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Abstract. Information in text form remains a greatly unexploited
source of biological information. Information Extraction (IE) techniques
are necessary to map this information into structured representations
that allow facts relating domain-relevant entities to be automatically
recognized. In biomedical IE tasks, extracting patterns that model im-
plicit relations among entities is particularly important since biological
systems intrinsically involve interactions among several entities. In this
paper, we resort to an Inductive Logic Programming (ILP) approach for
the discovery of mutual recursive patterns from text. Mutual recursion
allows dependencies among entities to be explored in data and extraction
models to be applied in a context-sensitive mode. In particular, IE mod-
els are discovered in form of classification rules encoding the conditions
to fill a pre-defined information template. An application to a real-world
dataset composed by publications selected to support biologists in the
task of automatic annotation of a genomic database is reported.

1 Introduction

The last decade has witnessed an unexampled expansion of biomedical data and
related literature. Advances of genome sequencing techniques have led to an
overwhelming increase in the number of publications about discovered genes,
proteins and their roles in biological processes. The ability to survey this lit-
erature and extract relevant pieces of information is crucial for researchers in
biomedicine. However, finding explicit entities (e.g., a protein or a kinase) and
facts (e.g., phosphorylation and interaction relationships) in unstructured text is
a time consuming and boring task because of the size of available resources, data
sparseness and continuous updating of published material. Information Extrac-
tion (IE) is the process of mapping unstructured text into structured form, such
as knowledge bases or databases, by filling predefined templates of information
describing objects of interest and facts about them. This motivates the interest
of IE and text mining practitioners toward the biomedical field [24,15].

In a machine learning perspective, IE can be tackled as a classification task,
where classification models composed by rules or patterns encoding the condi-
tions to fill a given slot of a template of interest are learned from a set of an-
notated texts (i.e., examples of filled templates) [21]. Natural language research
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has widely made use of statistical techniques (e.g., hidden Markov models and
probabilistic context-free grammars) because of their robustness and wide cover-
age peculiarities. However, these techniques cannot properly cope with the level
of semantic interpretation. Moreover, they discover linguistically impoverished
models which are difficult to interpret and extend [20]. To solve these problems,
logic-based approaches, such as those developed in ILP, can be employed. In-
deed, they make encoding easy for natural language statements reported both
in training data and in the background knowledge [10], and they learn logical
theories that can be easily interpreted and revised [10]. Moreover, IE tasks can
be naturally framed in the ILP relational setting where data have a relational
structure and examples can be related to each other.

Several papers on ILP approaches to learning rule-based models from logical
representations of texts are reported in the literature [1,11,16,13,4]. However,
only some of them face problems of IE from biomedical texts [5,14], despite the
fact that biomedical IE is considered a major application area where ILP may
converge [7]. Difficulties are due to the complexity of the biomedical language
which is characterized by inconsistent naming conventions, i.e. ambiguities oc-
curring when the same term denotes more than one semantic class (e.g., p53 is
used to specify both a gene and a protein) or when many terms lead to the same
semantic class (abbreviations, acronym variations). Further problems derive from
the continuous creation of new biological terms or evolutions of the same bio-
logical object (e.g., genes are renamed once their function is known). The use of
non standard grammatical structures as well as domain-specific jargon represent
another source of complexity. All these issues make the preparation of training
data really difficult. On the other hand, a number of controlled vocabularies,
lexicons and ontologies which can be exploited both in the data processing and
reasoning steps are available. This further motivates an ILP approach which can
naturally handle such a background knowledge.

In the IE literature, there are two main tasks, namely named entity recogni-
tion and multi-slot extraction (or template filling). The former aims to iden-
tify peculiar objects of interest (the named entities), such as the pathology
associated to a mutation or the substitution that causes a mutation. The lat-
ter looks for conceptual relationships between named entities, such as the ge-
netic mutation associated to both a pathology and a substitution (template
mutation(〈pathology〉, 〈substitution〉)).

A multi-slot extraction task, which is generally based on the results of a named
entity recognition task, can be simplified if tagging of named entities is, in its
turn, performed by considering some conceptual dependencies implicitly defined
at either the syntactic or structural level (e.g., the type of mutation is normally
reported after the corresponding substitution). These conceptual dependencies
are particularly evident in biomedical domain, since biological systems intrinsi-
cally involve relations among several entities (e.g., genes and proteins interacting
in regulation networks). Therefore, in this paper, we propose to learn tagging
models in the form of recursive logical theories which can naturally represent
conceptual dependencies between named entities.
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The paper is organized as follows. In the following section, we describe the
biomedical information extraction problem employed as case study in this work,
namely the annotation of a genomic database. Both the data preprocessing tech-
niques and the representation employed for training examples and background
knowledge are reported in Section 3. In Section 4, the ILP learning algorithm
used to learn recursive logical theories is briefly described. Results obtained on
a real-world dataset composed by publications concerning studies on mitochon-
drial pathologies are reported in Section 5. Finally, some conclusions are drawn
in Section 6.

2 The Information Extraction Problem

The application we are addressing concerns the annotation of some resources
stored in HmtDB1, a database of variability and clinical data associated to mi-
tochondrial pathological phenotypes [2]. Currently, HmtDB stores data from
healthy subjects while variability and clinical data are manually extracted from
published literature. A peculiarity of this fragment of the scientific literature is
that biomedical documents are organized according to a regular section struc-
ture (composed by Abstract, Introduction, Methods, Results and Discussion)
and that often biologists already know which part of the documents may contain
a certain kind of information. This suggests to conduct the IE process in a local
way to pre-categorized sections of interest [3]. Indeed, selecting relevant portions
of text is a prerequisite step for IE, since the lack of robustness and data sparse-
ness makes IE methods inapplicable to large corpora and irrelevant documents.
In this application, selected publications concern mitochondrial mutations and
biologists are interested in automating the identification of occurrences of spe-
cific biological objects (i.e., mitochondrial mutations) and their features (i.e.,
type, position, involved nucleotides, expressing locus, related pathology) as well
as the particular method and experimental setting (i.e., dimension, age, sex,
nationality of the sample) reported in the publication.

Let us consider the following example of a text fragment of the collection:

Cytoplasts from two unrelated patients with MELAS (mitochondrial
myopathy, encephalopathy, lactic acidosis, and strokelike episodes)
harboring an A-*G transition at nucleotide position 3243 in the
tRNALeU(UUR) gene of the mitochondrial genome were fused with human
cells lacking endogenous mitochondrial DNA (mtDNA)

Here MELAS is an instance of the pathology associated to the mutation un-
der study, A-*G is an instance of the substitution that causes the mutation,
transition is the type of the mutation, 3243 is the position in the DNA where
the mutation occurs, and tRNALeU(UUR) is the locus associated to the mutation.

Two examples of clauses used for the annotation of the named entities type
and substitution are the following:

1 http://www.hmtdb.uniba.it/
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substitution(X) ← follows(Y,X), type(Y).
type(X) ← distance(X,Y,3), position(Y),

word between(X,Y,‘‘nucleotide position’’).

Their interpretation is straightforward. The first clause states that a token X
is labeled as substitution (i.e., which nucleotide is substituted by which other, A
in G in the example text) if it is followed by a token Y which has been labeled
as mutation type (transition). The second clause states that X is labeled as
mutation type (transition) if it is three words far from a token Y that has
been labeled as mutation position (3243) and there is an intermediate word
nucleotide position.

It should be noted that in the above example, the first clause expresses a
dependency between the annotation classes type and substitution of the same
template of interest (mutation). As previously clarified, learning classification
models which express these dependencies might lead to more accurate mod-
els, which reflect some co-occurrence of named entities in the text. Furthermore,
when automated annotation is performed, context-sensitive recognition of named
entities is possible thanks to learned models which reflect dependencies among
annotation classes. However, discovering such concept dependencies poses ad-
ditional problems for inductive learning. A brief description of an ILP learning
algorithm that provides a solution to these problems is reported in Section 4.

3 Data Preparation

The dataset is composed by a set of manually annotated pre-categorized texts.
Annotated texts are preprocessed by means of natural language facilities pro-
vided in the GATE (General Architecture for Text Engineering) system [6]. We
exploit the ANNIE (A Nearly-New IE system) component which contains finite-
state algorithms and the JAPE (a Java Annotation Patterns Engine) language
which is also a finite-state transduction engine to recognize regular expressions.
By means of ANNIE we perform tokenization, sentence splitting, part-of-speech
tagging, general purpose named-entity recognition (e.g., persons, locations, or-
ganizations), and mapping into dictionaries.

We use both predefined dictionaries available with ANNIE (e.g., organization
names, job title, geographical locations, dates, etc.) and domain-specific dictio-
naries that categorize biological entities such as diseases, enzymes, genes, and
so on. General domain dictionaries are used to disambiguate some terms (e.g.,
places and geographical locations are useful to recognize terms about the ethnic
origin of the diseased sample). Domain-specific dictionaries are flat dictionaries
of canonical forms and variants of names that are peculiar of mitochondrial ge-
netics. They include lists of names about diseases, genes, methods of analysis,
nucleic acids, enzymes, and so on. They are exploited to reduce heterogeneity of
data and to perform syntactic and semantic normalization such as a rough res-
olution of acronyms which in this domain are one of the sources of redundancy
and ambiguity. For instance, recognizing that “myopathy, encephalopathy, lac-
tic acidosis, and stroke-like episodes” and “mitochondrial encephalomyopathy
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lactic acidosis and strokelike episodes” are two variants of the same mitochon-
drial disease widely known by its acronym “MELAS” is possible when a disease
dictionary is used.

JAPE grammars have been defined to identify appositions occurring in texts
as well as some numeric and alphanumeric strings which are frequent in this
domain. Finally, stopwords (e.g., articles, adverbs, and prepositions) are removed
and stemming is performed by means of Porter’s algorithm for English texts [22].

3.1 Data Representation

In this work the analysis units are sentences, which are, in their turn, composed
of tokens. Each sentence or token is given a unique identifier (in the context of
an abstract) based on its ordering within the given text. The relational repre-
sentation of a sentence is described in terms of properties of occurring tokens
and relations between them.

Properties, which are represented by unary descriptors, express statistical (e.g.,
token frequency), lexical (e.g., alphanumeric, capitalized token), structural (e.g.,
structureof complex tokens suchasalphanumeric strings,abbreviations, acronyms,
hyphenated tokens), syntactical (e.g., singular/plural proper/ not proper nouns,
base/conjugated verbs) and domain-specific knowledge (e.g., an entity belonging
to a dictionary). More precisely, the predicate class specifies the category of the
described text (i.e., abstract, methods, results, etc.) and expresses information on
the localization of annotations in documents. The predicate word to stringmaps
an identifier to the corresponding stemmed token, word frequency expresses the
relative frequency of a token in the given text, type of refers to morphological fea-
tures and takes values in the set {allcaps, mixedcaps, upperinitial, numeric,
percentage, alphanumeric, real number}. Parts-of-speech are encoded by the
predicate type pos, while semantics is added by the word category predicate.

Relations express structural properties such as the composition of sentences in
passages of text and tokens in chunks or directly in sentences. Indeed, the follow-
ing binary descriptors have been defined: part of, which list tokens composing
a sentence, and follows, which relates a token to its direct successor. Complex
tokens (e.g., A-*G) are described by several predicates: the s part of relation
on component tokens, the first and last predicates which define the first and
second part of an hyphenated token respectively, the length predicate defin-
ing the length of component tokens, and some predicates (e.g., middle is char,
first is numeric) defining the morphological nature of an alphanumeric string.
Another form of relational knowledge concerns domain dictionaries and ex-
presses the distance between two categorized tokens in the context of a sentence
(distance word category).

In this work, we focus on the template mutation, which is composed of the
following slots: position (i.e., position in the DNA where the mutation occurs),
type (i.e., type of the mutation: insertion, deletion, translation, substitution,
etc.), type position (i.e., pieces of the DNA involved in the mutation and relative
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position in the DNA), locus (gene involved in the mutation), and substitution
(i.e., type of substitution: which nucleotide is substituted by which other).

For the training data, only sentences containing at least a positive example of
position, type, type position, locus and substitution are considered. Henceforth,
they are called target sentences. No relation between target sentences is currently
considered, that is, the extraction of named entities remains local to sentences.
An example of relational description generated for the target sentence reported
in Section 2 is the following:2

annotation(3)=no tag, ... annotation(7)=pathology,

annotation(8)=no tag, ... annotation(13)=substitution,

annotation(14)=type, annotation(15)=no tag, ...,

annotation(17)=position, annotation(18)=locus, ...,

annotation(30)=no tag ←
class(2)=abstract, part of(2,3)=true, ..., part of(2,30)=true,

word to string(3)=cytoplast, ..., word to string(13)=a-*g,

s part of(13,31)=true, s part of(13,32)=true, first(13)=a,

last(13)=t, lenght(13)=4, single char(31)=true,

single char(32)=true, type of(31)=allcaps, type of(32)=allcaps,

word to string(14)=transition, ..., word to string(30)=cell,

type of(3)=upperinitial, ..., type of(29)=alphanumeric,

type pos(3)=nnp, ..., type pos(30)=nns, word frequency(3)=1,

..., word frequency(30)=2, word category(7)=disease, ...,

word category(9)=disease, ..., word category(28)=nucleic acid,

distance word category(7,9)=2, ..., distance word category(27,28)=1,

follows(3,4)=true, follows(4,5)=true, ..., follows(29,30)=true

The constant 2 denotes the sentence described in this clause, which belongs to
an abstract of the collection, while the constants 3, 4, ..., 30 denote identifiers
of tokens which are described in the body of the clause.

3.2 Background Knowledge

The background knowledge includes a transitive definition of the relation of
“indirect successor”:

tfollows(X,Y)=true ← follows(X,Y)=true
tfollows(X,Y)=true ← follows(X,Z)=true, tfollows(Z,Y)=true

as well as a number of clauses that express the synonymy between (stemmed)
biological terms such as:

word to string(X)=transit ← word to string(X)=transversion
word to string(X)=substitut ← word to string(X)=replac

2 Here, the first-order literals p(X, Y ) and ¬p(X, Y ) will be represented as
fp(X,Y)=true and fp(X,Y)=false, respectively, where fp is the function symbol as-
sociated to the predicate p. This means that we deal with classical negation, ¬, but
not with negation by failure, not [17].
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The learning system used in this work makes the automated change of repre-
sentation possible for training examples. This form of abstraction is very useful
for tuning the representation of the training examples without acting on the pro-
cedures developed for text pre-processing. In this work, the following predicates
are intensionally defined in the background knowledge:

char number char(X)=true ← first is char(X)=true,
middle is numeric(X)=true, last is char(X)=true

number char char(X)=true ← first is numeric(X)=true,
middle is char(X)=true, last is char(X)=true

char char number(X)=true ← first is char(X)=true,
middle is char(X)=true, last is numeric(X)=true

They can appear in the body of learned clauses, while predicates on the mor-
phological nature of alphanumeric strings (e.g., first is char, middle is char,
etc.) cannot.

Finally, a typified form of both direct and transitive successor relations is also
introduced. Some examples are reported in the following:

follows string jj(Y)=Z ←
word to string(X)=Z, follows(X,Y)=true, type pos(Y)=jj

follows nn string(X)=Z ←
type pos(X)=nn, follows(X,Y)=true, word to string(Y)=Z

tfollows vb nn(X,Y)=true ←
type pos(X)=vb, tfollows(X,Y)=true, type pos(Y)=nn

tfollows jj nn(X,Y)=true ←

The first two clauses express the direct successor relations between a generic
string and an adjective or a noun, while the last two clauses specify the transitive
successor relations for verb-noun and adjective-noun pairs, respectively.

4 Learning Recursive Patterns

Tagging rules for automated entity extraction are automatically learned in the
form of recursive logical theories which can naturally represent conceptual depen-
dencies between named entities. Indeed multiple predicate learning (or multiple
concept learning) and recursive theory learning are two faces of the same coin.
In this application, each concept plays the role of an annotation class (i.e., tem-
plate slot) and each textual object can be associated with at most one concept,
i.e., concepts are considered mutually exclusive. The system used in this learning
problem is ATRE3 [18] which solves the following learning problem:

Given
• a set of concepts K1, K2, . . . , Kr to be learned,
• a set of observations O described in a language LO,
• a background knowledge BK described in a language LBK ,

3 http://www.di.uniba.it/∼malerba/software/atre
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• a language of hypotheses LH that defines the space of hypotheses SH

• a user’s preference criterion PC,

Find
a (possibly recursive) logical theory T ∈ SH , defining the concepts K1, K2, . . . ,
Kr, such that T is complete and consistent with respect to the set of observations
O and satisfies the preference criterion PC.

Both the language of hypotheses LH and the language of background knowl-
edge LBK are limited to linked, range-restricted definite clauses [8]. Observa-
tions are represented as ground multiple-head clauses, called objects, which have
a conjunction of literals in the head. Each object is associated with a unique
object identifier (OID). The notion of multiple-head clauses in ATRE adapts
the notion of interpretation, which is common to many relational data min-
ing systems for efficiency reasons [9]. ATRE distinguishes objects from exam-
ples, which are described as pairs 〈L, OID〉, where L is a literal in the head of
the object identified by OID. Examples can be considered positive or negative,
according to the concept to be learned. For instance 〈annotation(x10)=locus,
O1〉 is a positive example of the concept annotation(X)=locus and a nega-
tive example of the concept annotation(X)=type. Actually, in this work, the
set of concepts to be learned is defined by means of a set of literals of the
type annotation(X)=annotation class. No clause is generated for the concept
annotation(X)=no tag.

At the high-level ATRE implements a sequential covering algorithm [19]. A
recursive theory T is built iteratively, starting from an empty theory T0, and
then adding a new clause at each iteration. In this way we obtain a sequence of
theories:

T0 = ∅, T1, . . . , Ti, Ti+1, . . . , Tn = T

such that Ti+1 = Ti∪{C} for some clause C and LHM(Ti) ⊆ LHM(Ti+1), where
LHM(T ) denotes the least Herbrand model of a theory T . Let pos(LHM(T ))
and neg(LHM(T )) be the number of positive and negative examples in LHM(T ),
respectively. If we guarantee that:

1. pos(LHM(Ti)) < pos(LHM(Ti+1)), for each i ∈ {0, 1, . . . , n − 1} and
2. neg(LHM(Ti)) = 0, for each i ∈ {0, 1, . . . , n},

then, after a finite number of iterations, a theory T , which is complete and con-
sistent, is built. The first condition is guaranteed by selecting a positive example
(or seed) e+ /∈ LHM(Ti) of a concept Kj to be learned, and then by looking for
a clause C, if any, such that e+ ∈ LHM(Ti ∪{C}) (i.e., pos(LHM(Ti ∪{C})) >
pos(LHM(Ti))). The second condition is more difficult to guarantee since the
addition of a locally consistent clause C to a theory Ti does not preserve consis-
tency of Ti ∪ {C} (non-monotonicity of the normal ILP setting). The approach
followed in ATRE consists of simple syntactic changes in Ti, which eventually
creates new layers [18].

The automated discovery of dependencies between concepts K1, K2, . . ., Kr

is based on a variant of the sequential covering learning strategy, which is
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traditionally adopted by single concept learning systems that generate clauses
with the same literal in the head at each iteration. In multiple concept learning,
clauses generated at each iteration may refer to different concepts. In addition,
the body of the clause generated at the i-th iteration may involve any concept
K1, K2, . . ., Kr for which at least a clause has been added to the theory partially
learned in previous iterations. In this way, dependencies between concepts can
be generated.

At each iteration of the main loop of the sequential covering algorithm, clauses
for distinct concepts are generated, and then one of them is picked. Since the
generation of a clause depends on a seed, several seeds have to be chosen (if any,
at least one seed per concept to be learned). Therefore, the search space is a
forest of as many search-trees as the number of chosen seeds. Each search-tree
is rooted with a unit clause and ordered by the generalization model adopted
in ATRE (generalized implication [18]). The forest can be processed in parallel
by as many concurrent tasks as the number of search-trees. Each task traverses
the specialization hierarchy top-down through a sequential covering strategy,
but synchronizes traversal with the other tasks at each level. Search proceeds
toward deeper and deeper levels of the specialization hierarchies until at least a
user-defined number of consistent clauses is found. Task synchronization is per-
formed after that all “relevant” clauses at the same depth have been examined.
A supervisor task decides whether the search should carry on or not on the basis
of the results returned by the concurrent tasks. When the search is stopped, the
supervisor selects the “best” consistent clause according to the user’s preference
criterion. This search strategy provides us with a solution to the problem of
interleaving the induction of distinct concept definitions.

Actually, several special-purpose techniques have been designed specifically for
the inductive synthesis of recursive logic theories. They are overviewed in [12]. As
observed by Flener and Yilmaz, they are all non-incremental, i.e., the training
examples are input all-at-once, therefore, the distinction of bottom-up versus
top-down induction4 does not really apply to them. Incremental techniques do
not seem to be a promising research avenue for recursive theory learning (or,
equivalently, for multiple concept learning), because they are often very sensitive
to the ordering of the examples, which is not really adequate considering the
fragile nature of recursive theories.

5 Experiments

We considered a data set of seventy-four papers concerning mithocondrial mu-
tations selected for the annotation of HmtDB5. We considered the abstract of
each paper and 228 target sentences out of 581 sentences. The total number of
annotated tokens is 362, that is, 1.58 tokens per target sentence and 4.89 per
4 In the bottom-up (top-down) approach the theory monotonically evolve from the

maximally specific one (the maximally general one).
5 The data set is available at

http://www.di.uniba.it/∼malerba/software/atre/index.htm#Exp9
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abstract. They correspond to about 9.3% of the total number of tokens that are
described in the data set. The remaining tokens, that is 3004, are considered as
no tagged tokens (i.e., as negative examples for all concepts to be learned).

The dataset is clearly imbalanced. However, it should be noted that the learn-
ing strategy implemented in ATRE is not affected by imbalanced data, since the
goal is not to maximize the accuracy [23] but to generate consistent theories.
Other systems that suffer from this problem may prove unsuitable for the task
at hand, since they generate trivial classifiers.

Performances are evaluated by means of a 6-fold cross-validation, that is,
the set of seventy-four abstracts is firstly divided into six folds (see Table 1),
and then, for every fold, ATRE is trained on the remaining folds and tested on
the hold-out fold. Results have been evaluated along several criteria. For each
concept, we computed both the number of omission and commission errors and
the value of precision and recall. Omission errors occur when annotations of
tokens are missed, while commission errors occur when wrong annotations are
“recommended” by some clause. The omission measure is reported as the ratio
of the number of omission errors and the number of positive examples, while the
commission measure as the ratio of the number of commission errors and the
total number of examples. The recall measure is computed as the ratio of positive
examples correctly annotated (i.e., true positives) and the sum of true positives
and false negatives (i.e., omission errors). The precision measure is computed as
the ratio of true positives and the sum of true positives and false positives (i.e.,
commission errors). Experimental results are reported in Table 2 for each fold.
No omission error is reported for type position when the third fold is held-out
because there are no positive examples to test on.

Table 1. Distribution of examples per folds

Fold # sen-
tences

#
locus

# posi-
tion

# sub-
stitution

#
type

# type
position

#
no tag

# literals
in body

1 36 16 12 4 8 12 452 2424
2 40 27 13 2 5 4 546 2552
3 40 22 14 6 17 0 510 3098
4 34 16 6 5 17 23 517 3260
5 39 24 15 8 8 19 485 3083
6 27 14 6 2 6 31 494 3199

Total 228 119 66 27 61 89 3004 17793

The high variability among folds is mainly due to a heterogeneous distrib-
ution of examples that leads to different degrees of data sparseness. However,
the percentage of commission errors is very low with respect to the percent-
age of omission errors (the system misses annotations rather than suggesting
wrong annotations) independently of the fold. This means that learned rules are
quite specific. By considering the complexity of learned theories (see Table 3),
coverage rate can explain recall values. Best performances are obtained on the
substitution class for which the system learns a more general and accurate
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Table 2. Experimental results (percentage values): Average number and standard
deviation of omission errors over positive ex., commission errors over negative ex.,
precision and recall

Fold locus position substitution type type position
omiss. comm. omiss. comm. omiss. comm. omiss. comm. omiss. comm.

1 68.750 0.205 83.333 0.203 75 0 25 0.202 91.667 0.203
2 70.370 0.516 61.538 0.168 100 0 20 0.332 100 0
3 54.545 0.548 21.429 0 66.667 0 29.412 0.181 – 0.351
4 43.750 0.176 50 1.038 60 0.345 17.647 0 82.609 1.070
5 41.667 0.562 20 0.184 100 0.727 62.500 0.545 73.684 0.372
6 85.714 3.154 50 0 100 0 33.333 0.366 77.419 0.575

Avg 60.799 0.860 47.717 0.266 83.611 0.179 31.315 0.271 – 0.428

St.D. 17.155 1.137 24.205 0.389 18.572 0.302 16.340 0.187 – 0.368

Avg St.D. Avg St.D. Avg St.D. Avg St.D. Avg St.D.
Prec. 77.305 18.387 81.355 25.258 87.778 19.052 65.972 23.632 74.009 37.073

Rec. 67.093 20.916 50.596 23.130 89.167 17.440 31.315 16.340 – –

Table 3. Complexity of the learned theories: number of positive examples over number
of learned clauses per concept and average values

Fold locus position substitution type type position
1 16/35 12/23 4/3 8/34 12/15
2 27/30 13/23 2/2 5/2 4/17
3 22/34 14/20 6/1 17/30 0/16
4 16/32 6/19 5/2 17/26 23/13
5 24/27 15/17 8/2 8/27 19/14
6 14/36 6/24 2/2 6/22 31/11

Avg 0.63 0.54 2.64 0.37 1.16

theory. Indeed, examples of this class are the most homogeneous and the pre-
processing module is able to produce discriminative descriptions. Conversely,
worst performances of the system are related to the type class for which the
lowest value of coverage rate is reported. Some low recall values and overfitted
theories are due to the preprocessing module which is not completely apt to
manage the variety of morpho-syntactic variations on the same term that affect
this application domain. By scanning the learned theories, we observe that for
some annotation classes, namely locus and type position, many clauses do take
into account only lexical information specified by the predicate word to string.
Actually, learning tasks for these two classes appear to be intrinsically more com-
plex since we observe the highest percentage of commission errors despite the
the highest percentage of positive examples available. As regards the percentage
of omission errors, we notice that while it is positively correlated to the number
of discovered clauses, it results uncorrelated to the number of positive examples.

We adopt the same experimental setting to run the system by disabling the
search for recursive definitions in the space of clauses. In this experiment, the
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system explores a specialization hierarchy for one concept at a time and learned
theories are independently generated. Results are reported in Table 4. By com-
paring precision and recall values observed in the two experiments, we conclude
that recursive theory learning improves performances for both locus and type
classes, while it does not affect the results for the position and the substitution
classes. This observation justifies the computational effort spent for learning
recursive theories in this IE task.

Table 4. Experimental results obtained by disabling recursion (percentage values): Av-
erage number and standard deviation of omission errors over positive ex., commission
errors over negative ex., precision and recall

Fold locus position substitution type type position
omiss. comm. omiss. comm. omiss. comm. omiss. comm. omiss. comm.

1 75 0.205 83.33 0.203 75 0 75 0.202 100 0.203
2 59.26 0.516 61.54 0.168 100 0 80 0.332 100 0
3 63.64 0.731 21.43 0 66.67 0 35.29 0.181 – 0.351
4 62.50 0.880 50.00 1.038 60 0.345 29.41 0 91.30 0.891
5 41.67 0.562 20 0.184 100 0.727 62.50 0.545 63.16 0
6 64.29 2.597 50.00 0 100 0 50 0.366 64.52 0.575

Avg 61.058 0.915 47.717 0.266 83.611 0.179 55.368 0.271 – 0.337

St.D. 20.729 0.187 24.205 0.389 18.572 0.302 10.888 0.855 – 0.349

Avg St.D. Avg St.D. Avg St.D. Avg St.D. Avg St.D.
Prec. 72.836 18.568 81.355 25.258 87.778 19.052 76.766 16.041 76.672 38.299

Rec. 61.058 10.888 50.596 23.130 89.167 17.440 55.368 20.729 – –

For the sake of completeness, some clauses learned by ATRE have been ana-
lyzed. Some of them follow:

annotation(X1)=type position ← char number char(X1)=true
annotation(X1)=type position ← tfollows string nn(X2)=trnaser,

type of(X1)=alphanumeric
annotation(X1)=position ← follows(X2,X1)=true,

type of(X1)=numeric, follows(X1,X3)=true,
word category(X3)=gene, word to string(X2)=position

The first clause states that X1 is labeled as type position if it is an alphanu-
meric token composed by a char, a number and another char. This is one of
the first clauses that ATRE adds to the learned theory and covers many exam-
ples. Actually, information on type position of a mutation are tokens such as
A1262G, that means that A is substituted by G at position 1262 of the DNA.
The second clause concerns the same concept and it states that X1 is labeled
as type position if it is an alphanumeric token which is followed by the string
trnaser. This matches patterns where type position information occurs in the
neighborhood of gene names (e.g., trnaser). The third clause states that X1 is
labeled as position if it is a numeric token which succeeds the token “position”
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and precedes a token of the “gene” category. This clause captures patterns like
“an A-to-G mutation at position 3426 (tRNALeu)”.

Meaningful dependencies have been also discovered such as the following:

annotation(X1)=type ← follows(X1,X2)=true,
word frequency(X2) ∈ [8..140],
follows(X3,X1)=true, annotation(X3)=substitution

It states that X1 is annotated as type if it precedes a frequent token and suc-
ceeds another token which has been annotated as substitution. Another example
of discovered concept dependency is the following:

annotation(X1)=position ← follows(X2,X1)=true
annotation(X2)=substitution, follows(X3,X1)=true,
follows(X1,X4)=true, word frequency(X4) ∈ [6..6],
annotation(X3)=type, follows(X1,X5)=true,
annotation(X5)=locus, word frequency(X1) ∈ [1..2]

This clause states that X1 is annotated as position if it succeeds two tokens
which have been annotated as type and substitution, respectively. Moreover it
precedes a token occurring about 6 times in the abstract and that is followed by
a locus annotation. Finally, X1 is quite infrequent in the abstract. It matches
text portions like the following: “a G-to-A (X2) transition (X3) at nucleotide pair
14459 (X1), changed a moderately conserved alanine to a valine at NADH (X4)
dehydrogenase subunit 6 (ND6) (X6) residue 72”.

6 Conclusions

ILP provides appropriate computational solutions for problems posed by bio-
medical IE thanks to its adequacy to work with first-order logic representations
of texts and to its suitability to take advantage of the abundant domain knowl-
edge. Template filling tasks appear to be especially challenging for ILP, since
they raise problems that are peculiar of link-learning tasks, where examples, in
addition to their inherent relational structure, present relations to other exam-
ples [14]. Intuitively, template filling operations can be simplified when tagging
of named entities is performed by considering some conceptual dependencies
implicitly defined among entities of the same template. In this paper, we have
proposed an application of recursive theory learning to a real-world IE task on
the biomedical literature. Recursive patterns are discovered by inducing mutu-
ally dependent definitions of concepts by means of the ILP system ATRE. This
system allows us to discover meaningful patterns among biomedical entities of
interest. Results obtained on a limited number of documents show that high
performances are obtained when descriptions of examples are safe from inconsis-
tencies due to morpho-syntactic variations that are not completely handled by
the preprocessing module. Moreover, results show that when learned theories can
express mutual dependencies between concepts tagging performances improves.

As future work, further experiments on some recently made available biomed-
ical datasets for ILP [7] will be conducted. We also plan to examine benefits of
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discovering template slot dependencies in reconstructing records of a complete
template filling task. Finally, the application of a transductive framework [25] is
worth to be investigated because of the high disproportion between the number
of labeled documents and that of unlabeled documents available in IE tasks.
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