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Abstract. Decorative reliefs are widely used for e.g. packaging and
porcelain design. In periodic reliefs, the relief repeats a pattern, for ex-
ample all the way around an underlying surface of revolution. Reverse-
engineering of existing reliefs allows them to be re-applied to different
base surfaces; we show here how to segment a single repeat unit of a
periodic relief starting from a scanned triangle mesh.
We first briefly review how we segment the relief from the background
surface using our previous work. The rest of the paper then concen-
trates on how we extract a single repeat unit from the relief. To do so,
the user provides two points on one relief boundary which are in ap-
proximate correspondence on consecutive repeats of the relief. We first
refine the relative locations of these points, and then determine a third
corresponding point using relief boundary information. These are used
to determine three initial cutting planes across the relief. Then surface
registration strategies are utilised to refine the correspondence between
adjacent repeat units. Finally, we refine the exact locations of the cut-
ting planes by considering only surface information close to the cutting
planes. This allows a repeat unit of the periodic relief to be extracted.
We demonstrate that our algorithm is successful and practical, using
various real scanned models: user input can be quite imprecise, and we
can cope with hand-made reliefs in which the pattern units are only
approximately copies of each other.

1 Introduction

Sculptured reliefs are widely used in various industries such as sign-making,
packaging and ceramics. In many cases, for example when extending or replicat-
ing an existing range of products, it is required to reuse the relief designs from
existing objects and re-apply them to new CAD models. In many cases, CAD
models of the original relief do not exist—for example, the original design for a
range of porcelain may be many decades old. Thus, at present it is often nec-
essary for a sculptor to hand-copy existing relief designs, a process that is time
consuming, tedious and expensive. An attractive alternative is to reverse engi-
neer the reliefs, allowing automatic extraction and reapplication of previously
designed and manufactured reliefs to new CAD models. This approach which
would provide benefits to industry in terms of cost savings, and also in time to
market.
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Fig. 1. Periodic relief segmentation from a porcelain bowl: the bowl; segmented partial
relief on mesh; an extracted repeat unit.

Generally, we may define a relief to be a part of a surface with sculpted
features different from the underlying surface, and which is raised by a small
height; this height is typically larger than the characteristic size of features on
the background. There are various kinds of reliefs, and they can be imposed on
diverse backgrounds. The simplest case is that of an isolated relief delimited by
a single outer contour, lying on a smooth and slowly varying background. More
complex, in terms of processing, are reliefs lying on a textured background. We
have already addressed the segmentation problem—separating the relief from
the underlying background—for such cases in [1] and [2].

Here, we consider the segmentation of another kind of frequently occurring
relief, periodic reliefs, illustrated in Fig. 1(left). Here, a basic unit of relief pattern
is repeatedly applied to the object. This may be cyclic, forming a closed pattern
on objects such as vases, bowls, and bottles for which the underlying surface is
a surface of revolution. However, more generally a periodic relief is any relief in
which relief units are repeated in a sequence along some arbitrary path (indeed,
they could even be repeated two dimensionally to give an overall surface pattern,
although we do not consider this case here). In this paper, we give a method
designed to extract exactly replicated relief units distributed along, for example,
a circle around a surface of revolution or a linear path on a flat surface to form a
closed or open relief frieze. Nevertheless, reliefs along arbitrary paths may also be
extracted using our methods, providing that over a sequence of three successive
relief units two criteria are satisfied. Firstly, the shape of the underlying surface
should not vary enough to introduce significant changes in the shape of successive
relief units—the radii of curvature of the underlying surface should be large
compared to the length of a relief unit, and not change much. Secondly, the relief
path itself should not be too curved—a large amount of geodesic curvature in
the relief path would alter the orientation of the repeat units with respect to the
principal directions of the underlying surface, potentially significantly altering
the shape of successive relief units. In cases meeting these criteria, successive
relief units have sufficiently similar shape that their relationship is reasonably
well approximated by a translation and rotation. In fact, many reliefs along more
general paths meet these criteria sufficiently well in practice for our methods to
work. Furthermore, we note that many existing reliefs of interest are hand-made,
and so do not exactly repeat anyway, even if e.g. encircling a surface of revolution.
Our methods perform well in the face of such approximate regularity from the
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outset. Other more complicated cases, in which the relief units are scaled or
significantly distorted along the path, are not considered in this paper, however.

To be able to re-apply a periodic relief, our aim in segmentation is to obtain
a single repeat unit from the scanned triangle mesh: when the relief is reapplied
to a differently-sized or differently-shaped object, a different number of repeats
may be required. Thus, there are two subproblems to be considered. Firstly we
must segment the relief from the background, using its outer contours. Then we
must extract a single repeat unit from the repetitive relief pattern.

The relief’s outer boundaries can be detected using our previous segmen-
tation methods: see [1] for the smooth background case, and [2] for textured
backgrounds. These methods separate reliefs from their underlying surface using
an active contour (or snake) driven by energy terms based on two significant
relief characteristics, the raised step at the relief boundary, or the difference in
surface properties between the relief and the background surface.

Thus, this paper concentrates on the second subproblem, the one of extract-
ing a single relief repeat unit. As noted, if the underlying surface and relief path
vary slowly, successive repeat units approximately match each other after ap-
plying some rigid transformation. Thus, we use a surface registration method to
match adjacent repeating units. The repeating units can then be identified by
cutting across the relief pattern at corresponding points between adjacent re-
peats; we do so simply by finding corresponding cutting planes across the relief.

In our final output, the relief generally does not have an exactly identical
profile at these cutting planes, for a variety of reasons: because the relief may be
hand-made and thus not exactly regular, because of measurement errors, because
of errors in registration, and because of minor distortion in the relief units due to
the underlying surface shape and relief path. Thus, to make successive repeats
a good fit to each other, when placed along a path on a new object, the shape
of a repeat unit may need adjustment, particularly in the areas adjacent to the
cutting planes. One approach would be to blending the shapes of the left and
right-hand ends of the repeat units. Detailed consideration of such adjustment
is left as a separate problem for future work; we simply note here that in many
ways it is analogous to the well-known problem of ‘looping’ audio samples.

In Section 2 we review periodicity extraction in related fields. In Sections 3
and 4, we present our algorithm, and discuss details such as the relief boundary
period extraction, repeating unit refinement, and cut localization. Results are
demonstrated in Section 5. Discussions and conclusions are given in Section 6
and 7.

2 Related Work

The problem of periodicity detection and extraction has been studied in the
related fields of image processing and computer vision for several decades. Co-

occurrence matrices have large diagonal entries when sampling corresponds to
the period of a regular repetitive texture, as noted by early researchers [3],
and are often used to extract the repetitive cells from images with a regular
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Fig. 2. Periodic relief segmentation—sequence of operations

repetitive texture. For example, Handley [4] used one particular co-occurrence
matrix feature, the dissimilarity, to characterise the texture periodicity, and then
to extract the repeating fundamental unit by finding local maxima.

Many other researchers have adopted another popular periodicity descrip-
tion, the autocorrelation function. One such example is provided by [5], where
the autocorrelation function is used on an overcomplete wavelet decomposition
of an image, together with an efficient peak finding method, to determine the
repetitive structure unit in an image texture. Another periodic pattern detection
method can be found in [6], where a computational model based on the theory
of crystallographic groups is presented. In computer vision, periodic motion de-
tection on image sequences has been studied, such as in [7], where the authors
propose a use of time-frequency analysis to a self-similarity measure.

However, the above methods often rely on the regular grid structure of a 2D
image, and are thus difficult to directly extend to an irregular 3D triangle mesh.
Nevertheless, we find use for the autocorrelation function, by applying it in our
algorithm to seeking repetition along the relief boundary curves, after we have
resampled points along them at regular intervals. However, it would be much
trickier and, and time consuming, to resample the whole mesh into a regular
grid.

In computational geometry, relatively little research has focused on periodic-
ity detection in 3D shapes. However, symmetry detection shares certain similar-
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ities to our problem, in that both deal with repeating features, and both involve
local shape matching under one or a set of transformations. Many different meth-
ods have been proposed to find whole-object symmetries with respect to planes
through the center of mass. For example, Sun et al. [8] converted the symmetry
detection problem to finding correlations in Gaussian images, Martinet et al. [9]
introduced a method based on generalised moments, while recently Podolak et
al. [10] utilised a planar reflective symmetry transform to capture the reflective
symmetries. A method for partial symmetry detection and extraction proposed
by Mitra et al. [11] matches simple local shape signatures pairwise to accumulate
evidence for symmetries in an appropriate transformation space, then extracts
potentially significant symmetries by a clustering method. We note that choos-
ing repeating units in symmetry determination in either the global or partial
case does not necessarily require full repeating units to be found. Furthermore,
some algorithms work well for exact symmetries, but may not be readily adapt-
able to approximate symmetries. In our case, we require the repeating units to
be determined as completely and accurately as possible within the bounds of
their approximate nature, as their boundaries need to be well matched in future
reapplication.

3 Algorithm Overview

As mentioned earlier, there are two main steps in our approach for periodic relief
segmentation: segmenting the relief from the background surface it lies upon, and
then extracting a single repeat unit from the relief. The sequence of operations
used in our algorithm is illustrated in Fig. 2, where the first three phases belong
to the first step, and the remaining phases, the second step.

When segmenting the relief from the background, we can deal with both
smooth and textured backgrounds, although in both cases we assume the shape
of the background surface varies slowly. In the smooth background case, we use
snakes which start from a pair of user-drawn contours, which lie outside the
upper and lower boundaries of the relief; their exact locations are unimportant.
These evolve until they match the boundary of the relief, determined by using
an energy defined to locate each snake at a step feature. If the background
is textured, two approaches can be used to segment the relief. The first is to
evaluate surface properties at mesh vertices, and use them to define an energy
which distinguishes relief from textured background. This is used to drive each
snake so that it coarsely matches the relief boundary; it is then finally adjusted
to match the desired relief boundary by again seeking a step feature. The second
approach is to initially smooth the surface to eliminate the background texture,
and allowing the approach used for a smoothed mesh to be applied to find coarse
boundary positions; these are again further optimised on the original textured
mesh by seeking a step.

Our method for repeat unit extraction starts from two points specified by
the user on one relief boundary, which are in approximate correspondence on
consecutive repeats of the relief. Three phases are then involved: coarse relief unit
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extraction, refinement and cut localization. In the first phase, we first improve
the relative locations of the two chosen points on the appropriate boundary
curve. We then obtain a new corresponding point on the same boundary curve
for a further adjacent relief unit, and from these determine three initial cutting
planes across the relief. Next, in the refinement phase, a surface registration
strategy based on the iterative closest point (ICP) algorithm [12, 13] is utilised
to find a more accurate match between the coarsely extracted repeating units,
allowing us to obtain an optimised unit by refining the locations of the cutting
planes. Finally, in the cut localization phase, we update the match between the
left- and right-hand edges of the chosen repeat unit using only surface data close
to these edges. This produces a better match near the start and finish of each
repeat unit. This is important as in use, copies of the repeat unit are placed next
to itself. Details are discussed in the next Section.

4 Algorithm Details

4.1 Whole Relief Segmentation

In this subsection, we remind the reader of certain details of snakes and geometric
texture classification from our previous work on relief segmentation. Further
information can be found in [1] and [2].

A snake is an energy-minimizing spline controlled both by internal forces,
such as rigidity and elasticity of the curve which both make it smooth, and tend
to shrink, and external forces such as constraint and feature forces which help
to drive it towards some desired feature. To deal with the particular problem of
relief segmentation, we tailor the snake by careful definition of energy terms, and
also carefully control the evolution process. For extraction of reliefs on a smooth
background, a feature energy term is specifically designed to detect the step at
the edge of a relief. Secondly, a deflation force is used to make the snake move
inwards, with strength determined dynamically to balance the internal energy
in such a way that the snake is insensitive to choice of initial contour. Thirdly, a
refinement phase is used, with different energy terms, to make the snake explore
any relief contour concavities.

For reliefs on a textured background, the geometric texture classification
method in our algorithm uses a support vector machine (SVM) classifier to iden-
tify parts of the mesh as belonging to relief or background. The input vectors
used for classification are various geometric properties of three kinds: local sur-
face properties, integral properties and statistical properties. The local surface
properties are differential geometric quantities such as normals and curvatures,
and are estimated using the immediate 1-ring neighbors. The integral proper-
ties are computed at multiple scales taken over local neighborhoods [14]. The
statistical properties include both first order statistics (such as mean, variance,
energy and entropy) [15] and co-occurrence matrix features (such as energy, en-
tropy, contrast and homogeneity) [16], and are extensions of ideas from image
texture analysis.
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In our earlier work, such techniques were used to extract a relief with a single
contour (which could be open or closed). Here, we extract two contours for each
relief, which may either be closed (e.g. in the case of a relief encircling a vase),
or open (e.g. if we have scanned just part of such a relief).

4.2 Coarse Relief Unit Extraction

It is simpler and faster to use boundary curves to extract the initial coarse re-
peating units than to process pieces of mesh surface. In the coarse relief unit
extraction phase, the main task is to obtain three points in correspondence on
one of the two relief boundaries, and from these, determine three initial cutting
planes across the relief delimiting two adjacent, approximately corresponding,
pieces of relief. We assume that the user starts by marking two points on the
boundary curve which believed to be in approximate correspondence on subse-
quent relief units. Note that if the user selects arbitrary mesh points, these points
generally will not exactly lie on the boundary curves determined previously, so
they may have to be moved to the nearest point on the appropriate boundary
first. (Alternatively, the user’s selection can be constrained to lie on a boundary
curve). The user should take into account that the final cutting plane at the
left-hand end of the relief unit determined will go through the first of the user’s
chosen points.

Although periodic reliefs have repetitive boundary curves, in some cases the
boundary may be featureless even though the relief itself is not: for example
the boundary curve may be a circle, which only trivially shares the period of
the relief. We assume here that at least one of the boundary curves has distinct
features with the same period as the relief itself, and the user is instructed to
select points from that particular boundary. We discuss how to proceed if this
assumption is not satisfied later.

To accurately detect the period between corresponding boundary points on
a boundary curve, we first resample the particular boundary curve to produce
new points at equal arc-length intervals along it. The distance between points is
set to the average distance between the original points on the boundary curve.
Next, curvature of the boundary curve is estimated at each point, and an auto-
correlation of the curvature on the resampled curve is computed. Note that the
curvature is independent of a rigid body transformation, making it suitable for
determining similarity of parts of the boundary an as-yet unknown transforma-
tion. Formally, the autocorrelation of the curvature is defined as follows:

A(x) =

∑N

s=0
k(s)k(s + x)

∑N

s=0
k2(s)

, (1)

where s is the index of a curve point, x is an integer denoting a candidate
periodicity interval, and k denotes the curvature at that point.

The autocorrelation function A(x) has a maximum at x = 0 and a number of
peaks at other locations corresponding to the curve periodicity. Given the user-
chosen point v(s1) and its approximate correspondence v(s2) on the consecutive
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repeat unit, suppose that we believe the approximate user chosen correspondence
lies within a distance δ of the true correspondence; we set δ to (|s2−s1|/2) in our
algorithm. Then A(x) has a maximum in the range [s2 − δ, s2 + δ] in Equ. 1. In
our program, a simple brute force approach is adequate for seeking the maximum
value, since the search range, which is limited to boundary points within two
repeat units, is quite small. If we assume that the maximum is at x = sp, then
the refined position of the approximate correspondence is s′

2
= s1 + sp. Later,

we need three points in correspondence, so we also select another corresponding
boundary point v(s3) at the peak near s1−sp. The large range we use for δ means
that once v(s1) has been user-selected, the point v(s2) need not be specified very
carefully at all. For example, in Fig. 2(d), the left red dot is v(s1), and the right
dot v(s2) is quite far from the real correspondence. After improvement using the
autocorrelation function, the correspondence is much more accurate as shown
by the blue dots in Fig. 2(e).

If the relief boundaries are both featureless, the autocorrelation approach
does not work, but we may still proceed provided that the user makes careful
estimates of the locations of both initial points. In this case, to find the third
point, we simply choose a point at an equal arc-length before v(s1) as v(s2) is
after it. (We discuss the question of why we perform this improvement at all,
later).

To estimate the curvature, we follow [17] and use least-squares fitting. In
principle, we could use other rigid-body-invariant curve descriptors in place of
the curvature, such as the semi-differential invariants proposed by Pajdla and
Gool [18, 19]. For example, we have tried using the second semi-differential in-
variant calculated using sliding pairs based on fixed arc-length [19], but found
that similar results were produced to those using curvature autocorrelation.

Having found three corresponding points v(s3), v(s1) and v(s′
2
) on one

boundary, we now determine three cutting planes at these points. In each case
we use the plane which passes through the particular point, and with plane nor-
mals, respectively, of v(s3)−v(s1), v(s3)−v(s′

2
) and v(s′

2
)−v(s1). This simple

approach gives cutting planes approximately perpendicular to the relief strip,
which is generally what the user expects.

As shown in Fig. 2(f), these approximately delimit two repeating units of the
relief. Although these planes are not in especially good correspondence, i.e. are
not exactly related by the same rotation and translation as the relief itself, they
are adequate as a basis for delimiting approximate relief units for the next step.

4.3 Refinement

In this subsection, we refine the coarse relief unit match of the initial repeat
units using an ICP algorithm.

The repeating units of a periodic relief are generally only approximately con-
gruent, both potentially because of their hand-made nature, and also possibly
because of variations in the underlying surface shape, and their orientation upon
the underlying surface. We assume that the match is good enough that we can
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approximate it by a rigid body transformation described as follows:

Q = RP + T, (2)

where P and Q are two point sets belonging to adjacent repeating units (obtained
by cutting the relief with the cutting planes), R is a rotation matrix and T is a
translation vector.

ICP is a well-known algorithm introduced by Besl and McKay [12] for reg-
istration and shape matching. It is an iterative alignment algorithm based on
minimizing the mean-square distance between two point sets. It works in three
phases: 1) establishing correspondence by searching for pairs of nearest points,
one from each set, 2) estimating the rigid transformation that overall best maps
the first member of each pair onto the second and then 3) applies that transfor-
mation to update the position and orientation of the first point set. These three
steps are then reapplied until convergence is obtained. The algorithm works
quite effectively when given a good initial estimate. Here, we adopt an improved
version developed by Eggert et al. [13] which is more robust to errors in initial
alignment, and produces a better transformation.

The coarse relief unit extraction phase provides us with three corresponding
points on one boundary curve. Thus, as the set of equally-spaced sample points
along the curve segment v(s3)v(s1) match corresponding points on the segment
v(s1)v(s′

2
), these can be used to provide an initial estimate of the rigid body

transformation for ICP. Following Besl and McKay [12], we compute this initial
transformation using the singular value decomposition (SVD) method.

A refined estimation of the transformation (R and T) is then produced by
the ICP algorithm.

We next apply this transformation and its inverse (R−1 and −R−1T) to the
point v(s1), to obtain two new points in accurate correspondence with v(s1);
these replace v(s3) and v(s′

2
). A refined cutting plane at v(s1) is now con-

structed using the same method as described in Section 4.2, except using these
new corresponding points. Finally, two refined cutting planes at the new corre-
sponding points are then computed by applying the found transformation and
its inverse to the newly computed plane at v(s1). The two repeat units are now
more accurately defined by these new cutting planes as shown in Fig. 2(g).

4.4 Cut Localization

In the cut localization phase, we further improve the matching accuracy in re-
gions adjacent to the cutting planes—this is where the relief units join on to
each other when being reapplied, and it is more important to get a good match
here rather than over the whole of each relief unit: again, note that the repeat-
ing units of a periodic relief are generally only approximately congruent, for
reasons mentioned previously. We perform localization by again using the ICP
algorithm, this time on selected areas adjacent to each cut.

The idea is illustrated in Fig. 3. Suppose the two repeating units P and Q
are separated by cutting planes as shown at v1, v2 and v3. We now optimise
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Fig. 3. Key patches

the location of the cutting plane at the right-hand end of Q so that Q may be
used as a repeat unit. We assume that the cutting plane at the left hand-end of
Q remains fixed, to respect the user’s selection of the location of v1 at one end
of the repeat unit; furthermore, the normal to this plane is the most reliable of
all 3 cutting planes, having been determined by the vector between v2 and v3,
which is a good approximation to the local direction of the relief strip at v1. To
optimise the location of the right-hand cut on Q, for its use as a repeat unit,
it is clear that carefully matching the regions K1 and K2 next to the cutting
planes will produce a better result than minimizing the matching error between
the whole of P and the whole of Q. We call patches K1 and K2 key patches.

Thus, using as an initialization the transformation found from the refinement
phase, we now further optimise the cutting planes by using ICP on the key
patches. The width of the key patches can be a fixed width chosen by the user,
such as 10% of the repeat unit width. Alternatively, we may iteratively update
the cutting planes, reducing the key patch widths at each step. While the latter
takes a longer time than using a fixed key patch width, it generally produces
better results.

To optimise the repeat unit Q in Fig. 3, we do the following:

1. Start with the whole of the key patch K1 having half the width of Q (as
shown): the cutting plane used to give the left edge of K1 is found by inter-
polating by the cutting planes at v3 and v1. Similarly, obtain the the cutting
plane for the right-hand edge of K1. Find the left and right cutting planes
for K2 by applying the transformation computed in the refinement phase to
the cutting planes for K1.

2. Register the patches K1 and K2 by ICP, giving an updated estimate for the
transformation relating the right-hand edge of Q to the left-hand edge.

3. Localize the cutting plane at v2 by applying the new transformation to the
plane at v1.

4. Decrease the key patch width to half its previous value, centered on the
current edges.

5. Repeat steps 1) to 4) until the key patch width is less than a given minimum
width, for example, 10% of the repeat unit width.

While the width subdivision method takes a longer time than choosing a fixed
key patch width, it also provides us with some important information. If plane
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movement reduces as we subdivide the key patches, it indicates that a good
match has been found between them, giving confidence that the extracted repeat
unit is satisfactory. If plane movement increases, this indicates to the user that
another part of the relief might be more suitable for providing a repeat unit.
Indeed, the method can readily be automated to proceed to subsequent repeat
units as candidates, until a suitable one is found, at the expense of taking longer.

5 Results

Our algorithm has been tested with various real scanned periodic geometric
models using a PC with a 2.4GHz CPU and 1GB RAM.

Fig. 4 shows the process of periodic relief segmentation for a model with a
quite regular repetitive relief. Fig. 4(a) and (b) show the extraction of the whole
relief from the background. Fig. 4(a) shows the scanned model and the initial
contours created joining several user-selected points to determine each contour.
Fig. 4(b) shows the final positions of the snakes after evolution to the relief
boundaries. Figs. 4(c)–(h) illustrate the steps of repeat unit extraction. First,
two points on one relief boundary are specified by the user, as shown the red
dots in Fig. 4(c). Note that we have deliberately chosen two points far from
correct correspondence to show that the algorithm can correct such problems by
boundary searching using autocorrelation. This gives a good estimation of the
boundary periodicity and refines the correspondence to give the two blue points
in Fig. 4(d), which are one period to the right and left of the left-hand red point.
The algorithm then coarsely determines two repeat units as shown in Fig. 4(e).
Matching the two coarse units using the ICP algorithm refines them as shown
in Fig. 4(f). Further ICP matching in the localization phase, using key patches
with 20% of the repeat unit width, gives the result shown in Fig. 4(g). Fig. 4(h)
shows the final extracted repeat unit, which is the right-hand colored repeat unit
in Fig. 4(g). In this model, the repeat units are fairly accurate copies of each
other, so the repeat unit after the phases of coarse extraction, refinement and
localization are all very similar. In Fig. 4, the original mesh had 102040 triangles
and 51451 points, the segmented relief had 53936 triangles and 28036 points, and
the repeat unit had approximately 5000 points. The time taken for the whole
relief segmentation stage was about 2 minutes. In the relief unit extraction step,
the most time consuming parts were uses of the ICP algorithm which took 17
seconds for matching the coarse units in the refinement phase, and another 10
seconds for key patch matching. The other computations took negligible time.

Fig. 5 shows a hand-made periodic leaf relief whose repeat units can, when
examined in detail, be seen to be rather irregular in shape. Fig. 5(a) shows the
model and the initial contour, and Fig. 5(b) shows the final snake on the relief
boundary (there is only one boundary as this relief was at the edge of the mesh).
The units separated during the coarse extraction phase, the refinement phase
and the localization phase are shown in Figs. 5(c)–(e). It can be seen that the
result after localization in Fig. 5(e) is improved compared to the result after
refinement in Fig. 5(d). The final extracted unit, the left-hand unit in Fig. 5(e),
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Periodic relief segmentation for a regular repetitive relief: (a) mesh and initial
contour, (b) extracted relief boundaries, (c) two user-specified points in approximate
correspondence on consecutive repeats, (d) accurate correspondences, (e) coarse repeat
units, (f) refined repeat units, (g) verified refined units, (h) the final extracted unit.
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(a)
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(c)

(d)
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(f)

Fig. 5. Periodic relief segmentation for an example with leaves: (a) mesh model and
the initial contour, (b) extracted relief boundaries by snake evolution, (c) units sepa-
rated from coarse extraction phase, (d) results from refinement phase, (e) results from
localization phase, (f) final extracted unit
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is shown in Fig. 5(f). Here, we have selected the tip of the leaf to delimit the
repeat units because it is readily recognizable to the boundary autocorrelation
process.

Fig. 6 shows an example of periodic relief segmentation in which we do not
use boundary autocorrelation. Fig. 6(a) shows the model and the initial contour.
Fig. 6(b) shows the two points specified by user. However, the extracted relief
boundaries are both rather featureless, and at the same time, very noisy. The
autocorrelation function did not work in this case, so this step was omitted.
The third point was simply chosen an equal arc-length to the left of the left-
hand user chosen point, as the right-hand user chosen point was from it. This
gave the coarse repeat units shown in Fig. 6(c). The refinement, localization and
final results are shown in Figs. 6(d)–(f). Note that relatively large errors in the
coarse patches, due to boundary autocorrelation not being used, are corrected
at the refinement stage. In this example, we were unable to obtain a satisfactory
result at the localization stage if key patch matching was performed just a single
time—even when we tried several different key patch widths. Nevertheless, using
the strategy of key patch width subdivision produced a good final result.

6 Discussions

In the coarse extraction phase, we use a boundary repetition detection method
to refine the initial user-chosen corresponding points. However, in certain cases
the boundary may not be periodic, or if so, relatively featureless, as shown in
Fig. 6. Nevertheless, even without accurately corresponding points, good results
can still be produced. Why then should we keep the boundary autocorrelation
function for improving the initial correspondence? There are mainly two reasons.
The first is to provide better coarse units for the downstream ICP algorithm—
good initial estimations can lead to quicker ICP convergence and can save a
great deal of ICP computing time. The second is that the ICP algorithm is less
likely to converge to the wrong local minimum.

In our tests, the ICP algorithm seems to work robustly when the coarse units
have at least 70–80% overlap. Thus, if we do not use boundary autocorrelation,
the user must specify the correspondence points within a distance of 10–15% of
a repeat unit from their accurate locations, which is not particularly difficult for
the user.

In some cases, if the coarse stage produces good results, it may be possible
to skip the refinement phase. For example, for the model in Fig. 4, if the key
patches phase is used immediately after the coarse extraction phase, we obtain
similar results.

7 Conclusions and Future Work

Our tests have shown that the proposed algorithm does a good job of extracting
relief units. It requires very little user interaction, and is robust to poorly chosen
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(a) (b)

(c)

(d)

(e)

(f)

Fig. 6. Periodic relief segmentation without using boundary repetitive extraction: (a)
mesh model and the initial contour, (b) user-specified corresponding points, (c) units
separated from coarse extraction phase, (d) results from refinement phase, (e) results
from localization phase, (f) final extracted unit
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user input. It works on hand-made reliefs in which the repeat units are not exact
copies. We conclude by summarizing several important features:

1. A snake-based method is used to evolve a coarsely specified contour to each
relief boundary, which gives good whole relief segmentation results.

2. A relief boundary repetition detection method, based on autocorrelation of
curve curvature is used to extract coarse repeat units.

3. A surface registration strategy is utilised to refine the match between repeat
units.

4. Further localization is done on key patches of the units, near their bound-
aries, to ensure a good match in the region where adjacent repeat units
meet.

Some patterns have local reflective symmetry as well as translational symme-
try, e.g. the leaf pattern in Fig. 5. In future, we aim to investigate key matching
of reflected units as well, in order to extract the primary semi-pattern.
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