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Abstract

We introduce a family of directed geometric graphs, denoted Gθ

λ
, that depend on two pa-

rameters λ and θ. For 0 ≤ θ < π

2 and 1
2 < λ < 1, the Gθ

λ
graph is a strong t-spanner, with

t = 1
(1−λ) cos θ . The out-degree of a node in the Gθ

λ
graph is at most ⌊2π/min(θ, arccos 1

2λ)⌋.
Moreover, we show that routing can be achieved locally on Gθ

λ
. Next, we show that all strong

t-spanners are also t-spanners of the unit disk graph. Simulations for various values of the pa-

rameters λ and θ indicate that for random point sets, the spanning ratio of Gθ

λ
is better than the

proven theoretical bounds.

1 Introduction

A graph G whose vertices are points in the plane and edges are segments weighted by their length

is a geometric graph. A geometric graph G is a t-spanner (for t ≥ 1) when the weight of the shortest

path in G between any pair of points a, b does not exceed t · |ab| where |ab| is the Euclidean distance

between a and b. Any path from a to b in G whose length does not exceed t · |ab| is a t-spanning

path. The smallest constant t having this property is the spanning ratio or stretch factor of the graph.

A t-spanning path from a to b is strong if the length of every edge in the path is at most |ab|. The

graph G is a strong t-spanner if there is a strong t-spanning path between every pair of vertices.

The spanning properties of various geometric graphs have been studied extensively in the liter-

ature (see the book by Narasimhan and Smid [6] for a comprehensive survey on the topic). We are

particularly interested in spanners that are defined by some proximity measure or emptiness crite-

rion (see for example Bose et al. [1]). Our work was initiated by Chavez et al. [4] who introduced

a new geometric graph called Half-Space Proximal (HSP). Given a set of points in the plane, HSP is

defined as follows. There is an edge oriented from a point p to a point q provided there is no point

r in the set that satisfies the following conditions:

1. |pr| < |pq|,
2. there is an edge from p to r and

3. q is closer to r than to p.

∗Research supported in part by NSERC, MITACS, MRI, and HPCVL.
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The authors show that this graph has maximum out-degree1 at most 6. The authors also claim

that HSP has an upper bound of 2π + 1 on its a stretch factor2 and that this bound is tight3.

Unfortunately, in both cases, we found statements made in their proofs of both the upper and

lower bounds to be erroneous or incomplete as we outline in Section 3. However, in reviewing their

experimental results as well as running some of our own, although their proofs are incomplete, we

felt that the claimed results might be correct. Our attempts at finding a correct proof to their claims

was the starting point of this work. Although we have been unable to find a correct proof of their

claims, we introduce a family of directed geometric graphs that approach HSP asymptotically and

possess several other interesting characteristics outlined below.

In this paper, we define a family Gθ
λ of graphs. These are directed geometric graphs that depend

on two parameters λ and θ. We show that each graph in this family has bounded out-degree and

is a strong t-spanner, where both the out-degree and t depend on λ and θ. Furthermore, graphs in

this family admit local routing algorithms that find strong t-spanning paths. Finally, we show that

all strong t-spanners are also spanners of the unit-disk graph, which are often used to model adhoc

wireless networks.

The remainder of this paper is organized as follows. In Section 2, we introduce the Gθ
λ graph

and prove its main theoretical properties. In Section 3, we compare the Gθ
λ graph to HSP. In

Section 4, we show that by intersecting the Gθ
λ graph with the unit disk graph, we obtain a spanner

of the unit disk graph. In Section 5, we present some simulation results about the Gθ
λ graph.

2 The family G
θ
λ of graphs

In this section, we define the Gθ
λ graph and prove that it is a strong t-spanner of bounded out-

degree. We first introduce some notation. Let P be a set of points in the plane, 0 ≤ θ < π
2 and

1
2 < λ < 1.

Definition 2.1 The θ-cone(p, r) is the cone of angle 2θ with apex p and having the line through p and

r as bisector.

Definition 2.2 The λ-half-plane(p, r) is the half-plane containing r and having as boundary the line

perpendicular to pr and intersecting pr at distance 1
2λ |pr| from p.

Definition 2.3 The destruction region of r with respect to p, denoted K(p, r), is the intersection of

the θ-cone(p, r) and the λ-half-plane(p, r) (see Figure 1).

The directed graph Gθ
λ(P ) is obtained by the following algorithm. For every point p ∈ P , do the

following:

1. Let N(p) be the set P \ {p}.
2. Let r be the point in N(p) which is closest to p.

3. Add the directed edge (p, r) to Gθ
λ(P ).

4. Remove all q ∈ K(p, r) from N(p) (i.e., N(p)← N(p) \K(p, r)).

5. If N(p) is not empty go to 2.

1Theorem 1 in [4]
2Theorem 2 in [4]
3Construction in Figure 2 in [4]
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Figure 1: The destruction region of r with respect to p.

The graph computed by this algorithm can alternatively be defined in the following way:

Definition 2.4 The directed graph Gθ
λ(P ) is the graph having P as vertex set and there is an edge

(p, q) ∈ Gθ
λ(P ) iff there is no point r ∈ P , such that |pr| ≤ |pq|, (p, r) is an edge of Gθ

λ(P ) and

q ∈ K(p, r), (ties on the distances are broken arbitrarily). Such a point r is said to be a destroyer of

the edge (p, q).

2.1 Location of Destroyers

What prevents the directed pair (p, q) from being an edge in Gθ
λ? It is the existence of one point

acting as a destroyer. Given two points p, q, where can a point lie such that it acts as the destroyer

of the edge (p, q)? In this subsection, we describe the region containing the points r such that

q ∈ K(p, r). This region is denoted K(p, q). In other words, K(p, q) is the description of all the

locations of possible destroyers of an edge (p, q).

Figure 2: The location of a point r destroying the edge (p, q).

Proposition 2.5 Let R(p, q, λ) be the intersection of the disks C1 centered at p with radius |pq| and

C2 centered at c = p+ λ(q − p) with radius λ|pq|. If q ∈ K(p, r) and |pr| ≤ |pq|, then r ∈ R(p, q, λ).

Proof: If r destroyed (p, q), then |pr| ≤ |pq|. Therefore, r is in C1. To complete the proof, we need

to show that r is in C2. We begin by considering the case when q lies on the line l which is the

boundary of λ-half-plane(p, r) (see Figure 2). Let s1 be the midpoint of pr, t1 the intersection of l

3



Figure 3: Cases for the proof of Theorem 2.8.

with pr and c′ the intersection of pq with the bisector of pr. Since the triangles △pt1q and △ps1c
′

are similar, this implies that

|pc′| = |pq| |ps1||pt1|
= |pq| |pr|

2|pt1|
= |pq|2λ|pr|

2|pr| = λ|pq| = |pc|.

Therefore, c′ = c, which implies that |cr| = |cp| thereby proving that r is on the boundary of C2.

In the case when q is not on l, then we have |pc′| < |pc| and r lies on a circle centered at c′ going

through p. Therefore, r is contained in C2, which completes the proof. �

The following proposition follows directly from the definition of K(p, r).

Proposition 2.6 If q ∈ K(p, r), then ∠qpr ≤ θ.

Combining Proposition 2.5 and Proposition 2.6, we get:

Proposition 2.7 Let K(p, q) be the intersection of R(p, q, λ) with the θ-cone(p, q). If q ∈ K(p, r) and

|pr| ≤ |pq|, then r ∈ K(p, q).

2.2 The Stretch Factor of Gθ
λ

Theorem 2.8 For 0 ≤ θ < π
2 and 1

2 < λ < 1, the Gθ
λ graph is a strong t-spanner, with t = 1

(1−λ) cos θ .
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Proof: Let P be a set of points in the plane, p, q ∈ P and dG(p, q) be the length of the shortest path

from p to q in Gθ
λ(P ). We show by induction on the rank of the distance |pq| that dG(p, q) ≤ t|pq|.

Base case: If p and q form a closest pair, then the edge (p, q) is in Gθ
λ(P ) by definition. Therefore,

dG(p, q) = |pq| ≤ t|pq|.

Inductive case: If the edge (p, q) is in Gθ
λ(P ), then dG(p, q) = |pq| ≤ t|pq| as required. We now

address the case when (p, q) is not in Gθ
λ(P ). By Proposition 2.7, there must be a point r ∈ K(p, q)

with |pr| < |pq| that is destroying (p, q) and such that the edge (p, r) is in Gθ
λ(P ). Since r ∈ K(p, q)

and |pr| < |pq|, we have that |rq| < |pq|. By the inductive hypothesis, we have dG(r, q) ≤ t|rq|.
Let z be the intersection of the boundaries of the disks C1 and C2 defined in Proposition 2.5. We

assume, without loss of generality, that c is the origin and that points p, q are on the x-axis with p
to the left of q as depicted in Figure 3. The remainder of the proof addresses two cases, depending

on whether or not rx ≤ zx (the notation px denotes the x-coordinate of a point p).

Case 1: rx ≤ zx. Let v ∈ K(p, q) be the point with the same x-coordinate as r and having the

greatest y-coordinate. In other words, v is the highest point in K(p, q) that is strictly above r. We

have:

dG(p, q) ≤ |pr|+ dG(r, q)

≤ |pr|+ t|rq|(ind. hyp.)

≤ |pv|+ t|vq|.

Now, let α = ∠vpq ≤ θ We express |pv| and |vq| as a function of cosα. Consider the triangle△(pvc)
and note that |vc| = |pc| by construction. We have

|pv| = 2λ|pq| cosα

and, from the law of cosines,

|vq|2 = |pv|2 + |pq|2 − 2|pv||pq| cosα
= 4λ2|pq|2 cos2 α+ |pq|2 − 4λ|pq|2 cos2 α
= |pq|2(4λ2 cos2 α− 4λ cos2 α+ 1)

which implies that:

dG(p, q) ≤ 2λ|pq| cosα+ t|pq|
√

4λ2 cos2 α− 4λ cos2 α+ 1

= |pq|(2λ cosα+ t
√

4λ2 cos2 α− 4λ cos2 α+ 1).

Therefore, we have to show that:

t ≥ 2λ cosα+ t
√

4λ2 cos2 α− 4λ cos2 α+ 1,

which can be rewritten as

t ≥ 2λ cosα

1−
√
4λ2 cos2 α− 4λ cos2 α+ 1

.
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Since α ≤ θ < π/2 implies cos θ ≤ cosα, by straightforward algebraic manipulation we have that

1

(1− λ) cosα
≥ 2λ cosα

1−
√
4λ2 cos2 α− 4λ cos2 α+ 1

.

Case 2: rx > zx. Let β = ∠zpq. We first compute the value of cos β. From the definition of C1 and

C2, we have

z2x + z2y = λ2|pq|2

and

(zx − px)
2 + z2y = |pq|2.

Therefore, since px = −λ|pq|, we have zx = |pq|(1−2λ2)
2λ which implies

cos β =
λ|pq|+ zx
|pq| = λ+

1− 2λ2

2λ
=

1

2λ
.

We need to consider two subcases, depending on whether or not β ≤ θ.

Case 2.1: β ≤ θ. In this case, we have:

dG(p, q) ≤ |pr|+ dG(r, q)

≤ |pr|+ t|rq|(ind. hyp.)

≤ |pz|+ t|zq|
= |pq|+ t|zq|.

By the law of cosines, we have

|zq|2 = |pq|2(2− 1

λ
)

which implies

dG(p, q) ≤ |pq|+ t|pq|
√

2− 1

λ
.

Therefore, we have to show that

t ≥ 1

1−
√

2− 1
λ

.

Since β ≤ θ, we have cos β ≥ cos θ, and thus

t =
1

(1− λ) cos θ

≥ 1

(1− λ) cos β

=
1

(1− λ)(1/2λ)

=
2λ

1− λ

≥ 1

1−
√

2− 1
λ

,
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1

2λ
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|pr|
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l

θ

Figure 4: The Gθ
λ graph has bounded out-degree.

where the last inequality holds because it is equivalent to (1− λ)2 ≥ 0.

Case 2.2: β > θ. By the law of cosines we have

dG(p, q) ≤ |pq|+ t|pq|
√
2− 2 cos θ

which means that we have to show that

t ≥ 1

1−
√
2− 2 cos θ

.

But 1
1−

√
2−2 cos θ

≥ 1
(1−λ) cos θ since β > θ implies cos θ > cos β = 1

2λ . This completes the last case of

the induction step. Note that the resulting t-spanning paths found in this inductive proof are strong

since both |pr| and |rq| are shorter than |pq|. �

The above proof provides a simple local routing algorithm. A routing algorithm is considered

local provided that the only information used to make a decision is the 1-neighborhood of the

current node as well as the location of the destination (see [3] for a detailed description of the

model). The routing algorithm proceeds as follows. To find a path from p to q, if the edge (p, q) is

in Gθ
λ(P ), then take the edge. If the edge (p, q) is not in Gθ

λ(P ), then take an edge (p, r) where r is

a destroyer of the edge (p, q). Recall that r is a destroyer of the edge (p, q) if r ∈ K(p, q). This can

be computed solely with the positions of p, q and r. Therefore, determining which of the neighbors

of p in Gθ
λ(P ) destroyed the edge (p, q) is a local computation.

2.3 Gθ
λ is of Bounded Out-Degree

Proposition 2.9 The out-degree of a node in the Gθ
λ graph is at most ⌊2π/min(θ, arccos 1

2λ)⌋.

Proof: Let (p, r) and (p, s) be two edges of the Gθ
λ graph. Without loss of generality, |pr| ≤ |ps|. Let

l be the line perpendicular to pr through p+ 1
2λ (r − p). Then either ∠spr ≥ θ or s lies on the same

7



side of l as p. In the latter case, the angle ∠spr is at least arccos 1
2λ (see Figure 4). The angle ∠spr

is then at least min(θ, arccos 1
2λ ), which means that p has at most ⌊2π/min(θ, arccos 1

2λ )⌋ outgoing

edges. �

Corollary 2.10 If θ ≥ π/3 and λ > 1
2 cos(2π/7) , then the out-degree of a node in the Gθ

λ graph is at

most six.

3 Half-Space Proximal

In this section, we outline the inconsistencies within statements of the proof of the upper and lower

bounds of HSP given in Chavez et al. [4].

Figure 5: Counter-example to the proof of Theorem 2 of [4].

In the proof of the upper bound (Theorem 2 of Chavez et al. [4]), claim 4 states that all ver-

tices u0, u1, u2, . . . , uk are either in clockwise or anticlockwise order around v. The claim is that this

situation exists when (u, v) is not an edge of HSP and no neighbor of u is adjacent to v. However,

as stated, this is not true. A counter-example to this claim is shown in Figure 5. There is a unique

path from u to v, namely uu1u2v, but this path is neither clockwise nor counter-clockwise around v.

We believe that this situation may exist in the worst case. However, a characterization of the worst

case situation must be given and it must be proven that the worst case situation has the claimed

property.

Figure 6: The illustration of the lower bound on the spanning ratio of [4].

For the lower bound, the authors also claim that the stretch factor of HSP can be arbitrarily

close to 2π +1. However, the proof they provide to support that claim is a construction depicted in

8



Figure 6 (reproduced from [4]). The claim is that the path from u to v can have length arbitrarily

close to (2π + 1)|uv|. Although this may be true for the path that they highlight. This path is

not the only path from u to v in HSP. The authors neglected the presence of the edge (u1uk) in

their construction, which provides a shortcut that makes the distance between u and v much less

than 2|uv|.
One of the main reasons we believe the claims made in Chavez et al. [4] may be true is that in

the simulations, all the graphs have small stretch factor. In fact, the stretch factor seems to be even

smaller than 2π + 1. However, at this point, no proof that HSP is a constant spanner is known. We

provide a lower bound of 3− ǫ on the stretch factor of HSP as depicted in the construction below.

a b

p q

c d

1

1− δ 1− δ

1− 2δ

1− 3δ

1− δ 1− δ

1− 2δ

1− 3δ

Figure 7: Example of a 6 nodes HSP with a stretch factor of 3− ǫ. The solid edges are in HSP.

Proposition 3.1 The HSP graph has stretch factor at least 3− ǫ.

Proof: Consider the set of 6 point as in Figure 7, put δ = ǫ/6. The length of the path between p
and q via a and b is equal to the length of the path between p and q via c and d. The length of both

of these paths is 3 − 6δ. Since the shortest path between p and q in the HSP graph is one of the

above paths, the stretch factor is 3− 6δ = 3− ǫ. �

4 Unit Disk Graph Spanners

In Section 2, we showed that the Gθ
λ graph of a set of points in the plane is a strong t-spanner

of the complete graph of these points, for a constant t = 1
(1−λ) cos θ . We show in this section that

strong t-spanners are also spanners of the unit disk graph. That is, the length of the shortest path

between a pair of points in the unit disk graph is not more than t times the length of the shortest

path in the graph resulting from the intersection of a strong t-spanner the a unit disk graph. Before

proceeding, we need to introduce some notation.

For simplicity of exposition, we will assume that given a set P of points in the plane, no two

pairs of points are at equal distance from each other. The complete geometric graph defined on a set

P of points, denoted C(P ), is the graph whose vertex set is P and whose edge set is P × P , with

each edge having its weight equal to the Euclidean distance between its vertices. Let e1, . . . , e(n
2
)

be the edges of C(P ) sorted according to their lengths L1, . . . , L(n
2
). For i = 1 . . .

(

n
2

)

, we denote by

Ci(P ) the geometric graph consisting of all edges whose length is no more than Li. In general, for

9



any graph G whose vertex set is V , we define Gi as G∩Ci(V ). Let UDG(P ) be the unit disk graph

of P , which is the graph whose vertex set is P and with edges between pairs of vertices whose

distance is not more than one. Note that UDG(P ) = Ci(P ) for some i.
We now show the relationship between strong t-spanners and unit disk graphs.

Proposition 4.1 If S is a strong t-spanner of C(P ), then for all i = 1 . . .
(n
2

)

and all j = 1 . . . i, Si

contains a t-spanning path linking the vertices of ej .

Proof: Let p and q be the vertices of ej . Consider a strong t-spanner path in S between p and q.

Each edge on this path has length at most |pq| = Lj ≤ Li. Therefore, each edge is in Si. �

Proposition 4.2 If S is a strong t-spanner of C(P ), then for all i = 1 . . .
(

n
2

)

, Si is a t-spanner of

Ci(P ).

Proof: Let a and b be any two points such that dCi(P )(a, b) is finite. We need to show that in Si

there exists a path between a and b whose length is at most t ·dCi(P )(a, b). Let a = p1, p2, . . . , pk = b
be a shortest path in Ci(P ) between a and b. Hence:

dCi(P )(a, b) =
k−1
∑

j=1

|pjpj+1|.

Now, by proposition 4.1, for each edge (pj , pj+1) there is a path in Si between pj and pj+1 whose

length is at most t · |pjpj+1|. Therefore:

dSi(P )(a, b) ≤
k−1
∑

j=1

t · |pjpj+1| = t

k−1
∑

j=1

|pjpj+1| = t · dCi(P )(a, b)

which means that in Si, there exists a path between a and b whose length is at most t · dCi(P )(a, b).
�

Corollary 4.3 If S is a strong t-spanner of C(P ), then S∩UDG(P ) is a strong t-spanner of UDG(P ).

Proof: Just notice that UDG = Ci for some i and the result follows from Proposition 4.2. �

Thus, we have shown sufficient conditions for a graph to be a spanner of the unit disk graph.

We now show that these conditions are also necessary.

Proposition 4.4 If S is a subgraph of C(P ) such that for all i = 1 . . .
(n
2

)

, Si is a t-spanner of Ci(P ),
then S is a strong t-spanner of C(P ).

Proof: Let a, b be any pair of points chosen in P . We have to show that in S, there is a path

between a and b such that

1. its length is at most t · |ab| and

10



2. every edge on the path has length at most |ab|.

Let ei = (a, b). We know that Si is a t-spanner of Ci(P ). Since Ci(P ) contains ei, dCi(P )(a, b) =
|ab|. Hence, there is a path in Si (and therefore in S) whose length is at most t · dCi(P )(a, b) = t|ab|.
Also, since it is in Si, all of its edges have length at most Li = |ab|. �

Figure 8: The θ-graph is not a strong t-spanner.

The two last results, together, allow us to determine whether or not given families of geometric

graphs are also spanners of the unit disk graph. First, since the Gθ
λ graph is a strong t-spanner, we

already know that it is also a spanner of the unit disk graph. Second, Bose et al. [2] showed that

the Yao graph[7] and the Delaunay triangulation are strong t-spanners. Therefore, these graphs

are also spanners of the unit disk graph. Third, the θ-graph[5] is not always a spanner of the unit

disk graph. The reason for that is that in a cone, the edge you chose may not be the shortest edge.

Hence, the path from a point p to a point q may contain edges whose length is greater than |pq|
(see Figure 8). Using Proposition 4.4, we thus know that the intersection of the θ-graph with the

unit disk graph may not be a spanner of the unit disk graph. Indeed, the intersection of the θ-graph

with the unit disk graph may not even be connected.

5 Simulation Results

In section 2, we provided worst-case analysis of the spanning ratio of the Gθ
λ graph. Using simu-

lation, we now provide estimates of the average spanning ratio of the Gθ
λ graph. Using a uniform

distribution, we generated 200 sets of 200 points each and computed the spanning ratio for λ rang-

ing from 0.5 to 1 and θ ranging from 5◦ to 90◦ (for θ = 0◦, the spanning ratio is exactly 1). For

each graph, we then computed the spanning ratio and the local routing ratio. The spanning ratio is

defined as the maximum, over all pair of points (p, q), of the length of the shortest from p to q path

in the Gθ
λ graph divided by |pq|. The local routing ratio is defined as the maximum, over all pair of

points (p, q), of the length of the path produced by using a local routing strategy in the Gθ
λ graph

divided by |pq|. The local routing strategy we have used is the following: at each step, send the

message to the neighbor which destroyed q. We also tried the strategy which consists in choosing

the neighbor which is the nearest to q, and the results we obtained were the same.

Figure 9 and Table 1 show the results we obtained for the spanning ratio. Figure 10 and

Table 2 show the results we obtained for the local routing ratio. For the spanning ratio, the 95%

confidence interval for these values is ±0.0319. For the local routing ratio, the 95% confidence

interval is ±0.0735.
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One interesting conclusion we can draw from these results is that for the spanning ratio, θ has a

more decisive influence than λ. Figure 11 shows the simulation results for the cases where λ = 0.75.

We see that even though both ratios generally increase when θ increase, the spanning ratio varies

between 1.07 and 2.21 (107% variation), while the local routing ratio only varies between 2.33

and 2.77 (19% variation). For the local routing ratio, it is the other way around. It is λ which has

a more decisive influence. Figure 12 shows the influence of λ when θ = 45◦. In that case, the local

routing ratio varies between 1.72 and 4.55 (165% variation), while the spanning ratio only varies

between 1.52 and 1.81 (19% variation).

6 Conclusion

We conclude with the problem that initiated this research. Determine whether or not HSP is a

strong t-spanner for some constant t.
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Figure 9: Spanning Ratio for λ = 0.5 to 1 and θ = 5◦ to 90◦.

θ \ λ 0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1

5 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07

10 1.14 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15

15 1.20 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23

20 1.26 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31

25 1.31 1.40 1.40 1.39 1.40 1.40 1.39 1.40 1.40 1.39 1.39

30 1.36 1.45 1.49 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48

35 1.41 1.50 1.58 1.58 1.58 1.58 1.59 1.58 1.58 1.58 1.59

40 1.46 1.57 1.64 1.69 1.69 1.70 1.71 1.70 1.70 1.68 1.69

45 1.52 1.60 1.71 1.78 1.81 1.81 1.81 1.81 1.80 1.81 1.81

50 1.56 1.65 1.75 1.82 1.90 1.94 1.95 1.95 1.95 1.94 1.95

55 1.59 1.69 1.80 1.89 1.96 2.02 2.06 2.11 2.10 2.09 2.09

60 1.61 1.72 1.83 1.94 2.05 2.10 2.15 2.21 2.22 2.25 2.25

65 1.65 1.75 1.86 1.95 2.05 2.14 2.20 2.28 2.31 2.34 2.39

70 1.66 1.77 1.88 1.99 2.09 2.16 2.24 2.29 2.36 2.42 2.46

75 1.66 1.77 1.88 2.00 2.09 2.18 2.26 2.34 2.39 2.45 2.50

80 1.67 1.79 1.88 1.99 2.10 2.20 2.27 2.36 2.42 2.47 2.52

85 1.66 1.78 1.89 2.00 2.10 2.19 2.27 2.35 2.42 2.47 2.51

90 1.67 1.78 1.89 2.00 2.09 2.21 2.26 2.33 2.41 2.46 2.54

Table 1: Spanning Ratio for λ = 0.5 to 1 and θ = 5◦ to 90◦.
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Figure 10: Local Routing Ratio for λ = 0.5 to 1 and θ = 5◦ to 90◦.

θ \ λ 0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1

5 1.08 1.22 1.41 1.65 1.97 2.33 2.72 3.17 3.68 4.22 4.92

10 1.15 1.27 1.45 1.70 2.01 2.36 2.76 3.21 3.70 4.23 4.90

15 1.23 1.35 1.51 1.75 2.04 2.38 2.76 3.21 3.72 4.27 4.90

20 1.31 1.43 1.59 1.81 2.07 2.40 2.77 3.21 3.67 4.22 4.84

25 1.39 1.51 1.66 1.87 2.12 2.43 2.79 3.17 3.65 4.13 4.73

30 1.48 1.59 1.74 1.92 2.17 2.48 2.80 3.21 3.63 4.19 4.66

35 1.56 1.68 1.82 2.00 2.23 2.50 2.83 3.23 3.60 4.14 4.60

40 1.64 1.76 1.90 2.08 2.29 2.56 2.87 3.23 3.65 4.07 4.58

45 1.72 1.84 1.99 2.15 2.37 2.61 2.92 3.24 3.69 4.06 4.55

50 1.81 1.92 2.07 2.25 2.45 2.66 2.95 3.30 3.67 4.10 4.58

55 1.90 2.01 2.17 2.33 2.51 2.73 2.98 3.31 3.66 4.08 4.50

60 1.99 2.10 2.23 2.37 2.55 2.77 3.00 3.31 3.65 4.03 4.45

65 2.08 2.18 2.29 2.44 2.58 2.77 3.01 3.28 3.61 3.96 4.40

70 2.15 2.23 2.33 2.45 2.60 2.77 3.00 3.26 3.59 3.92 4.31

75 2.18 2.26 2.34 2.46 2.60 2.75 2.94 3.19 3.46 3.80 4.24

80 2.20 2.28 2.36 2.44 2.58 2.74 2.91 3.13 3.37 3.67 4.08

85 2.22 2.27 2.36 2.47 2.58 2.70 2.87 3.05 3.32 3.55 3.87

90 2.21 2.27 2.34 2.45 2.57 2.72 2.88 3.05 3.22 3.47 3.76

Table 2: Local Routing Ratio for λ = 0.5 to 1 and θ = 5◦ to 90◦.
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Figure 11: Ratios for θ = 45◦.

Figure 12: Ratios for λ = 0.75.
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