fixed-height rectangle
label placement model in the plane, we extend our method to improve
their algorithms and present a (1 + 1/k)-factor PTAS algorithm that
runs in O(n log n+kn log4 Δ+Δk−1) time using O(kΔ3 log4 Δ+kΔk−1)
storage.

1 Introduction

In cartographic literature, the main approach to conveying information concern-
ing what is on the map is to attach texts or labels to geographic features on
the map. Automated label placement subject to the constraint that the labels
are pairwise disjoint is a well-known important problem in geographic informa-
tion systems (GIS). In the ACM Computational Geometry Impact Task Force
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report[4] the map label placement is listed as an important research area. Since
this problem in general is known to be NP-complete, many heuristics or special
cases for which polynomial time algorithms are given have been presented. For
instance, there are many algorithms that have been developed for labeling points
that are on lines[5,9,11,12,19,22] or in a region[7,8,13,14,15,16,17,18,20,21].

Let A denote a set of points {A1, A2, . . . , An} in the plane, called anchors.
Associated with each anchor there is an axis-parallel rectangle, called label. The
point-feature label placement problem or simply point labeling problem, is to de-
termine a placement of these labels such that the anchors coincide with one
of the corners of their associated labels and no two labels overlap. The point
labeling problem for labeling an arbitrary set of points has been shown to be
NP-complete[8,14,15,18] and there were some heuristic algorithms[6,8,21].

There are many variations of the point labeling problem, including shapes of
the labels, locations of the anchors to be labeled and where the labels are placed.
Consider the case that the placement of the labels are restricted. For instance,
one is fixed-position model, denoted 4P model, in which a label must be placed
so that the anchor coincides with one of its four corners; and another is slider
model, denoted 4S model, in which a label can be placed so that the anchor lies
on one of the four boundary edges of the label. The coordinate positions {1, 2, 3,
4} in 4P model denote the corner positions of labels coincident with the anchor,
and the arrows in 4S model indicate the directions along which the label can
slide, maintaining contact with the anchor.

In this paper we consider the case when the anchors lie on a line and are to
be labeled with rectangular labels. This problem has been studied previously
[9,16,19,5]. The prefix 1d or Slope refers to the problem in which the anchors lie
on a horizontal or a sloping line, respectively. Garrido et al.[9] gave linear time
algorithms for 1d4P rectangle label, 1d4S square label, and Slope4P square label
models, and a quadratic time algorithm for Slope4S square label model as well.
They also showed 1d4S rectangle label is NP-complete and consider the maxi-
mization version to maximize the size of labels. Chen et al.[5] further provided
linear time algorithms for the decision version of Slope4P fixed-height(or width)
rectangle label and elastic rectangular label (of a given area) models. They also
presented a lower bound Ω(n log n) time and a different method to maximize
the label size for 1d4S square label model. Maximizing the number of labels that
can be placed or the so-called maximum independent set problem, is yet another
common problem. Although the label size maximization model is as easy as the
decision model, the label number maximization model has been considered to be
harder. Most of cases where we can tackle the decision models in polynomial time
are more or less comparable to 2SAT, and yet the label number maximization
model is relatively more difficult (like MAX-2SAT). In 1998, Agarwal et al.[1]
provided a (1 + 1/k)-factor algorithm that runs in O(n log n + n2k−1) time, for
any integer k ≥ 1, for fixed-height rectangle label placement model in the plane
and an O(log n)-factor approximation algorithm that runs in O(n log n) time
for arbitrary rectangle labels. Poon et al.[19] further considered the weighted
case in which each label is associated with a given weight and provided the
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same approximation result for 4P fixed-height weighted rectangle model. They
also gave a (2+ ε)-factor approximation algorithm that runs in O(n2/ε) time for
1d4S weighted rectangle label. As for arbitrary rectangle label, Berman et al.[2]
presented a �O(logk n)�-factor approximation algorithm that runs in O(nk+1)
time, for any integer k ≥ 2. In 2004, Chan[3] improved the previous results
an gave a (1 + 1/k)-factor algorithm that runs in O(n log n + nΔk−1) time,
where Δ ≤ n denotes the maximum number of rectangles whose intersection
is nonempty, for fixed-height rectangle label model and a �O(logk n)�-factor ap-
proximation algorithm that runs in nO(k/ log k) time for arbitrary rectangle label.

We first investigate the maximization version of the feasible number of labels
when the anchors lie on a horizontal line. That is, we want to maximize the
number of labels whose associated anchors lie on a horizontal line for which a
feasible placement exists that no two labels overlap. In other words, these labels
form an independent set. We refer to this model as Max-1d4P rectangle label
model, or Max-1d4P for short. Since most of the decision model of map labeling
problems on a single line are easily solved in a greedy manner, we are look-
ing for an almost linear time algorithm for the Max-1d4P model. As a contrast
to previous related results[1,3] in which the maximum independent set of label
placement problem in the plane was considered and polynomial time approxi-
mation schemes (PTAS) were provided using the line stabbing technique and the
shifting idea, we present a faster approach based on a different form of dynamic
programming strategy and a particular analysis to solving this Max-1d4P model
in O(n log Δ) time which improves previously known results that run in O(n2)
and O(nΔ) time in the worse case. We also point out an implicit difference
between point labeling problem and label placement problem, mentioned in the
intuitive proof of the reduction[19]. In addition, we further extend our method to
solve the fixed-height rectangle label placement model in the plane and present
a (1 + 1/k)-factor polynomial time approximation scheme (PTAS) algorithm
that runs in O(n log n + kn log4 Δ + Δk−1) time, using O(kΔ3 log4 Δ + kΔk−1)
storage.

This paper is organized as follows. In Section 2, we introduce some definitions.
Then we present in Section 3 an O(n log Δ) time algorithm for the Max-1d4P
model. In Section 4 we specify an implicit difference of point labeling problem
and label placement problem and give a (1+1/k)-factor PTAS algorithm for the
fixed-height rectangle label placement model in the plane. Finally we conclude
in Section 5 with some discussions of future work.

2 Preliminaries

Consider a set of anchors A = {A1, A2, . . . , An} on a horizontal line, and each
anchor Ak is associated with its position (in x-coordinate) xk and label size lk.
The aim is to maximize the number of feasible labels so that they do not overlap
with each other. A feasible solution to the point labeling problem is called a
realization.
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Since we consider the problem on a horizontal line and put the label either
above or below the line, we can simply associate a 2-tuple, namely (a, b), to
represent the current labeling state of a realization R, with R.a = a and R.b = b,
representing respectively the coordinates of the right edge of the rightmost label
above the line and below the line. A realization R will also contain a specification
of the label placement at feasible positions associated with a subset of anchors.
To be more precise, we can use Ai.� ∈ R, where Ai.� ∈ {0, 1, 2, 3, 4} indicates the
label position for anchor Ai included in R, with Ai.� = 0 representing anchor Ai

is not labeled. If R contains k-feasible labels, i.e., it contains k non-zero Ai.�’s,
then R is called a k-realization, and we use R.c to denote the cardinality of
the subset of feasible labels. We shall use the notation R to not only represent a
realization R of A, which corresponds to a subset, �, of feasible anchors, i.e., � ⊆
A, but also use R.a, R.b and R.c to represent the state of its configuration and its
size, respectively. Let us assume that the set of anchors has been ordered so that
their x-coordinates are in strictly increasing order. That is, x1 < x2 < . . . < xn.
Let Ai denote the subset of anchors {A1, A2, . . . , Ai}, for i = 1, 2, . . . , n, and Ri

denote a realization of Ai for some i. An optimal solution is a realization Rn

such that Rn.c is maximum among all possible realizations of An.
We shall process the anchors, and their associated labels, in ascending order of

their x-coordinates, i.e., in the order of A1, A2, . . . , An. Given a realization Ri−1

of Ai−1, and the next anchor, Ai, i > 1, the placements of the label of Ai that
do not overlap the last label both above and below the line in Ri−1 are called
feasible label placements. Before proceeding we define the notion of equivalence
of two realizations:
Definition 1. Given two realizations Ri

1 and Ri
2 of Ai such that Ri

1.c and Ri
2.c

are equal, if {Ri
1.a, Ri

1.b} = {Ri
2.a, Ri

2.b}, we say that the two realizations are
equivalent in size, or simply equivalent to each other.
Based on the above definition, for a realization Ri with Ri.a < Ri.b, we always
swap the upper and lower sides of the realization. That is, a realization will be
represented in a normal form in which the coordinate above the line is no less
than the coordinate below the line, i.e., Ri.a ≥ Ri.b without loss of generality.
Here we define the comparability of two realizations.
Definition 2. For any two realizations Rk

i and Rk
j , 1 ≤ k ≤ n, if the following

statements hold,
(1). Rk

i .c = Rk
j .c, and

(2). Rk
i .a ≤ Rk

j .a, and Rk
i .b ≤ Rk

j .b then we say that the two realizations are
comparable and Rk

i is better than Rk
j . Otherwise, they are incomparable.

Lemma 1. Let R be an optimal realization of A. Suppose Rk
i and Rk

j are two
comparable realizations for Ak and Rk

i is better than Rk
j for some n ≥ k ≥ 1.

If R contains Rk
j as a subset, then there exists another optimal solution that

contains Rk
i .

By using a 2-tuple to represent the labeling state of a realization, we can trans-
form it into a point in the two-dimensional plane. To be more precise, given a
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realization R represented by a 2-tuple (R.a, R.b), we transform it into a point
P (x, y), where x = R.a and y = R.b, in the plane. The two equivalent realiza-
tions will then be transformed into two points that are symmetric with respect
to the line x = y. From now on, we use P.x and P.y to represent the x and y
coordinates of a point P in the plane, and P.c to represent its associated cardi-
nality. We assume the point labeling on a line starts at the origin without loss of
generality, which means the transformed points in the plane are all in the first
quadrant. Using the normal form representation of a realization, all realizations
will be mapped to points that are all located in the first quadrant below the line
x = y.

Based on the comparability definition between two realizations, if one is bet-
ter than the other, then the transformed points will carry the relationship of
domination. That is, if realization Rs is better than realization Rt, then point
Pt dominates1 point Ps in the plane. On the other hand, if they are incom-
parable realizations, the transformed points in the plane do not dominate each
other.

We shall also transform each anchor Ak with its position xk and its given
label size (or length) lk, 1 ≤ k ≤ n, into a point of another kind PAk(xk, yk)
located on line x = y in the plane, that is, xk = yk. We define the operations in
the plane as follows.

Definition 3. Given a point P (x, y) representing a realization and a point PAk

(xk, xk) representing a new label Ak.� of length lk in the plane, xk − lk ≥ x, we
have the following operations depending on how we select the placement of label
Ak.� of the anchor Ak for the realization P .

1. Ak.� = 1, then P (x, y) generates P ′(xk + lk, y).
2. Ak.� = 2, then P (x, y) generates P ′(xk, y).
3. Ak.� = 3, then P (x, y) generates P ′(x, xk).
4. Ak.� = 4, then P (x, y) generates P ′(x, xk + lk).

The cardinality associated with point P ′ will be one more than that with point
P . If the y-coordinate of P ′ is greater than the x-coordinate, we do the swapping
operation to exchange the x- and y- coordinates. We call point P the parent
point of P ′ and the generated point P ′ the child point of P .

Property 1. Given a parent point P (x, y) and a point PAk(xk, xk) with label
length lk,

1. If y > xk, the point cannot apply label at any position.
2. If xk ≥ y > xk − lk, the point can apply label at position 4.
3. If xk − lk ≥ y, the point can apply label at positions 3 and 4.
4. If x > xk, the point can apply label at neither position 1 nor 2.
5. If xk ≥ x > xk − lk, the point can apply label at positions 1 and 4.
6. If xk − lk ≥ x, the point can apply label at positions 1, 2, 3 and 4.

1 If Pt.x ≥ Ps.x, and Pt.y ≥ Ps.y, then Pt is said to dominate Ps.
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3 Point Labeling on a Single Line

We adopt a greedy method to solve the model Max-1d4P, namely, we will
process the anchors in sequential manner, and maintain a set of realizations that
reflect the best possible labeling, ignoring those that are known to be no better
than the present set of realizations, after each anchor is processed. The following
lemma is obvious.

Lemma 2. Given two realizations Ri
s and Ri

t, for i = 1, 2, . . . , n, we will select
Ri

s over Ri
t, either if Ri

s.c > Ri
t.c, or if Ri

s.c = Ri
t.c, and Ri

s is better than Ri
t.

Due to space constraint, we shall skip the proofs. The details of the proofs can
be found in Yu et al.[22].

Lemma 3. Given a realization Ri−1, if both label placements of the next anchor
Ai at positions 2 and 3 (respectively, positions 1 and 4) are feasible, the selection
of label at position 2 (respectively, position 1), above the line will yield a better
realization Ri.

Agarwal et al.[1] provided a standard dynamic programming method to solve
the fixed-height rectangle label placement model in O(n log n + n2k−1) time if
all the rectangles in the plane are exactly stabbed by k horizontal lines. Poon et
al.[19] used a similar approach to solving the fixed-height rectangle 4P model (we
will specify an implicit difference between these two models later). They both
associated a polygonal line consisting of 2k−1 orthogonal segments to specify all
the possible (2k − 1)-dimensional realizations. For the Max-1d4P model, since
all the rectangles are stabbed by two horizontal lines exactly, it only needs a
two-dimensional table R[x, y] which stores the cardinality of the realization R
with R.a = x and R.b = y (as we introduced in Section 2), and their solution
leads to an O(n2) time algorithm. Chan[3] presented a different form of dynamic
programming and improved the time complexity to O(n log n + nΔk−1) for the
same model. The form R[i, S] stores the cardinality of the realization R associ-
ated with the vertical line x = xi and a set S of disjoint rectangles intersecting
the line x = xi, where xi, 1 ≤ i ≤ n, denotes the abscissas of the left boundaries
of all the rectangles, and R is a maximum independent set of rectangles to the
right of x = xi and intersecting none of S with |S| ≤ k − 1. For the Max-1d4P
model, since all the rectangles are exactly stabbed by two horizontal lines, there
is at most Δ choices for |S| = k − 1 (as k = 2), and thus it takes O(nΔ) time.
Although their dynamic programming methods are apparently different, the op-
erations (inserting or discarding the next rectangle) are executed iteratively for
every possible realization. We provide another form of dynamic programming
strategy and tackle the operations for partial representative realizations instead.
It solves the Max-1d4P model in O(n log Δ) time based on a particular analysis
and improves their quadratic time results (O(n2) and O(nΔ), respectively) in
the worse case. We first observe some properties of the model Max-1d4P.

Proposition 1. Given a realization Ri−1, when both placements at label posi-
tions 1 and 2 (respectively, positions 3 and 4) of next anchor Ai are feasible,
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the selection of label at position 2 (respectively, position 3) will yield a better
realization Ri.

Lemma 4. Given a realization Ri−1, if the label placement of the next anchor
Ai at position 3 is feasible, then label of Ai must be included in an optimal
realization Rn that contains Ri−1, or Ai.� 	= 0.

Corollary 1. Given a realization Ri−1, when the label placement of next anchor
Ai at position 2 is feasible, we have Ai.� 	= 0 in an optimal realization Rn.

We introduce our main idea as follows. Let S[i, j] denote a set of incomparable
realizations Rj of cardinality i, for 1 ≤ i ≤ j ≤ n (i > 0 since A1.� = 2 without
loss of generality). We shall apply a dynamic programming method to process the
anchors and record the ’better’ realizations of each possible cardinality. To find
an optimal realization Rn, we may need to maintain intermediate realizations
S[i, j] for 1 ≤ i ≤ j ≤ n, that have the potential leading to an optimal realization.
As we shall show later, for each j ≤ n we only need to maintain at most five
subsets S[k, j], S[k+1, j], S[k+2, j], S[k+3, j], and S[k+4, j] for some k, which
is a key result of this paper. We shall process the table from j = 1 till n and fill
each entry S[i, j] with a set of incomparable realizations at each step.

The realizations in an incomparable set form a ”point chain” in the plane
without having any point in the chain dominate another. When we encounter a
new anchor Aj , some of the points in this chain of cardinality k, for some k, will
generate new child points, thus getting upgraded to a realization of cardinality k+
1, some will remain as non-upgraded with cardinality k, and are kept as potential
candidates without including Aj , leading possibly to an optimal solution, and
some get eliminated due to some new child points upgraded from points of
cardinality k − 1. At the end after anchor An is processed, the realizations in
the non-empty entry S[i, n] with the largest i are optimal solutions.

To sum up, some points in the set S[i, j] may simply move to S[i, j + 1]
without increasing cardinality, following what we call a non-upgrading process.
Other points in the set may generate points which are included in S[i+1, j +1],
whose cardinality is incremented, following what we call an upgrading process.
When a point moves from one entry to another, it should be compared with
other points in the target entry, and only better ones are kept. We repeat such
operations until we have processed all anchors. The following is the algorithm
for the model Max-1d4P.

Algorithm 1M4P. Find the maximum cardinality of map labeling for the model
Max-1d4P.

Input. A set of anchors A = {A1, . . . , An} sorted by x-coordinates and associ-
ated set of labels.

Output. The maximum cardinality of an optimal realization Rn for Max-1d4P.
Method.
0. /*Use dynamic programming method on two parameters S[i, j] with the an-

chor ordering in column and the cardinality of possible solutions in row.
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Initialize the first entry S[1, 1] with the label placement of the first anchor
at position 2, that is, A1.� = 2.*/

1. For j = 2 to n
Let the largest cardinality of non-empty entries in column j − 1 be k;
For i = k down to max{k − 4, 0}

1-1. Classify the points in S[i, j − 1] into upgrading and
non-upgrading classes according to Aj ;

1-2. Move the non-upgraded points into S[i, j];
1-3. Move the upgraded points into S[i + 1, j];
1-4. Compare the newly upgraded points with existing points in

S[i + 1, j] and keep the better ones;
2. Output the largest i of the nonempty entry S[i, n];

In what follows we will prove a few results that help establish the correctness
of our algorithm. Let Ps and Pt be two incomparable points, and PAk(xk, xk)
be a point associated with the next anchor Ak.

(a) (b)

PsPs

Pt Pt

P Ak P Ak

PtPs

P Ak

Fig. 1. Illustration of Lemma 5

Lemma 5. For the following two cases, where Ps and Pt correspond to two
realizations, and the next anchor is Ak associated with PAk(xk, xk),

(a) Ps.x ≥ Pt.x, Ps.y < Pt.y, Ps.c < Pt.c and xk ≥ Pt.y
(b) Ps.y ≥ Pt.y, Ps.x < Pt.x, Ps.c < Pt.c and xk ≥ Pt.x

Pt is better than Ps.

Lemma 6. The points in an incomparable set going through an upgrading process
collectively generate at most two incomparable child points.

Theorem 1. After processing an anchor Au, if there is a point with cardinality
k which is the ancestor of a point with cardinality k + 5, then no point with
cardinality k will lead to an optimal solution. That is, the difference in cardinality
of incomparable points is at most four.

By Theorem 1, in computing S[i, j] for 1 ≤ i ≤ j ≤ n, it is sufficient to maintain
at most five consecutive sets of incomparable realizations S[k, ∗], S[k + 1, ∗],
S[k + 2, ∗], S[k + 3, ∗] and S[k + 4, ∗]. We have the following based on the above
two results.
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Theorem 2. The number of points in an incomparable set is bounded by O(Δ),
where Δ is the maximum number of labels whose intersection is nonempty.

Lemma 7. The following operations each take O(log Δ) time.

(1) Classifying points into the upgrading and non-upgrading classes.
(2) Finding two incomparable points among all upgraded points.
(3) The comparison between upgraded points and O(Δ) incomparable points.

Theorem 3. The time complexity of Algorithm 1M4P is O(n log Δ).

When the algorithm terminates, any point in nonempty S[i, n] with the largest i
is an optimal solution (of maximum cardinality i). The actual placement of labels
can be obtained if we record the processing history when a point is upgraded.

4 Fixed-Height Rectangle Label Placement in the Plane

First, we point out an implicit difference between point labeling problem and
label placement problem. As point labeling problem was considered, where a
constant number of label positions is allowed for each anchor, all label positions of
each anchor were regarded as pairwise intersecting and the reduction from point
labeling problem to label placement problem seemed intuitive[1,19]. However, for
common 4P model, if there are more than one anchor lying on some horizontal
line (or vertical line) with nonempty label intersection, we have the following
implicit difference. Figure 2 shows that for anchor Ai, the selection of label at
position 1 will affect the selection of the label at position 3 for anchor Aj . They
could be regarded as intersecting, but in fact they are not. This problem can be
resolved by set manipulation instead. Let a selection set of each anchor consist of
all its label positions. We then allow at most one label position of each selection
set be included in the solution. This doesn’t affect the asymptotic running time
but increase the implementation complexity.

ε ε

ε

Ai Aj

ε

Fig. 2. An example shows an implicit difference between point labeling problem and
label placement problem

For the fixed-height label placement model in the plane, Agarwal et al.[1]
provided a (1+1/k)-factor PTAS algorithm running in O(n log n+n2k−1) time,
and later Chan[3] improved it and presented a (1 + 1/k)-factor PTAS algorithm
running in O(n log n+nΔk−1) time, for an integer k ≥ 1. They both use the line
stabbing technique and the shifting idea of Hochbaum and Maass[10]. Assume all
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the fixed-height rectangles are stabbed by m horizontal lines and each rectangle
is stabbed by one line exactly, and let Ci, 0 ≤ i ≤ k, be the sub-collection of
all rectangles which are not stabbed by any horizontal line y = yl with l ≡ i
mod (k + 1). Then Ci is a union of groups of rectangles, where each group can
be stabbed by k horizontal lines and no two rectangles from different groups
intersect. If we can solve the fixed-height label placement model for each group
of n′ rectangles for a given integer k ≥ 1 in O(t(k, n′)) time, then we take
the union of all groups to obtain a solution of Ci, ∀i, and select one of the
solutions, O′, of maximum cardinality. The total time complexity is bounded by
O(t(k, n)) time and it is trivial to show that k|O∗| ≤ (k +1)|O′|, where O∗ is an
optimal solution[3]. Hence we consider the fixed-height label placement model
for n rectangles stabbed by k horizontal lines, for a given integer k ≥ 1, from now
on. Given a set of n fixed-height rectangles r1, r2, . . . , rn sorted by x-coordinates
of the left boundaries of all rectangles, stabbed by k horizontal lines L1, . . . , Lk,
the following property is immediate by the line stabbing technique.

Property 2. From left to right, as we process ri stabbed by Ll, ri intersects at
most two rectangles among r1, . . . , ri−1: rf , rg, or rg, rh, where rf , rg, and rh,
are last rectangles of r1, . . . , ri−1 on lines Ll−1, Ll, and Ll+1, respectively.

We associate a polygonal line consisting of 2k−1 orthogonal segments to specify
all the possible (2k−1)-dimensional realizations as used in Agarwal et al.[1]. How-
ever, based on the above property, we only need to consider the last rectangles on
lines Ll−1, Ll, and Ll+1 (i.e., three labels, and all the possible five-dimensional
realizations), as we process each rectangle ri, 1 ≤ i ≤ n, stabbed by line Ll, for
some l. In addition, we use the same dynamic programming method in Section 3
and extend our two-dimensional transformation for point labeling on a single line
to (2k−1)-dimensional transformation for this model as follows. We transform a
(2k − 1)-tuple representation (R.x1, R.x2, . . . , R.x2k−1) of the labeling state of a
realization R into a point P (x1, x2, . . . , x2k−1) in the (2k−1)-dimensional space.
Therefore, as we process each rectangle ri, 1 ≤ i ≤ n, stabbed by line Ll, for some
l, we only need to consider the five-dimensions (x2l−2, x2l−1, x2l, x2l+1, x2l+2) of
present incomparable points. The next lemma is an extension of Theorem 1.

Lemma 8. After processing a rectangle ri, if there is a point in (2k − 1)-
dimensional space with cardinality c which is the ancestor of a point with car-
dinality c + (4k + 1), then no point with cardinality c will lead to an optimal
solution. That is, the difference in cardinality of incomparable points is at most
4k. More precisely, after processing a rectangle ri, if there is an ancestor point
P with cardinality c upgraded by at least five rectangles stabbed by the same line,
then no point with cardinality c will lead to an optimal solution.

By Lemma 8, as we compute S[i, j] for 1 ≤ i ≤ j ≤ n, it is sufficient to maintain
at most min{4k + 1, n} consecutive sets of incomparable points S[c, ∗], S[c +
1, ∗], . . . , S[c + min{4k, n− 1}, ∗]. We further extend Theorem 2 to the following
lemma.
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Lemma 9. The number of points in an incomparable set is bounded by O(Δk−1),
where Δ is the maximum number of rectangles whose intersection is nonempty.

We construct two three-dimensional range trees T1 and Tk, and k − 2 five-
dimensional range trees T2, . . . , Tk−1 to determine whether the placement of
next rectangle ri stabbed by line Lj is feasible or not, by a range query of Tj in
five-dimension (x2j−2, x2j−1, x2j , x2j+1, x2j+2). According to the above lemmas,
we extend Lemma 7 and Theorem 3 to obtain the result.

Theorem 4. Given an integer k ≥ 1, the label placement problem of n fixed-
height rectangles stabbed by k horizontal lines can be solved in O(n log n+kn log4

Δ + Δk−1) time and O(kΔ3 log4 Δ + kΔk−1) space.

5 Concluding Remarks

We have extended the decision version of the map labeling problem on a hori-
zontal line to an optimization version where the number of feasible labels is to
be maximized. It is a variation of maximum independent set problem on inter-
val graphs. Improving the previous related results, we have presented a faster
O(n log Δ) time algorithm for the Max-1d4P model by dynamic programming on
two parameters: the anchor ordering and the cardinality of possible solutions. In
addition, we have further extended our method to improve the previous results
for the fixed-height rectangle label placement model in the plane and presented
a (1 + 1/k)-factor PTAS algorithm that runs in O(n log n + kn log4 Δ + Δk−1)
time, using O(kΔ3 log4 Δ + kΔk−1) storage.

We conclude with two open questions concerning map label number maximiza-
tion model. First, whether there exist solutions for Max-Slope4P fixed-height(or
width) rectangle label model remains to be seen. Secondly, how to improve Al-
gorithm 1M4P to obtain a linear time algorithm solving the Max-1d4P model
given sorted anchors, and further extend it to reduce the time complexity of
PTAS for label placement problem in the plane is worthwhile.
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