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Abstract

We consider a memory allocation problem that can be modsladrarsion of bin packing where
items may be split, but each bin may contain at most two (paEjtéems. A 3/2-approximation
algorithm and an NP-hardness proof for this problem wasmghwe Chung et al.[[3]. We give a
simpler 3/2-approximation algorithm for it which is in faat online algorithm. This algorithm also
has good performance for the more general case where eachayircontain at most parts of
items. We show that this general case is also strongly NB-hadditionally, we give an efficient
7/5-approximation algorithm.

1 Introduction

A problem that occurs in parallel processing is allocatimg dvailable memory to the processors. This
needs to be done in such a way that each processor has stffi@emry and not too much memory
is being wasted. If processors have memory requirementsvéimg wildly over time, any memory
allocation where a single memory can only be accessed byracegsor will be inefficient. A solution
to this problem is to allow memory sharing between processétowever, if there is a single shared
memory for all the processors, there will be much contentibiich is also undesirable. It is currently
infeasible to build a large, fast shared memory and in pgacuch memories are time-multiplexed. For
n processors, this increases the effective memory accesdiima factor ofr.

Chung et al.[[B] studied this problem and described the daakd of the methods given above.
Moreover, they suggested a new architecture where each memay be accessed by at madsto
processors, avoiding the disadvantages of the two extremieremodels. They abstract the memory
allocation problem as a bin packing problem, where the biestl®e memories and the items to be
packed represent the memory requirements of the procesRuissmeans that the items may be of any
size (in particular, they can be larger than 1, which is tlze sif a bin), and an item may be split, but
each bin may contain at most two parts of items. The authof3] @five a3/2-approximation for this
problem.

We continue the study of this problem and also consider argéped problem where items can still
be split arbitrarily, but each bin can contain upitparts of items, for a given value &f> 2.

We study approximation algorithms in terms of thiesolute approximation rati@r the absolute
performance guaranteg.et 3(Z) (or B, if the inputZ is clear from the context), be the cost of algorithm
B on the inputZ. An algorithm A is anR-approximation (with respect to the absolute approxinmatio
ratio) if for every inputZ, A(Z) < R - OPT(0), whereopPT is an optimal algorithm for the problem.
The absolute approximation ratio of an algorithm is the infimvalue ofR such that the algorithm is
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anR-approximation. The asymptotic approximation ratio foromtine algorithmA is defined to be

OPT(Z) = n} .

Often bin packing algorithms are studied using this meastine reason for that is that for most bin
packing problems, a simple reduction from #eRTITION problem (see problem SP12 in [6]) shows
that no polynomial-time algorithm has an absolute perferteaguarantee better thénunless P=NP.
However, since in our problem items can be split, but canegbdcked more than a given number of
parts to a bin, this reduction is not valid. In] [3], the authshow that the problem they study is NP-hard
in the strong sense fér= 2. They use a reduction from the 3xRTITION problem (see problem [SP15]
in [6]). Their result does not seem to imply any consequendtsrespect to hardness of approximation.
We show that the problem is in fact NP-hard in the strong starsany fixed value of.

A related, easier problem is known as bin packing with caaidi constraints. In this problem,
all items have size at most 1 as in regular bin packing, andtéines cannot be split, however there
is an upper bound of on the amount of items that can be packed into a single bins prablem
was studied with respect to the asymptotic approximatidio.rdt was introduced and studied in an
offline environment as early as 1975 by Krause, Shen and Sofame[9,[10]. They showed that the
performance guarantee of the well known FIRST FIT algoriterat mos2.7 — % Additional results
were offline approximation algorithms of performance gotga2. These results were later improved
in two ways. Kellerer and Pferschyl[8] designed an imprové#tine approximation algorithm with
performance guarantde5 and finally a PTAS was designed in [2] (for a more general gnob)

On the other hand, Babel et al.| [1] designed a singuikne algorithm with asymptotic approxi-
mation ratio2 for any value ofk. They also designed improved algorithms ko 2, 3 of asymptotic
approximation ratiog + % ~ 1.44721 and1.8 respectively. The same paper [1] also proved an almost
matching lower bound of/2 ~ 1.41421 for k = 2 and mentioned that the lower bounds[of|[12, 11] for
the classic problem hold for cardinality constrained biokiag as well. The lower bound of 1.5 given
by Yao [12] holds for small values df > 2 and the lower bound of 1.5401 given by Van Vliet[11]
holds for sufficiently largeé:. No other lower bounds are known. Finally, Epstein [4] ganeoptimal
online bounded space algorithm (i.e., an algorithm whiahltave a constant number of active bins at
every time) for this problem. Its asymptotic worst-caséora an increasing function ¢f and tends to
14+ heo = 2.69103, whereh, is the best possible performance guarantee of an onlinedeouspace al-
gorithm for regular bin packing (without cardinality corants). Additionally, she improved the online
upper bounds fos < k& < 6. In particular, the upper bound fér= 3 was improved toZI.

. A(Z)
oo __ 1
R = limsupsup { oPT(T)

Ourresults Inthe current paper, we begin by showing that this probleNHshard in the strong sense
for any fixed value of. This generalizes a result from Chung et al. [3]. We also stiatthe simple
NEXT FIT algorithm has an absolute approximation rati@ ef 1/k. This matches and generalizes the
performance of the more complicated algorithm fram [3].

Finally, we give an efficienT /5-approximation algorithm.

2 NP-hardness of the problem (in the strong sense)

Theorem 1 Packing splittable items with a cardinality constraintoparts of items per bin is NP-hard
in the strong sense for any fixéd> 3.

Proof Given a fixed value ok, we show a reduction from the 3-Partition problem defined#s\iis

(see problem [SP15] in_[6]). We are given a set3af positive numberss, so, ..., s3,, such that
B

Z?Zl s; = mB and eachs; satisfies? < s; < £. The goal is to find out whether there exists a



partition of the numbers inte: sets of size 3 such that the sum of elements of each set idye¥acthe
3-Partition problem is known to be NP-hard in the strong sens

Given such an instance of the 3-Partition problem we defiriasaance of the splittable item packing
with cardinality constraints as follows. There ang¢k —3) items, all of siz% (for k = 3, no items
are defined at this point). These items are called paddingsitén addition, there ar&n items, where
item j has sizegzZ= (for k = 3 we define the size to b&). These items are called adapted items. The
goal is to find a packing with exactly, bins. Since there arek items, clearly a solution which splits
items must use at least + 1 bins. Moreover, a solution im bins contains exactly items per bin.
Since the sum of items is exactly, all bins in such a solution are completely occupied witlpees to
size.

If there exists a partition of the numbers intosets of sumB each, then there is a partition of the
adapted items intd/ sets of sumBLk each (the sum is for £ = 3). Each bin is packed witk — 3
padding items and one such triple, givingsets ofk items, each set of sum exacily

If there is a packing into exactly: bins, as noted above, no items are split and each bin mustinont
exactlyk items. Ifk = 3, this implies the existence of a partition. Consider theedas 4. We first
prove that each bin contains exactly- 3 padding items.

—D(k=2) _ 3k2-7Tk+2 _

If a bin contains at leagt — 2 padding items, their total size is at Ieé%’@k(k_?’) = Saor
1+ 35(’€kt23). For k > 4 this is strictly larger tharl and cannot fit into a bin. If there are at most
k — ¢ < k — 4 padding items, then there af@dditional items of size at mog% (¢ > 4). The total size

. — — 2 . . . .
is therefore at moser—L&E—0 Gik — 6k"—2k—5tk—L Thjs value is maximized for the smallest value

ST (k—3) ok (k—3)
of £ which is? = 4. We get the size of at moﬁl“(;;(,fif’g)*‘* =1- 64k((kk—’_—1?3)' Fork > 4 this is strictly less

than1, which as noted above does not admit a packingsntoins.

Since each bin contains exacfly- 3 padding items, it contains exactly three adapted itemsseho
total size is exactly?}—k. The original sum of such three items /5 we get that a solution im bins
implies a partition. a

3 The NEXT FIT Algorithm

We can define NEXT FIT for the current problem as follows. Tikia straightforward generalization of
the standard NEXT FIT algorithm. An item is placed (panyipih the current bin if the bin is not full
andthe bin contains less thanitem parts so far. If the item does not fit entirely in the catrein, the
current bin is filled, closed, and as many new bins are opes@geessary to contain the item.

Note that this is an online algorithm. The absolute appratiom ratio of NEXT FIT for the classical
bin packing problem ig, as Johnson [7] showed. Surprisingly, its approximatidio far our problem
tends to this value for largke. The two problems are different, and the two results seena tanbelated.

Since items may be split, and we consider the absolute ajppation ratio, this is the only reason-
able online algorithm that can be used for the problem. Wevghat the approximation ratio of NEXT
FIT is exactly2 — 1/k. Thus, this extremely simple algorithm performs as welhasaigorithm from([3]
for k = 2, and also provides the first upper bound for larger valuds of

Theorem 2 The approximation ratio of NEXT FIT B— 1/k.

Proof We first show a lower bound. The instance contains an itemzef &k — 1 followed by
M(k — 1)k items of sizez, where M is large andt = 1/(Mk(k — 1)). Then the first item occupies
MF — 1 bins, and the rest of the items dreer bin, inM (k — 1) bins. OPT has\/k bins in total. This
proves a lower bound ¢\ (2k — 1) — 1) /(M k), which tends t@ — 1/k for M — oc.

Now we show a matching upper bound.

Letuy,uo,...,u, be sizes of the the blocks. .., m of NF. In each block, all bins are full except
perhaps the last one, which containparts of items (except for block, perhaps). We assign weights
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to items. Let the size of iterhbe s;. Thenw; = [s;|/k. Note that in any packing, there are at legs
parts of itemi. Since there can be at mdsparts in a bin, this means

1 i
OPTZE;[SZJ :ZZ:% (1)
This explains our definition of the weights. This generaittee weight definition from Chung et &l [3].

Consider the last bin from a blogk< m. Since NF started a new bin after this bin, it contains
parts of items. Thus it contains at leést 1 items of weightl /& (the lastk — 1 items are not split by the
algorithm). Ifu; = 1, there aré: such items. If;; > 1, consider all items excluding thie-1 lastitems in
the last bin. We do not know how many items there are in thedijrstl bins (where the last item extends
into bin u;). However, for a fixed size, the weight of a group of items of total sizds minimized if
there is a single item in the group (since we round up the sizedch individual item to get the weight).
This implies the total weight in a block af; bins is at leasti; /k + (k — 1) /k = (u; + k — 1) /k.

Now consider blockn. If u; = 1, the weight is at least/k since there is at least one item. Else, as
above the weight is at least/k, since the last bin of this block has at least one item or agfam item.

We haveNF = > u;. Therefore

S (ui+k—1)—(k—1) NF4+(m—1)(k—1
OPT > Ewiz 1 - = m - I ) | 2)

Also by size,0oPT > NF — m and thusoPT > NF — m + 1. Multiply this inequality by(k — 1)/k and
add it [2) to get

2k — 1 1 k-1 k—1 k—1
- OPT > NF E+T +(m—1)——(m—1)T:NF.

We concludenF < (2 — 1/k)OPT. O

4 The structure of the optimal packing for £ = 2

Before we begin our analysis, we make some observationsdiagahe packing obpPT. A packing can
be represented by a graph where the items are nodes and edgespond (one-to-one) to bins. If there
is a bin which contains (parts of) two items, there is an edgerden these items. A bin with only one
item corresponds to a loop on that item. The paper [3] showaifor any given packing, it is possible
to modify the packing such that there are no cycles in thecéstsal graph. Thus the graph consists of
a forest together with some loops. We start by analyzing thetsire of the graph associated with the
optimal packing. Items of size at mast2 are calledsmall

Lemma 4.1 There exists an optimal packing in which all small items aavks.

Proof Consider a small item that has edges to at least two othesit&ote that if two small items
share an edge, the packing can be changed so that thesermgdadten a separate connected component
with a single edge. Thus we may assume that all neighborparts (of) medium or large items.

Order the neighbors in some way and consider the first twchbeig. Denote the small item by
and the sizes of its neighboring partsdy andws. In bin ¢, w; is combined with a par; of the small
items (i = 1,2).

We haves; + so < 1/2. If 53 < wy, we can cut off a part of size, from w, and put it in bin 1,
while puttings; in bin 2. This removes neighbar; from the small iters.

Otherwise,ws < s; < 1/2, which means that we can pst into bin 2 without taking anything
out of bin 2: we havevs < 1/2 ands; + so < 1/2. Again,w; is no longer a neighbor of (or even
connected ta).



Thus we can remove one neighbor fremAe can continue in this way untilhas only one neighbor
left. O

Lemma 4.2 An item of size ir{(i — 1)/2,4/2] has at most neighbors for alli > 2.

Proof Denote the items of size if{i — 1)/2,:/2] by typei items. We can consider the items one by
one in each tree of the forest.

Consider a tree with at least one typgem for some; > 1 that has at least+ 1 neighbors. We
want to create edges between its neighbors and remove edgethe item to the neighbors. However,
these neighbors may be typéems themselves, or some other typz 1.

We root the tree at an arbitrary item. Let the type of this iteen. On this item we apply the
procedure detailed below. After doing this, the item has dgedao at most other items. We define
levels in the tree in the natural way. Level 1 contains the, evel 2 now contains at mositems. We
do not change any edges going up from a particular level.

The items in level 2 undergoes the same procedure if negesdat is, if the number of its neigh-
bors is larger than its type. Afterwards, it only haseighbors, one of which is on level 1. The other
neighbors have moved to some lower level.

The procedure to remove a single neighbor of a tyjtem is as follows. For each item, we apply
this procedure until it has at mosbutgoing edges. Consider a typdem x which is connected to at
leasti 4 1 other items (generally: at leastiownlevel items). Say part; of item x is with partw; of
some other item in bin for j = 1,...,7 where:/ > i. If we are not dealing with the root of the tree,
let w; be the uplevel node.

We sort the first’ — 1 > 4 bins of this set in order of nondecreasing sizergt Since the total size
of item z is at mosti/2, we then haven; + my < 1. These two parts can thus be put together in one
bin. This means cutting one of the neighbors into two and ngitidownlevel. We can do this as long
as the item has more thameighbors. O

5 A T7/5-approximation for k = 2

Let k£ = 2. We call items of size irf1/2, 1] mediumand remaining itemtarge. Our algorithm works
as follows. We present it here in a simplified form which iggethe fact that it might run out of small
items in the middle of step 2(b) or while packing a large itenstep 4. We will show later how to deal
with these cases while maintaining an approximation rétin/6. See Figuréll.

We begin by giving an example which shows that this algorithmot optimal. For some integé¥,
consider the input which consists #N small items of siz&/N, 2N medium items of sizé — 1/N,
3N medium items of sizé — 2/N.

ALG packs the items of sizé — 1/N in 4N bins, together withl N small items. It need8N (1 —
2/N) = 3N — 6 bins for the remaining medium items. Thus it ne&d& — 6 bins in total.

OPT places N small items in separate bins (one per bin), ahdmall items are split into two equal
parts. This giveS N bins in which there is exactly enough room to place all theimmadtems.

Theorem 3 This algorithm achieves an absolute approximation rati@ &f.

The analysis has three cases, depending on whether thétatgbalts in step 3, 5 or 6. The easiest
case among these is without a doubt step 5, at least as lotidpassapacked in step 5 contain two small
items.

5.1 Algorithm halts in step 5

Based on inequality {1), we define weights as follows.



1. Sort the small items in order of increasing size, the nradtems in order of decreasing size,
and the large items in order of decreasing size.

2. Pack the medium items one by one, as follows, until you mtrobmedium or small items.

(a) If the current item fits with the smallest unpacked smathi, pack them into a bin.
(b) Else, pack the current item together with the tengestsmall items in two bins.

o

3. If no small items remain unpacked, pack remaining medindilarge items using Next Fit an
halt. Start with the medium items.

4. Pack all remaining small items in separate bins. Paclatige litems one by one into these bins
using Next Fit (starting with the largest large item and dasalsmall item).

5. If any bins remain that have only one small item, repackdhamall items in pairs into bin
and halt.

[72)

6. Pack remaining large items using Next Fit.

Figure 1: The approximation algorithm fér= 2

Definition 1 The weight of an item of size; is [w; | /2.

In our proofs, we will also use weights of parts of items, loase considering the total weight of an
item and the number of its parts. By Definitioh 1, small and imedtems have weight/2. Therefore,
we have the following bounds on total weight of bins packethandifferent steps:

2.(@) 1/2+1/2=1
2.(b) We pack three items of weight2 in two bins, or3/4 weight per bin on average.

4. Consider a large item which is packedgiins, that is, together with in totgl small items. Its
size is strictly larger thaﬁ;—1 and thus its weight is at leagf4. Each small item has a weight of
1/2, so we pack a weight of &y /4 in theseg bins.

5.1/2+1/2=1

This immediately proves an upper boundig8 on the absolute approximation ratio. There is, however,
one special case: it can happen that one small item remapasrad in step 5. Since this case requires
deeper analysis, we postpone it till the end of the proof {Se.5).

5.2 Critical items
Definition 2 A critical item is a medium item that the algorithm packs in Step 2(b).

From now on, for the analysis we use a fixed optimal packingotiel by OPT. We consider the
critical items in order of decreasing size. Denote the euritem byz. We will consider how OPT
packsz and define aadjusted weightbased on how much spageccupies in the bins of OPT. Denote
the adjusted weight of iterhby W;. The adjusted weights will satisfy the following condition

Zn:@gzn:wigopt 3)
i=1 =1



Specifically, we will haveV; > [w;]/2 fori = 1,...,n. Thus the number®/; will generate a better
lower bound foropT, that we can use to show a better upper bound for our algariitms is the central
idea of our analysis. We initializ8/; = [w;]/2 fori = 1,...,n. There are four cases.

Case 1 OPT packse by itself.In this case we give adjusted weight 1, and so our algorithm packs an
adjusted weight of 1 in each of the (two) bins that contain

Case 2 OPT packse with partof a small item.Again x and the bins withe get an adjusted weight of
1. This holds because when OPT splits a small item (or a medam), it is as if it packs two small
items, both of weight /2. Therefore such an item gets adjusted weight 1. We can &atisf extral /2
from the small item ta.

Case 3 OPT combines: with acompletesmall itemy. Since our algorithm starts by considering the
smallest small itemg; must have been packed earlier by our algorithm, i.e. withrgetamedium item

2’ (which is not critical!). If OPT packs’ alone or with part of a small item, it has an adjusted weight
of 1 (Cases 1 and 2). Thus the bin withhas an adjusted weight 8f/2, and we transfet /2 to z.

If OPT packsz’ with a full small itemy’, theny' is packed with a larger non-critical itent’ by our
algorithm, etc. Eventually we find a non-critical mediummite* which OPT packs alone or with part
of a small item, or for which Case 4 holds. The difference leemvthe weight and the adjusted weight
of 2* will be transferred tac. Note that the bin in which our algorithm pack$ has a weight of 1 since
x* is non-critical. All intermediate items’, 2", ... have weightl /2 and are non-critical as well, and we
change nothing about those items.

Case 4 OPT packse with a split medium or large item, or splitsitself.

Since there might be several critical items for which Caseldd) we need to consider how OPT
packs all these items to determine their adjusted weight.aeyoing to allocate adjusted weights to
items according to the following rules:

1. Each part of a small item (in the OPT packing) gets adjusteight1/2.
2. A part of a large item which is in a bin by itself gets adjdsteeight 1.
3. A part of a large item which is combined with some other itgets adjusted weight/2.

We do not change the weight of non-critical items. The altitems receive an adjusted weight
which corresponds to the number of bins that they occupyerpticking of OPT. As noted above, this
packing consists of trees and loops. Loops were treatedda Calo determine the adjusted weights, we
consider thanon-mediumitems that are cut into parts by OPT. Each part of such an #eronsidered
to be a single item for this calculation and has adjusted hiteigs explained above. We then have that
the optimal packing consists only of trees with small and immadtems, and loops. It can be seen that
each part of a non-medium item (for instance, part of a laeg®)i which is in a tree has weight2.

Consider a tred” in the optimal packing. Denote the number of edges (bins) lny . Since all
items inT" are small or medium, there aré 1 items (nodes) i’ by Lemmag 411 arild4.2. Any items that
are small (or part of a small item) or medium but non-criticave adjusted weight equal to the weight
of a regular small or medium item whichig2. Denoting the number of critical items Hby ¢, we find
that thet 4+ 1 — ¢ non-critical items have weingt%. All items together occupy bins in the optimal
packing. This means we can give the critical items each arstaj weight oft — £1=¢) /e = 1 + &1
while still satisfying [B). This expression is minimized taking ¢ maximal,c = ¢ + 1, and is then
t/(t + 1). We can therefore assign an adjusted weight/0f + 1) to each critical item ir¥".



Since the algorithm combines a critical item with two smihis of weight (at least)/2, it packs
a/weight ofl +¢/(t + 1) = 25 in two bins, or3% per bin. This ratio is minimized for = 2 and is
5/6.

However, let us consider the case- 2 in more detail. If the OPT tree with item (which is now
a chain of length 2) consists of three critical items, them sbm ofsizesof these items is at mo&t
Our algorithm packs each of these items with two small iterhickvdo not fit with one such item. Let
the sizes of the three medium itemssbg, mo, m3. Let the two small items packed with; bes; ; for
Jj = 1,2. We have thain; + ma +m3 < 2 butm; +s;; > 1fori =1,2,3 andj = 1,2. Summing
up the last six inequalities and subtracting the one befoeayet that the total size of all nine items is at
least4. Thus the area guarantee in these six bins is at fgast

If one of the items in the chain is (a part of) a small or largent or a medium non-critical item, it
has adjusted weight/2. This leaves an adjusted weight3)f4 for the other two items. In this case we
pack at leas$/4 + 1 = 7/4 in two bins, or7/8 per bin. Fort > 3, we also find a minimum ratio af/8.

Thus we can divide the bins with critical items into two syj#yg: A with an adjusted weight &f/6
and are&/3, and B with an adjusted weight of (at leasty8 and ared /2.

5.3 Algorithm halts in step 3

We divide the bins that our algorithm generates into types.h&te
1. groups of two small items and one medium item in two bins
2. pairs of one small item and one medium item in one bin
3. groups of four or more medium items in three or more bins
4. groups of three medium items in two bins
5. one group of bins with 0 or more medium items and all thedaiems

Note that bins of type 4 contain a total weight of at leg&t (3/2 per two bins), as well as a total size
of at leas3/4 (3 items of size more thaty2 in two bins). Thus, whether we look at sizes or at weights,
it is clear that these bins can be ignored if we try to showia tatger thard/3.

Furthermore, in the bins of type 5 we ignore that some of st may be medium. The bounds
that we derive for the total size and weight packed into thése still hold if some of the items are only
medium-sized.

The bins of type 1 contain the critical items. We say the biith wubtype A are of typela, and
the bins with subtype3 are of typelb. Definexy,,z1p z2, 3,24 as the number of bins with types
la, 10,2, 3, and 5, respectively.

Consider the bins of type 3. Létbe the number of groups of medium items. ket 3 be the
number of bins in group < i < k. The items in group have total size more thap— 1/2, since the last
bin contains a complete medium item. The total weight of augnet i+ since it containg; + 1 items,
each of welghtj. We get that the total size of items in bins of type 3 is at I@ﬁ;l (t; — %) = 13— 3,
and the total weight of these items}s;_, lit! = zatk,

We find two different lower bounds on OPT.

Adjusted weight:

5 7 z3 k x
OPT>6x1a+8x1b+x2+—+§ 75 (4)
Size: 5 L
X
OFT > Zw1a + 2”’+7+ 3 — 5 + max(zs — 1,0). (5)



Multiplying the first inequality by and the second one Bywe get

7 16 11 k 2 3
—OPT> 1—5m1a+m1b+1—0x2 +x3+1—0+ 5m5+ 5max( x5 — 1,0). (6)

If x5 = 0 we are done. Elsd,](5) is strict and we get
2 T T k
OPT>§£C1Q—|—7M+72+$3—§+$5—1. (7)
This meanscs andzs occur with the same fractions il (4) amd (7). Thus we canset z3 + x5 and
x5 := 0. Adding (4) and[(7) and dividing by 2 gives

OPT > 3( + 20+ 23) + 11 1
—\r X X —T1p — =
7 Zla 2 3) T gt T 5
This implies we are done if1, + z9 + z3 > %xlb + 14. Clearly, this holds if any ok, z2 Or x3 are

at least 14. Finally, by {4) we are also done if

o+ ! + + >t i 5( + 21 + 72 + 73)
—T —X X —_— — —\x X X xr3).
6 la ] 16 2 9 = 7 la 16 2 3
This holds if
N 9 N 2 N k 3
1o lle T gt T ot o 2 s,

Since we may assumeg < 14, we are in particular done if;;, > 18 or k > 6.

This leaves a limited set of options for the valuesc@f, x1,, 22, x3 andk that need to be checked.
It is possible to verify that for almost all combinations, fired opT > %ALG. One exception ig3 = 3,
k = 1. However, going back to the original variables, this means- x5 = 3 andk = 1. Butzs is
either O or at least 3. I = 1, we must havers = 3 andzs = 0, so we treated this case already. Two
other cases require special attention and are described.bel

Special cases Step 2(b) requires two small items. If only one is left at {iwisnt, and there is also no
remaining medium item with which it could be packed, we raueft to be a medium item and pack it
in step 3. This leads to it being packed in a bin of type 3 (oN8te that in this case, this small item and
any medium item we tried to pack with it in Step 2 have totagsizore than 1. Thus if the small item
ends up in a group of type 4 (a group of two bins), the total sfzbe items in these bins (as well as the
total weight) is still at least 3/2, and we can ignore thess n the analysis. Therefore the analysis still
holds.

There are two cases wheo®T < %ALG is possible. Ifzo = 1 andz; = 2, a packing into two
bins could exist in case there is only one large item. (If thies lzounted inxs contain two medium
items, then we have that the three medium items requiredat)lévo bins and the small item requires
an extra bin.) If such a packing exists, it works as followaclpfirst the medium item, then the large
item (partially in the second bin), then the small item. [sthives a packing into two bins, this is how
our algorithm packs the items. Otherwise we already havepimal packing.

If 1, = 4, xo = 1 andxzs = 5, it is a simple matter to try all possible packings for therigein 7
bins and check if one is valid. (We can try all possible fag@st at most 13 nodes and at most 7 edges.)
If there is no packing in 7 bins, then our algorithm maintahmesratio of7/5. If there is one, we use it.

5.4 Algorithm halts in step 6
In this case we have the following bin types.

1. groups of two small items and one medium item in two bins
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2. pairs of one small item and one medium item in one bin
3. groups of large items with small items
4. one group of large items

By definition, the type 1 bins contain the critical items. V@mm make a distinction between type
bins with subtyped and typelb bins with subtypeB. In type 2 bins, the weight is 1.

Consider a large item which occupies 2 bins of type 3. Thiw ites weight of 1 and is combined
with two small items in two bins, giving a weight of 1 per binhd large item also has size more than
1, so an area of at lea$y2 is packed per bin. Comparing this to typé bins, which have a weight
guarantee of only /8 but also an area guaranteelg®, we find that we may assume there are no such
type 3 bins (with a large item occupying two bins).

Now consider a large item which occupies 4 bins of type 3. Nafiwwd an overall weight of at
least 3, as well as an overall size of at least 3 (since the léegn did not fit with 3 small items in 3
bins). Since we plan to show a ratio larger thig, we can ignore such bins as well. This also holds for
large items that occupy > 5 bins: the weight of the large item is at leggt! if g is even and at least
(g+1)/4if gis odd.

We may therefore assume that all bins of type 3 form groupkrettbins, containing a weight of at
least5/2 and an area of at least 2. This gives a weighi &f per bin and an area @f/3 per bin, just like
typela. We denote the number of tygé items byz; and the number of typea and 3 items byts.

Adjusted weight:

7 5
OPT > g.%'l + 29 + 6.%'34—1‘4/2. (8)
Size:
1 2 2
OPT > 5951 + g.%'g + g.%'g + max(z4 — 1,0). 9

Multiplying and adding as in the previous section gives

5OPT>9U +6x +16x +2x +3ma (x4 —1,0)
= - — - — max(rq — .
7 e R T S I 14— 1

If z4 = 0, we are done. Otherwise, we are dongif, + {23 > 2, which holds ifzy > 3 orz3 > 9.
Adding (8) and[(®) gives that we are donelifzs + z4) > 2(x3 + z4) + 1. This holds in particular
if 4, > 14. Finally, from [8) we get that we are doneg%xl > %u, implying that we are done if
T > % - 14, or z1 > 19. Again this gives us a limited amount of choices to examinkndst all give
us an approximation ratio af/5. The one exception to this casexs = 2 andxs = 1, which we can
treat as in the previous section (repack into 2 bins if pdsgiOther problematic cases, likey(= 2

andxz; = 1) and {4 = 2 andz3 = 1), cannot occur becausg is even andcs is O or at least 2.

A special case: not enough small items to cover some largerte If we run out of small items while
packing some large item, this large item is considered todukex in step 6. That is, we ignore the
small items packed with this large item in our analysis, anthé last bin containing the large item we
immediately continue with the remaining unpacked largm#elt can be seen that this does not affect
the weight or the area guarantee that we use for the groupgef ilems (indeed, the weight guarantee
improves somewhat, but we ignore this).

5.5 One small item is unpaired in step 5

By our analysis so far concerning the critical items, we kilo&t bins packed in step 2(a) have weight 1.
Bins in step 2(b) are packed in pairs which have adjustedhiweigleast; /6, so5/3 per pair, although
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a pair only needs0/7 if we want to show an approximation ratio 9f5. Bins in step 5 which contain
a pair of small items have weight 1.

Thus if some items are packed in step 2(a) or 5 (as a pair), weaasferl /4 of adjusted weight to
the bin with only one small item. If a pair of bins is packed teps2(b), we can transfér/21 of adjusted
weight to the bin with the small item, which then has more thanof adjusted weight.

The only case left is where some bins are packed in step 4,r@tin in step 5 (with one item). If
there is a large item which is packed into an odd numbefrbins, the weight of it is at leagy + 1) /4
and we are again done since we can transfer If g is even and at least 4, the weightis!.

If ¢ = 2, the weight of the large item is 1 and we find a weight of 1 per 80 we may assume
g > 4 for all groups. This means that all groups have an area gigsgraf at leass /4.

Suppose all large items are packed into even numbers of Biaaoting the total number of bins
that we pack by, we find thatb is odd (since there is exactly one bin with only one small jtemd
thatb is equal to the number of small items that we pack. The weighkgd into these bins is at least
(b—1)/440b/2. If 4]b — 1, this implies(b — 1)/4 + (b + 1) /2 bins are needed by OPT, which is more
than3b/4.

If 41b— 1, there is at least one group of size 6 or more. In this case wi with area guarantees:
the area guarantee in a group of size 6 is 5, and we find an aseangee of 5 for this group plus the
lone bin with one small item, or an area guarante&/af per bin. (The remaining groups all have area
guarantee of at lea8/4.) This concludes the proof of Theorémn 3.

6 Conclusions

In this paper, we gave the first upper bounds for geneffal this problem. Furthermore we provided
an efficient algorithm fok = 2. An interesting question is whether it is possible to giveeéfitient
algorithm with a better approximation ratio fbr= 2 or for largerk. In a forthcoming paper [5] we will
present approximation schemes for these problems. Howtbese schemes are less efficient than the
algorithms given in this paper already for= 2/5.
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