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Abstract. An interesting class of production/inventory control prob-
lems considers a single product and a single stocking location, given a
stochastic demand with a known non-stationary probability distribution.
Under a widely-used control policy for this type of inventory system, the
objective is to find the optimal number of replenishments, their tim-
ings and their respective order-up-to-levels that meet customer demands
to a required service level. We extend a known CP approach for this
problem using a cost-based filtering method. Our algorithm can solve to
optimality instances of realistic size much more efficiently than previous
approaches, often with no search effort at all.

1 Introduction

Inventory theory provides methods for managing and controlling inventories
under different constraints and environments. An interesting class of produc-
tion/inventory control problems is the one that considers the single-location,
single-product case under non-stationary stochastic demand. Such a problem
has been widely studied because of its key role in Material Requirement Plan-
ning [30].

We consider the following inputs: a planning horizon of N periods and a de-
mand dt for each period t ∈ {1, . . . , N}, which is a random variable with prob-
ability density function gt(dt). In the following sections we will assume without
loss of generality that these variables are normally distributed. We assume that
the demand occurs instantaneously at the beginning of each time period. The
demand we consider is non-stationary, that is it can vary from period to period,
and we also assume that demands in different periods are independent. A fixed
delivery cost a is considered for each order and also a linear holding cost h is
considered for each unit of product carried in stock from one period to the next.
We assume that it is not possible to sell back excess items to the vendor at the
end of a period. As a service level constraint we require the probability to be
at least a given value α that at the end of every period the net inventory will
not be negative. Our aim is to find a replenishment plan that minimizes the



expected total cost, which is composed of ordering costs and holding costs, over
the N -period planning horizon, satisfying the service level constraints.

Different inventory control policies can be adopted to cope with the described
problem. A policy states the rules to decide when orders have to be placed and
how to compute the replenishment lot-size for each order. For a discussion of in-
ventory control policies see [29]. One of the possible policies that can be adopted
is the replenishment cycle policy, (R,S). Under the non-stationary demand as-
sumption this policy takes the form (Rn, Sn) where Rn denotes the length of
the nth replenishment cycle and Sn the order-up-to-level for replenishment (Fig.
1). In this policy a wait-and-see strategy is adopted, under which the actual or-

Fig. 1. (Rn,Sn) policy. Rn denotes the set of periods covered by the nth replenishment
cycle; Sn is the order-up-to-level for this cycle; Q̃n is the expected order quantity;
d̃i + d̃i+1 + . . . + d̃j is the expected demand; b(i, j) is the buffer stock required to meet
service level α

der quantity Qn for replenishment cycle n is determined only after the demand
in former periods has been realized. The order quantity Qn is computed as the
amount of stock required to raise the closing inventory level of replenishment cy-
cle n−1 up to level Sn. In order to provide a solution for our problem under the
(Rn, Sn) policy we must populate both the sets Rn and Sn for n = {1, . . . , N}.

Early works in this area adopted heuristic strategies such as those proposed
by Silver [20], Askin [2] and Bookbinder & Tan [5]. The first complete solu-
tion method for this problem was introduced by Tarim & Kingsman [23], who
proposed a certainty-equivalent Mixed Integer Programming (MIP) formulation
for computing (Rn, Sn) policy parameters. Empirical results showed that such
a model is unable to solve large instances, but Tarim & Smith [24] introduced
a more compact and efficient Constraint Programming (CP) formulation of the
same problem that showed a significant computational improvement over the
MIP formulation.



This paper extends Tarim & Smith’s work, retaining their model but aug-
menting it with a cost-based filtering method to enhance domain pruning. Cost-
based filtering is an elegant way of combining techniques from CP and Opera-
tions Research (OR) [7, 8]: OR-based optimization techniques are used to remove
values from variable domains that cannot lead to better solutions. This type of
domain filtering can be combined with the usual CP-based filtering methods and
branching heuristics, yielding powerful hybrid search algorithms. Cost-based fil-
tering is a novel technique that has been the subject of significant recent research,
but to the best of our knowledge has not yet been applied to stochastic inven-
tory control. In the following sections we will show that it can bring a significant
improvement when combined with the state-of-the-art CP model for stochastic
inventory control.

The paper is organized as follows. Section 2 describes the CP model intro-
duced by Tarim & Smith. Section 3 describes a relaxation that can be efficiently
solved by means of a shortest path algorithm, and produces tight lower bounds
for the original problem which is used to perform further cost-based filtering.
Section 4 evaluates our methods. Section 5 draws conclusions and discusses fu-
ture extensions.

2 A CP model

In this section we review the CP formulation proposed by Tarim & Smith [24].
First we provide some formal background related to constraint programming.
Recall that a Constraint Satisfaction Problem (CSP) [1, 6] is a triple 〈V,C,D〉,
where V is a set of decision variables each with a discrete domain of values
D(Vk), and C is a set of constraints stating allowed combinations of values for
subsets of variables in V . Finding a solution to a CSP means assigning values to
variables from the domains without violating any constraint in C. We may also
be interested in finding a feasible solution that minimizes (maximizes) the value
of a given objective function over a subset of the variables. Constraint solvers
typically explore partial assignments enforcing a local consistency property using
either specialized or general purpose propagation algorithms. Such propagation
algorithms in general exploit some structure of the problem to prune decision
variable domains in more efficient ways.

The stochastic programming (for a detailed discussion on stochastic program-
ming see [33]) formulation for the (Rn, Sn) policy proposed in [5] is

min E{TC} =
∫

d1

∫
d2

. . .

∫
dN

N∑
t=1

(aδt + h ·max(It, 0)) g1(d1)g2(d2) . . . gN (dN )

d(d1)d(d2) . . .d(dN )
(1)



subject to, for t = 1 . . . N

It + dt − It−1 ≥ 0 (2)
It + dt − It−1 > 0 ⇒ δt = 1 (3)

Pr{It ≥ 0} ≥ α (4)
It ∈ Z, δt ∈ {0, 1} (5)

Each decision variable It represents the inventory level at the end of period t.
The binary decision variables δt state whether a replenishment is fixed for period
t (δt = 1) or not (δt = 0). The objective function (1) minimizes the expected
total cost over the given planning horizon.

The respective CP formulation proposed in [24] is

min E{TC} =
N∑

t=1

(
aδt + hĨt

)
(6)

subject to, for t = 1 . . . N

Ĩt + d̃t − Ĩt−1 ≥ 0 (7)
Ĩt + d̃t − Ĩt−1 > 0 ⇒ δt = 1 (8)

Yt ≥ j · δj j = 1, . . . , t (9)
element (Yt, b(·, t),Ht) (10)

Ĩt ≥ Ht (11)
Ĩt,Ht ∈ Z+ ∪ {0}, δt ∈ {0, 1}, Yt ∈ {1, . . . , N} (12)

where b(i, j) is defined by

b(i, j) = G−1
di+di+1+...+dj

(α)−
j∑

k=i

d̃k

The element(X, list[], Y ) constraint [31] enforces a relation such that variable Y
represents the value of element at position X in the given list. Gdi+di+1+...+dj

is the cumulative probability distribution function of di + di+1 + . . . + dj . It is
assumed that G is strictly increasing, hence G−1 is uniquely defined.

Each decision variable Ĩt represents the expected inventory level at the end
of period t. Each d̃t represents the expected value of the demand in a given
period t according to its probability density function gt(dt). The binary deci-
sion variables δt state whether a replenishment is fixed for period t (δt = 1)
or not (δt = 0). The objective function (6) minimizes the expected total cost
over the given planning horizon. The two terms that contribute to the expected
total cost are ordering costs and inventory holding costs. Constraint (7) enforces
a no-buy-back condition, which means that received goods cannot be returned
to the supplier. As a consequence of this the expected net inventory at period t
must be no less than the expected net inventory in period t+1 plus the expected



demand in period t. Constraint (8) expresses the replenishment condition. We
have a replenishment if the expected net inventory at period t is greater than
the expected net inventory in period t + 1 plus the expected demand in period
t. This means that we received some extra goods as a consequence of an order.
Constraints (9,10,11) enforce the required service level α. This is done by spec-
ifying the minimum buffer stock required for each period t in order to ensure
that, at the end of each and every time period, the probability that the net in-
ventory will not be negative is at least α. These buffer stocks, which are stored in
matrix b(·, ·), are pre-computed following the approach suggested in [23]. In this
approach the authors transformed a chance-constrained model, that is a model
where constraints on some random variables have to be maintained at prescribed
levels of probability, in a completely deterministic one. For further details about
chance-constrained programming see [32]. More specifically the authors devel-
oped a certainty-equivalent constraint for each chance constraint that enforces
the required service level at the end of each replenishment cycle.

2.1 Computational Complexity

The chance-constrained problem presented in [5] for the (Rn, Sn) policy un-
der stochastic demand is PSPACE-complete as shown in [25]. We assume that
negative orders are not allowed, so that if the actual stock exceeds the order-up-
to-level for that period, this excess stock is carried forward and not returned to
the supply source. However, such occurrences are regarded as rare events and ac-
cordingly the cost of carrying the excess stock and its effect on the service level of
subsequent periods is ignored. Under these assumptions the chance-constrained
problem can be expressed by means of the certainty-equivalent model we pre-
sented, where buffer stocks for each possible replenishment cycle are computed
independently. In [4] Florian et. al. gave an overview for the complexity of de-
terministic production planning. In particular they established NP-hardness for
this problem under production cost (composed of a fixed cost and a variable unit
cost), zero-holding cost and arbitrary production capacity constraint. They also
extended this result by considering other possible cost functions and capacity
constraints. Polynomial algorithms are discussed in the same paper for specific
cases. Among these they cited Wagner and Whitin’s [27] work, where the infi-
nite capacity deterministic production planning problem is solved in polynomial
time. Wagner and Whitin’s algorithm relies upon their Planning Horizon Theo-
rem, which exploits the fact that the feasible region is a closed bounded convex
set and that the cost function is concave [4], thus the minimum value for such an
objective function is achieved at one of the extreme points of this set. The spe-
cial structure of the set allows a simple characterization of the production plans
corresponding to its extreme points. The core insight proposed by Wagner and
Whitin is the fact that in the search for the optimal policy it is sufficient to con-
sider programs in which at period t one does not both place an order and bring
in inventory. Their Planning Horizon Theorem states that if it is optimal to incur
a setup cost in period t, when periods 1, . . . , t are considered in isolation, then
we may retain this decision for the N period model without losing optimality.



Therefore it is possible to adopt an optimal program for period 1, . . . , t− 1 con-
sidered separately. It is easy to see that the certainty-equivalent model described
in the former section is an over-constrained version of the infinite capacity deter-
ministic production planning problem. The additional constraints in the model
we presented enforce buffer stocks for each replenishment cycle. Since we have
buffer stocks, the last period of a replenishment cycle usually requires a positive
inventory in our certainty-equivalent model, so it is possible that an order is
placed even if the inventory level is not null. Therefore the simple characteriza-
tion of optimal programs proposed by Wagner and Whitin cannot be applied,
since buffer stock carried from former periods may affect the cost of subsequent
programs.

We shall now show, by using a counter-example, that Wagner and Whitin’s
algorithm cannot be applied to the over-constrained problem, for which therefore
no polynomial algorithm is known. Let us consider a 3-period planning horizon.
The demand is normally distributed in each period with coefficient of variation
0.3. The mean values of the demand are respectively 240, 60, 200 for periods 1, 2,
3. The required service level is 95%, the ordering cost is 130 and the holding cost
is 1. The required buffer stock levels for the possible replenishment cycles are
b(1, 1) = 118, b(2, 2) = 30, b(3, 3) = 99, b(1, 2) = 122, b(2, 3) = 103, b(1, 3) = 157.
The optimal policy can be easily obtained by solving our certainty-equivalent
model (Fig. 2 - c). Such a policy fixes orders in periods 1 and 3 and its cost is
663. Following the same reasoning in [27] (Table 1) the optimal plan for period

Fig. 2. a) The infeasible policy and its cost obtained by means of Wagner and Whitin
algorithm. b) The respective feasible policy and its cost. c) The optimal policy and its
cost obtained by using our certainty-equivalent model.

1 is to order (entailing an ordering cost of 130 and a holding cost of 118). Two
possibilities must be evaluated for period 2; order in period 2, and use the best
policy for period 1 considered alone (at a cost of 160 + 248 = 408); or order
in period 1 for both periods, and carry inventory into period 2 (at a cost of
130 + 122 · 2 + 60 = 434). The better policy appears to be the first one, but it is
actually the second one. In period 3, if the algorithm in [27] worked there would



Period 1 2 3
248 408 637

434 784
1061

Minimum cost 248 408 637
Optimal policy 1 2 3

Table 1. Wagner and Whitin algorithm steps. In the optimal policy row only the last
period is shown; 3 indicates that the optimal policy for periods 1 through 3 is to order
in period 3 to satisfy d̃3 and adopt an optimal policy for periods 1 through 2 considered
separately.

be three alternatives: order in period 3, and use the best policy for period 1 and
2 considered alone (at a cost of 229 + 408 = 637); or order in period 2 for the
latter two periods and use the best policy for period 1 considered alone (at a cost
of 536+248 = 784); or order in period 1 for the entire three periods (at a cost of
1061). The policy obtained by Wagner and Whitin’s algorithm is therefore the
best among these three, which places an order in period 1, 2 and in period 3 at a
cost of 637. Unfortunately this policy is infeasible because it requires a negative
order quantity in period 2 (Fig. 2 - a). The respective feasible policy that places
orders in the same periods has a higher cost of 130 ·3+118+58+99 = 665 (Fig.
2 - b). This counter-example shows that Wagner and Whitin’s algorithm is not
suitable for our deterministic equivalent problem.

2.2 Domain pre-processing

In [24] the authors showed that a CP formulation for computing optimal (Rn, Sn)
policies provides a more natural way of modeling the problem. In contrast to
the equivalent MIP formulation the CP model requires fewer constraints and
provides a nicer formulation. However, the CP model has two major drawbacks.
Firstly, in order to improve the search process and quickly prove optimality, tight
bounds on the objective function are needed. Secondly, even when it is possible
to compute a priori the maximum values that such variables can be assigned to,
these values (and therefore the domain sizes of the Ĩt variables) are large. The
domain size value is equal to the amount of stock required to satisfy subsequent
demands until the end of the planning horizon, meeting the required service level
when only a single replenishment is scheduled at the beginning of the planning
horizon.

To address the domain size issue, Tarim & Smith proposed two pre-processing
methods in order to reduce the size of the domains before starting the search
process, by exploiting properties of the given model and of the (Rn, Sn) policy.
Method I computes a cost-based upper bound for the length of each possible
replenishment cycle T (i, j), starting in period i, for all i, j ∈ {1, . . . , N}, i ≤ j.
Note that T (i, j) denotes the time span between two consecutive replenishment
periods i and j+1. Method I therefore identifies sub-optimal replenishment cycle
lengths allowing a proactive off-line pruning, which eliminates all the expected



inventory levels that refer to longer sub-optimal replenishment cycles. Method
II employs a dynamic programming approach, by considering each period in an
iterative fashion and by taking into account in each step two possible course of
action: an order with an expected size greater than zero is placed or no order
(equivalently an order with a null expected size) is placed in the considered
period within our planning horizon. The effects of these possible actions in each
step are reflected in the decision variable domains by removing values that are
not produced by any course of action.

3 Cost-based filtering by relaxation

The CP model as described so far suffers from a lack of tight bounds on the
objective function. We now propose a relaxation for our model to compute a
valid lower bound at each node of the search tree. We first show that the CP
model can be reduced to a Shortest Path Problem if we relax constraints (7,8)
for replenishment periods. That is for each possible pair of replenishment cycles
〈T (i, k−1), T (k, j)〉 where i, j, k ∈ {1, . . . , N} and i < k ≤ j, we do not consider
the relationship between the opening inventory level of T (k, j) and the closing
inventory level of T (i, k − 1).

This corresponds to allowing negative replenishments, or the ability to sell
stock back to the supplier. In this way we obtain a set S of N(N +1)/2 possible
different replenishment cycles. Our new problem is to find an optimal set S∗ ⊂ S
of consecutive disjoint replenishment cycles that covers our planning horizon at
the minimum cost. We will show that the optimal solution to this relaxation is
given by the shortest path in a graph from a given initial node to a final node
where each arc has a specific cost.

If N is the number of periods in the planning horizon of the original problem,
we introduce N + 1 nodes. Since we assume, without loss of generality, that
an order is always placed at period 1, we take node 1, which represents the
beginning of the planning horizon, as the initial one. Node N + 1 represents the
end of the planning horizon. Recall that b(i, j) denotes the minimum buffer stock
level required to satisfy a given service level constraint during the replenishment
cycle T (i, j). For each possible replenishment cycle T (i, j − 1) such that i, j ∈
{1, . . . , N + 1} and i < j, we introduce an arc (i, j) with associated cost Q(i, j),
where

Q(i, j) = a + h

j−1∑
k=i+1

(k − i)dk + h(j − i)b(i, j − 1) (13)

The cost of a replenishment cycle is the sum of two components: a fixed ordering
cost a that is charged at the beginning of the cycle when an order is placed, and
a variable holding cost h charged at the end of each time period within the
replenishment cycle and proportional to the amount of stocks held in inventory.
Since we are dealing with a one-way temporal feasibility problem [27], when
i ≥ j, we introduce no arc. The connection matrix for such a graph, of size
N × (N + 1), can be built as shown in Table 2.



1 2 . . . j . . . N + 1

1 − Q(1, 2) . . . Q(1, j) . . . Q(1, N + 1)
... − −

. . .
...

. . .
...

i − − − Q(i, j) . . . Q(i, N + 1)
... − − − −

. . .
...

N − − − − − Q(N, N + 1)

Table 2. Shortest Path Problem Connection matrix

By construction the cost of the shortest path from node 1 to node N + 1 in
the given graph is a valid lower bound for the original problem, as it is a solution
of the relaxed problem. Furthermore it is easy to map the optimal solution for
the relaxed problem, that is the set of arcs participating to the shortest path,
to a solution for the original problem by noting that each arc (i, j) represents a
replenishment cycle T (i, j− 1). The feasibility of such a solution with respect to
the original problem can be checked by verifying that it satisfies every relaxed
constraint. To find a shortest path, and hence a valid lower bound, we use an
improved Dijkstra algorithm that finds a shortest path in O(n2) time, where
n is the number of nodes in the graph. Details on efficient implementations
of the Dijkstra algorithm can be found in [19]. Usually Dijkstra’s algorithm
does not apply any specific rule for labeling when ties are encountered in sub-
path lengths. This is incorrect if we pre-process decision variable domains as
described in [24]. In fact pre-processing Method I in [24] relies upon an upper
bound for optimal replenishment cycle length. When a replenishment period
i, i ∈ {1, ..., N} is considered, it looks for the lowest j s.t. j ≥ i after which
it is no longer optimal to schedule the next replenishment. This means that,
if other policies exist that share the same expected cost, only the one that has
shorter, and obviously more, replenishment cycles will be preserved by Method I.
Therefore, when the algorithm is implemented in this filtering approach, we need
to introduce a specific rule for node selection in order to make sure that, when
more optimal policies exist, our modified algorithm will always find the one that
has the highest possible number of replenishment cycles (i.e. the shortest path
with the highest possible number of arcs). As there is a complete ordering among
nodes, we can easily implement this rule when labeling by always choosing as
ancestor the node that minimizes the distance from the source and that has the
highest index.

We now see how to use this relaxation during the search process when a
partial solution is provided. If in a given partial solution a decision variable
δk, k ∈ {1, . . . , N} has been already set to 0, then we can remove from the
network every inbound arc to node k and every outbound arc from node k.
This prevents node k from being part of the shortest path, and hence prevents
period k from being a replenishment period. On the other hand, if δk = 1
then we split the planning horizon into two at period k, thus obtaining two new



subproblems {i, . . . , k−1} and {k, . . . , j}. We can then separately solve these two
subproblems by relaxing them and applying Dijkstra’s algorithm. Note that the
action of splitting the time span is itself a relaxation; in fact it means overriding
constraints (7,8) for t = k. It follows that the cost of the overall solution obtained
by merging the two subproblem solutions is again a valid lower bound for the
original problem. Let R(i, j) denote the required minimum opening inventory
level in period i, i ∈ {1, . . . , N}, to meet demand until period j + 1, where
R(i, j) = b(i, j) +

∑j
t=i d̃t. We can characterize when such a bound is an exact

one: when the solutions of the two subproblems are both feasible with respect
to the original model and the condition

b(i, k − 1) ≤ R(k, j) (14)

is satisfied, the solution obtained by merging those for the independent subprob-
lems is both feasible and optimal for the original problem. We have shown how
to act when each of the possible cases, δi = 1 and δi = 0 is encountered. It is now
possible at any point of the search in the decision tree to apply this relaxation to
compute valid lower bounds. It is also possible to extend this cost-based filter-
ing by considering not only the δt variable assignments, but also the Ĩt variable
assignments. In fact, when we compute the cost of a given replenishment cycle
T (i, j−1) (arc (i, j) in the matrix), we can also consider the current assignments
for the closing inventory levels Ĩt in the periods of this cycle. Since all the closing
inventory levels of the periods within a replenishment cycle are linearly depen-
dent, given an assignment for a decision variable Ĩt we can easily compute all
the other closing inventory levels in the cycle using Ĩt − d̃t − Ĩt−1 = 0, which is
the inventory conservation constraint when no order is placed in period t. When
the closing inventory levels in a replenishment cycle T (i, j − 1) are known it is
easy to compute the overall cost associated with this cycle, which is by definition
the sum of the ordering cost and of the holding cost components, a + h

∑j−1
t=i Ĩt.

We can therefore associate to arc (i, j) the highest cost that is produced by a
current assignment for the closing inventory levels Ĩt, t ∈ {i, . . . , j − 1}, if no
variable has been assigned yet, we simply use the minimum possible cost Q(i, j),
which we defined before.

4 Experimental results

In this section we show the effectiveness of our approach by comparing the
computational performance of the state-of-the-art CP model with that obtained
by our approach. A single problem is considered and the period demands are
generated from seasonal data with no trend: d̃t = 50[1 + sin(πt/6)]. In addition
to the “no trend” case (P1) we also consider three others:

(P2) positive trend case, d̃t = 50[1 + sin(πt/6)] + t
(P3) negative trend case, d̃t = 50[1 + sin(πt/6)] + (52− t)
(P4) life-cycle trend case, d̃t = 50[1 + sin(πt/6)] + min(t, 52− t)



σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 28 0.4 106 2.9 86 1.2 249 6.4 40 0.6 574 17 10 0.1 192 6.4
42 28 0.5 95 2.8 87 1.2 233 5.9 40 0.7 582 15 10 0.2 196 5.4
44 29 0.6 133 4.9 88 1.3 266 8.3 41 0.8 884 26 11 0.2 285 9.0
46 30 0.8 192 7.8 100 1.9 484 19 44 0.9 3495 120 11 0.2 813 31
48 39 1.3 444 20 158 3.2 1024 42 66 2.0 5182 190 18 0.5 1208 48
50 38 0.9 444 21 151 3.6 1024 45 55 1.8 4850 200 15 0.4 1208 52

80

40 52 0.8 1742 78 13 0.2 557 15 19 0.3 9316 300 16 0.3 11276 440
42 49 0.9 1703 61 13 0.2 530 14 20 0.3 17973 530 17 0.3 22291 690
44 51 1.0 4810 210 14 0.2 980 26 21 0.4 38751 1400 18 0.4 50805 1600
46 52 1.1 6063 350 14 0.3 2122 79 31 0.7 103401 4300 18 0.4 111295 4100
48 57 1.9 20670 1400 15 0.3 5284 210 29 0.7 237112 12000 19 0.5 321998 15000
50 57 1.7 18938 1300 15 0.3 5284 230 23 0.6 251265 13000 19 0.5 358174 17000

160

14 1 0.0 141 3.0 56 0.2 156 2.5 1 0.0 112 2.6 1 0.0 116 2.4
16 1 0.0 277 9.0 71 0.3 182 5.1 1 0.0 238 6.7 1 0.0 235 6.8
18 1 0.0 673 19 50 0.3 393 11 1 0.0 799 24 1 0.0 603 16
20 1 0.0 3008 82 61 0.5 1359 22 1 0.0 2887 86 1 0.0 2820 75
22 1 0.0 10620 260 116 1.3 7280 71 1 0.0 14125 380 1 0.0 10739 280
24 1 0.0 61100 1500 165 1.9 31615 320 1 0.0 70996 1800 1 0.0 59650 1500

320

14 1 0.0 149 4.0 1 0.0 181 4.1 1 0.0 109 3.0 1 0.0 128 3.0
16 1 0.0 335 12 1 0.0 361 13 1 0.0 246 8.7 1 0.0 284 9.3
18 1 0.0 813 28 1 0.0 831 28 1 0.0 764 27 1 0.0 700 25
20 1 0.0 2602 94 1 0.0 2415 82 1 0.0 2114 79 1 0.0 2291 82
22 1 0.0 7434 260 1 0.0 7416 260 1 0.0 7006 260 1 0.0 6608 230
24 1 0.0 49663 1600 1 0.0 49299 1500 1 0.0 39723 1400 1 0.0 43520 1500

Table 3. Test set P1

In each test we assume an initial null inventory level and a normally distrib-
uted demand for every period with a coefficient of variation σt/dt for each
t ∈ {1, . . . , N}, where N is the length of the considered planning horizon. We
performed tests using four different ordering cost values a ∈ {40, 80, 160, 320}
and two different σt/dt ∈ {1/3, 1/6}. The planning horizon length takes even
values in the range [24, 50] when the ordering cost is 40 or 80 and [14, 24] when
the ordering cost is 160 or 320. The holding cost used in these tests is h = 1
per unit per period. Our tests also consider two different service levels α = 0.95
(zα=0.95 = 1.645) and α = 0.99 (zα=0.99 = 2.326). All experiments were per-
formed on an Intel(R) Centrino(TM) CPU 1.50GHz with 500Mb RAM. The
solver used for our test is Choco [15], an open-source solver developed in Java.
The heuristic used for the selection of the variable is the usual min-domain /
max-degree heuristic. The value selection heuristic chooses values in increasing
order of size. In our test results a time of 0 means that the Dijkstra algorithm
proved optimality at the root node. A header “Filt.” means that we are apply-
ing our cost-based filtering methods, and “No Filt.” means that we solve the
instance using only the CP model and the pre-processing methods. Tables 3, 4,
5 and 6 compare the performance of the state-of-the-art CP model with that of
our new method.

When a=320, and often when a=160, the Dijkstra algorithm proves optimal-
ity at the root node. When a ∈ {40, 80} Dijkstra is unable to prove optimality
at the root node, so its main contribution consists in computing lower bounds



σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 5 0.1 7 0.1 7 0.1 8 0.1 14 0.3 23 0.4 5 0.1 12 0.2
42 5 0.1 7 0.1 7 0.1 8 0.1 14 0.2 23 0.4 5 0.1 10 0.1
44 5 0.1 7 0.1 7 0.1 8 0.1 14 0.3 23 0.5 5 0.1 10 0.2
46 5 0.1 7 0.1 7 0.1 8 0.2 14 0.3 23 0.5 5 0.1 10 0.2
48 5 0.1 7 0.2 7 0.1 8 0.2 14 0.3 23 0.5 5 0.1 10 0.2
50 5 0.1 7 0.2 7 0.2 8 0.2 14 0.3 23 0.6 5 0.1 10 0.2

80

40 24 0.4 4592 14 17 0.3 275 8.3 46 0.9 2565 63 44 0.9 1711 45
42 24 0.4 4866 13 17 0.3 283 6.7 46 1.0 3027 68 44 0.7 2043 48
44 24 0.4 5091 15 17 4.7 280 7.9 47 1.1 6024 160 45 0.9 4299 120
46 46 0.9 5291 45 19 0.4 545 17 51 1.3 14058 410 49 1.1 10311 290
48 37 0.8 5544 51 19 0.5 545 18 53 1.5 14058 440 53 1.3 10311 310
50 34 0.7 5850 51 19 0.5 545 19 56 1.8 14079 470 54 1.4 10347 330

160

14 2 0.0 166 3.6 25 0.1 84 1.0 1 0.0 148 2.9 1 0.0 171 3.4
16 25 0.1 154 4.3 25 0.1 65 1.2 1 0.0 329 8.6 1 0.0 383 11
18 24 0.1 485 11 27 0.2 174 2.9 1 0.0 948 24 1 0.0 1056 28
20 34 0.3 2041 35 50 0.4 707 7.9 1 0.0 4228 110 1 0.0 4730 120
22 50 0.6 9534 120 35 0.3 2954 29 1 0.0 20438 500 1 0.0 23675 530
24 52 0.5 30502 360 40 0.4 7787 88 1 0.0 71514 1800 1 0.0 83001 1900

320

14 1 0.0 238 5.6 1 0.0 278 6.4 1 0.0 166 3.7 1 0.0 191 4.5
16 1 0.0 505 17 1 0.0 423 14 1 0.0 387 12 1 0.0 452 14
18 1 0.0 1447 49 1 0.0 1208 41 1 0.0 1100 34 1 0.0 1268 41
20 1 0.0 4792 160 1 0.0 4219 150 1 0.0 3992 130 1 0.0 4476 150
22 1 0.0 20999 670 1 0.0 20417 610 1 0.0 15983 520 1 0.0 18663 600
24 1 0.0 102158 3200 1 0.0 90398 2600 1 0.0 75546 2500 1 0.0 88602 2800

Table 4. Test set P2

σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 3 0.0 5 0.0 3 0.0 4 0.0 7 0.1 9 0.2 3 0.0 5 0.0
42 3 0.0 5 0.0 3 0.0 4 0.0 7 0.1 9 0.2 3 0.0 5 0.0
44 4 0.0 7 0.1 4 0.0 6 0.1 8 0.1 14 0.3 4 0.0 7 0.1
46 9 0.2 15 0.3 5 0.1 13 0.3 17 0.3 40 1.1 8 0.2 14 0.3
48 8 0.2 15 0.3 5 0.1 13 0.3 17 0.4 56 1.8 14 0.3 25 0.6
50 7 0.2 15 0.3 5 0.1 13 0.3 17 0.4 56 1.9 13 0.3 25 0.5

80

40 24 0.5 349 10 10 0.1 55 1.2 24 0.4 722 20 10 0.1 310 8.7
42 26 0.5 354 8.6 8 0.1 53 1.2 23 0.5 1436 35 12 0.2 315 7.5
44 27 0.5 571 17 9 0.1 88 2.4 24 0.5 3461 110 13 0.2 1053 32
46 42 1.0 2787 90 10 0.2 258 8.1 37 1.3 10612 360 21 0.5 2881 94
48 41 1.1 6803 240 10 0.2 385 13 33 1.3 28334 1100 21 0.6 7790 280
50 42 1.2 6575 250 10 0.2 385 14 35 1.5 26280 1100 21 0.7 7371 280

160

14 7 0.0 23 0.2 9 0.0 16 0.1 14 0.1 53 0.6 10 0.1 29 0.3
16 5 0.0 19 0.2 9 0.0 18 0.2 19 0.1 52 0.8 9 0.1 26 0.4
18 7 0.0 42 0.5 10 0.1 30 0.3 21 0.1 149 2.2 11 0.1 87 1.2
20 17 0.2 137 1.3 12 0.1 70 0.7 23 0.2 512 6.1 20 0.3 310 3.5
22 9 0.1 376 4.0 15 0.1 221 2.3 28 0.3 1848 18 15 0.2 938 9.4
24 10 0.2 995 12 25 0.3 543 6.3 37 0.7 4784 55 19 0.2 2471 30

320

14 1 0.0 253 4.2 1 0.0 232 3.8 1 0.0 310 4.4 1 0.0 217 3.4
16 1 0.0 518 11 1 0.0 518 11 1 0.0 707 14 1 0.0 465 8.5
18 1 0.0 1475 35 1 0.0 1170 27 1 0.0 1995 44 1 0.0 1416 33
20 1 0.0 5342 140 1 0.0 4059 96 1 0.0 6678 170 1 0.0 5232 140
22 1 0.0 21298 550 1 0.0 18065 440 1 0.0 25522 640 1 0.0 21756 560
24 1 0.0 86072 2300 1 0.0 70969 1800 1 0.0 101937 2800 1 0.0 91358 2400

Table 5. Test set P3



σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 7 0.1 21 0.3 11 0.1 24 0.5 30 0.6 89 1.8 7 0.1 33 0.5
42 7 0.1 18 0.3 11 0.2 21 0.4 30 0.9 91 2.0 7 0.1 31 0.5
44 8 0.1 32 0.7 12 0.2 37 0.9 31 0.7 152 3.6 8 0.1 51 1.0
46 14 0.5 83 2.0 14 0.3 93 2.4 46 1.4 474 12.4 13 0.3 126 2.8
48 12 0.2 83 2.2 14 0.3 93 2.6 56 2.3 735 20.9 19 0.4 188 4.5
50 11 0.2 83 2.3 14 0.3 93 2.8 58 2.5 735 22.0 18 0.4 188 4.9

80

40 46 0.7 1372 39 24 0.4 433 13 53 1.1 5098 130 36 0.7 2133 55
42 51 1.5 1673 39 20 0.4 438 11 50 1.1 11452 270 41 1.1 2513 59
44 52 1.0 2907 74 21 0.4 716 23 52 1.3 27184 780 43 1.3 8776 240
46 78 2.2 13306 380 23 0.5 2178 74 76 2.4 77332 2600 62 2.3 22582 690
48 75 1.8 32709 1000 23 0.6 3223 120 76 3.1 202963 7500 61 2.3 60115 2000
50 77 1.9 31547 1100 23 0.6 3223 130 81 3.2 191836 7600 63 3.3 58171 2100

160

14 11 0.0 166 3.6 25 0.1 84 1.5 1 0.0 148 3.0 1 0.0 171 3.4
16 9 0.0 154 4.3 25 0.1 65 1.6 1 0.0 329 8.7 1 0.0 383 11
18 10 0.1 485 11 27 0.1 174 4.0 1 0.0 948 25 1 0.0 1056 28
20 19 0.2 2041 35 50 0.4 707 12 1 0.0 4228 110 1 0.0 4730 120
22 17 0.1 9534 120 35 0.3 2954 41 1 0.0 20438 510 1 0.0 23675 540
24 27 0.4 30502 360 40 0.4 7787 130 1 0.0 71514 1800 1 0.0 83001 1900

320

14 1 0.0 238 5.5 1 0.0 278 8.7 1 0.0 166 3.7 1 0.0 191 4.5
16 1 0.0 505 17 1 0.0 423 18 1 0.0 387 12 1 0.0 452 14
18 1 0.0 1447 48 1 0.0 1208 56 1 0.0 1100 34 1 0.0 1268 41
20 1 0.0 4792 160 1 0.0 4219 200 1 0.0 3992 130 1 0.0 4476 150
22 1 0.0 20999 660 1 0.0 20417 860 1 0.0 15983 520 1 0.0 18663 600
24 1 0.0 102158 3200 1 0.0 90398 3700 1 0.0 75546 2700 1 0.0 88602 2800

Table 6. Test set P4

during the search. However, our method easily solves instances with up to 50
periods, both in term of explored nodes and run time, for every combination of
parameters we considered. In contrast, for the CP model both the run times and
the number of explored nodes grow exponentially with the number of periods,
and the problem becomes intractable for instances of significant size. In all cases
our method explores fewer nodes than the pure CP approach, ranging from an
improvement of one to several orders of magnitude. Apart from a few trivial
instances on which both methods take a fraction of a second, this improvement
is reflected in the run times.

5 Conclusions

It was previously shown [24] that CP is more natural than mathematical pro-
gramming for expressing constraints for lot-sizing under the (Rn, Sn) policy, and
leads to more efficient solution methods. This paper further improves the effi-
ciency of the CP-based approach by exploiting cost-based filtering. The wide
test-bed considered shows the effectiveness of our approach under different pa-
rameter configurations and demand trends. The improvement is several orders
of magnitude in almost every instance we analyzed. We are now able to solve to
optimality problems of a realistic size with planning horizons of fifty and more
periods, in times of less than a second and often without search, since the bounds
produced by our DP relaxation proved to be very tight in many instances. In



future work we aim to extend our model to new features such as lead-time for
orders and capacity constraints for the inventory.
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