
ar
X

iv
:c

s/
06

12
10

0v
1

 [c
s.

D
S

]
20

 D
ec

 2
00

6

Improved results for a memory allocation problem

Leah Epstein∗ Rob van Stee†

August 6, 2018

Abstract

We consider a memory allocation problem that can be modeled as a version of bin packing where
items may be split, but each bin may contain at most two (partsof) items. A 3/2-approximation
algorithm and an NP-hardness proof for this problem was given by Chung et al. [3]. We give a
simpler 3/2-approximation algorithm for it which is in factan online algorithm. This algorithm also
has good performance for the more general case where each binmay contain at mostk parts of
items. We show that this general case is also strongly NP-hard. Additionally, we give an efficient
7/5-approximation algorithm.

1 Introduction

A problem that occurs in parallel processing is allocating the available memory to the processors. This
needs to be done in such a way that each processor has sufficient memory and not too much memory
is being wasted. If processors have memory requirements that vary wildly over time, any memory
allocation where a single memory can only be accessed by one processor will be inefficient. A solution
to this problem is to allow memory sharing between processors. However, if there is a single shared
memory for all the processors, there will be much contentionwhich is also undesirable. It is currently
infeasible to build a large, fast shared memory and in practice, such memories are time-multiplexed. For
n processors, this increases the effective memory access time by a factor ofn.

Chung et al. [3] studied this problem and described the drawbacks of the methods given above.
Moreover, they suggested a new architecture where each memory may be accessed by at mosttwo
processors, avoiding the disadvantages of the two extreme earlier models. They abstract the memory
allocation problem as a bin packing problem, where the bins are the memories and the items to be
packed represent the memory requirements of the processors. This means that the items may be of any
size (in particular, they can be larger than 1, which is the size of a bin), and an item may be split, but
each bin may contain at most two parts of items. The authors of[3] give a3/2-approximation for this
problem.

We continue the study of this problem and also consider a generalized problem where items can still
be split arbitrarily, but each bin can contain up tok parts of items, for a given value ofk ≥ 2.

We study approximation algorithms in terms of theabsolute approximation ratioor theabsolute
performance guarantee. LetB(I) (orB, if the inputI is clear from the context), be the cost of algorithm
B on the inputI. An algorithmA is anR-approximation (with respect to the absolute approximation
ratio) if for every inputI, A(I) ≤ R · OPT(σ), whereOPT is an optimal algorithm for the problem.
The absolute approximation ratio of an algorithm is the infimum value ofR such that the algorithm is

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il.
†Department of Computer Science, University of Karlsruhe, D-76128 Karlsruhe, Germany.vanstee@ira.uka.de.

Research supported by Alexander von Humboldt-Stiftung.

1

http://arxiv.org/abs/cs/0612100v1

anR-approximation. The asymptotic approximation ratio for anonline algorithmA is defined to be

R∞
A = lim sup

n→∞
sup
I

{

A(I)
OPT(I)

∣

∣

∣

∣

∣

OPT(I) = n

}

.

Often bin packing algorithms are studied using this measure. The reason for that is that for most bin
packing problems, a simple reduction from thePARTITION problem (see problem SP12 in [6]) shows
that no polynomial-time algorithm has an absolute performance guarantee better than32 unless P=NP.
However, since in our problem items can be split, but cannot be packed more than a given number of
parts to a bin, this reduction is not valid. In [3], the authors show that the problem they study is NP-hard
in the strong sense fork = 2. They use a reduction from the 3-PARTITION problem (see problem [SP15]
in [6]). Their result does not seem to imply any consequenceswith respect to hardness of approximation.
We show that the problem is in fact NP-hard in the strong sensefor any fixed value ofk.

A related, easier problem is known as bin packing with cardinality constraints. In this problem,
all items have size at most 1 as in regular bin packing, and theitems cannot be split, however there
is an upper bound ofk on the amount of items that can be packed into a single bin. This problem
was studied with respect to the asymptotic approximation ratio. It was introduced and studied in an
offline environment as early as 1975 by Krause, Shen and Schwetman [9, 10]. They showed that the
performance guarantee of the well known FIRST FIT algorithmis at most2.7 − 12

5k . Additional results
were offline approximation algorithms of performance guarantee2. These results were later improved
in two ways. Kellerer and Pferschy [8] designed an improved offline approximation algorithm with
performance guarantee1.5 and finally a PTAS was designed in [2] (for a more general problem).

On the other hand, Babel et al. [1] designed a simpleonline algorithm with asymptotic approxi-
mation ratio2 for any value ofk. They also designed improved algorithms fork = 2, 3 of asymptotic
approximation ratios1+

√
5
5 ≈ 1.44721 and1.8 respectively. The same paper [1] also proved an almost

matching lower bound of
√
2 ≈ 1.41421 for k = 2 and mentioned that the lower bounds of [12, 11] for

the classic problem hold for cardinality constrained bin packing as well. The lower bound of 1.5 given
by Yao [12] holds for small values ofk > 2 and the lower bound of 1.5401 given by Van Vliet [11]
holds for sufficiently largek. No other lower bounds are known. Finally, Epstein [4] gave an optimal
online bounded space algorithm (i.e., an algorithm which can have a constant number of active bins at
every time) for this problem. Its asymptotic worst-case ratio is an increasing function ofk and tends to
1+h∞ ≈ 2.69103, whereh∞ is the best possible performance guarantee of an online bounded space al-
gorithm for regular bin packing (without cardinality constraints). Additionally, she improved the online
upper bounds for3 ≤ k ≤ 6. In particular, the upper bound fork = 3 was improved to74 .

Our results In the current paper, we begin by showing that this problem isNP-hard in the strong sense
for any fixed value ofk. This generalizes a result from Chung et al. [3]. We also showthat the simple
NEXT FIT algorithm has an absolute approximation ratio of2− 1/k. This matches and generalizes the
performance of the more complicated algorithm from [3].

Finally, we give an efficient7/5-approximation algorithm.

2 NP-hardness of the problem (in the strong sense)

Theorem 1 Packing splittable items with a cardinality constraint ofk parts of items per bin is NP-hard
in the strong sense for any fixedk ≥ 3.

Proof Given a fixed value ofk, we show a reduction from the 3-Partition problem defined as follows
(see problem [SP15] in [6]). We are given a set of3m positive numberss1, s2, . . . , s3m such that
∑3m

j=1 sj = mB and eachsi satisfiesB
4 < si < B

2 . The goal is to find out whether there exists a

2

partition of the numbers intom sets of size 3 such that the sum of elements of each set is exactly B. The
3-Partition problem is known to be NP-hard in the strong sense.

Given such an instance of the 3-Partition problem we define aninstance of the splittable item packing
with cardinality constraints as follows. There arem(k−3) items, all of size 3k−1

3k(k−3) (for k = 3, no items
are defined at this point). These items are called padding items. In addition, there are3m items, where
item j has size sj

3kB (for k = 3 we define the size to besj
B

). These items are called adapted items. The
goal is to find a packing with exactlym bins. Since there aremk items, clearly a solution which splits
items must use at leastm + 1 bins. Moreover, a solution inm bins contains exactlyk items per bin.
Since the sum of items is exactlym, all bins in such a solution are completely occupied with respect to
size.

If there exists a partition of the numbers intom sets of sumB each, then there is a partition of the
adapted items intoM sets of sum1

3k each (the sum is1 for k = 3). Each bin is packed withk − 3
padding items and one such triple, givingm sets ofk items, each set of sum exactly1.

If there is a packing into exactlym bins, as noted above, no items are split and each bin must contain
exactlyk items. If k = 3, this implies the existence of a partition. Consider the case k ≥ 4. We first
prove that each bin contains exactlyk − 3 padding items.

If a bin contains at leastk − 2 padding items, their total size is at least(3k−1)(k−2)
3k(k−3) = 3k2−7k+2

3k2−9k =

1 + 2k+2
3k(k−3) . For k ≥ 4 this is strictly larger than1 and cannot fit into a bin. If there are at most

k − ℓ ≤ k − 4 padding items, then there areℓ additional items of size at most16k (ℓ ≥ 4). The total size

is therefore at most(3k−1)(k−ℓ)
3k(k−3) + ℓ

6k = 6k2−2k−5ℓk−ℓ
6k(k−3) . This value is maximized for the smallest value

of ℓ which isℓ = 4. We get the size of at most6k
2−22k−4
6k(k−3) = 1− 4(k+1)

6k(k−3) . Fork ≥ 4 this is strictly less
than1, which as noted above does not admit a packing intom bins.

Since each bin contains exactlyk − 3 padding items, it contains exactly three adapted items, whose
total size is exactly1

3k . The original sum of such three items isB, we get that a solution inm bins
implies a partition. �

3 The NEXT FIT Algorithm

We can define NEXT FIT for the current problem as follows. Thisis a straightforward generalization of
the standard NEXT FIT algorithm. An item is placed (partially) in the current bin if the bin is not full
and the bin contains less thank item parts so far. If the item does not fit entirely in the current bin, the
current bin is filled, closed, and as many new bins are opened as necessary to contain the item.

Note that this is an online algorithm. The absolute approximation ratio of NEXT FIT for the classical
bin packing problem is2, as Johnson [7] showed. Surprisingly, its approximation ratio for our problem
tends to this value for largek. The two problems are different, and the two results seem to be unrelated.

Since items may be split, and we consider the absolute approximation ratio, this is the only reason-
able online algorithm that can be used for the problem. We show that the approximation ratio of NEXT
FIT is exactly2−1/k. Thus, this extremely simple algorithm performs as well as the algorithm from [3]
for k = 2, and also provides the first upper bound for larger values ofk.

Theorem 2 The approximation ratio of NEXT FIT is2− 1/k.

Proof We first show a lower bound. The instance contains an item of size Mk − 1 followed by
M(k − 1)k items of sizeε, whereM is large andε = 1/(Mk(k − 1)). Then the first item occupies
Mk − 1 bins, and the rest of the items arek per bin, inM(k − 1) bins. OPT hasMk bins in total. This
proves a lower bound of(M(2k − 1)− 1)/(Mk), which tends to2− 1/k for M → ∞.

Now we show a matching upper bound.
Let u1, u2, . . . , um be sizes of the the blocks1, . . . ,m of NF. In each block, all bins are full except

perhaps the last one, which containsk parts of items (except for blockm, perhaps). We assign weights

3

to items. Let the size of itemi besi. Thenwi = ⌈si⌉/k. Note that in any packing, there are at least⌈si⌉
parts of itemi. Since there can be at mostk parts in a bin, this means

OPT ≥ 1

k

∑

i

⌈si⌉ =
∑

i

⌈si⌉
k

. (1)

This explains our definition of the weights. This generalizes the weight definition from Chung et al. [3].
Consider the last bin from a blocki < m. Since NF started a new bin after this bin, it containsk

parts of items. Thus it contains at leastk−1 items of weight1/k (the lastk−1 items are not split by the
algorithm). Ifui = 1, there arek such items. Ifui > 1, consider all items excluding thek−1 last items in
the last bin. We do not know how many items there are in the firstui−1 bins (where the last item extends
into bin ui). However, for a fixed sizes, the weight of a group of items of total sizes is minimized if
there is a single item in the group (since we round up the size for each individual item to get the weight).
This implies the total weight in a block ofui bins is at leastui/k + (k − 1)/k = (ui + k − 1)/k.

Now consider blockm. If ui = 1, the weight is at least1/k since there is at least one item. Else, as
above the weight is at leastui/k, since the last bin of this block has at least one item or a partof an item.

We haveNF =
∑

ui. Therefore

OPT ≥
∑

i

wi ≥
∑m

i=1(ui + k − 1)− (k − 1)

k
=

NF + (m− 1)(k − 1)

k
. (2)

Also by size,OPT > NF −m and thusOPT ≥ NF −m + 1. Multiply this inequality by(k − 1)/k and
add it (2) to get

2k − 1

k
· OPT ≥ NF

(

1

k
+

k − 1

k

)

+ (m− 1)
k − 1

k
− (m− 1)

k − 1

k
= NF.

We concludeNF ≤ (2− 1/k)OPT. �

4 The structure of the optimal packing for k = 2

Before we begin our analysis, we make some observations regarding the packing ofOPT. A packing can
be represented by a graph where the items are nodes and edges correspond (one-to-one) to bins. If there
is a bin which contains (parts of) two items, there is an edge between these items. A bin with only one
item corresponds to a loop on that item. The paper [3] showed that for any given packing, it is possible
to modify the packing such that there are no cycles in the associated graph. Thus the graph consists of
a forest together with some loops. We start by analyzing the structure of the graph associated with the
optimal packing. Items of size at most1/2 are calledsmall.

Lemma 4.1 There exists an optimal packing in which all small items are leaves.

Proof Consider a small item that has edges to at least two other items. Note that if two small items
share an edge, the packing can be changed so that these two items form a separate connected component
with a single edge. Thus we may assume that all neighbors are (parts of) medium or large items.

Order the neighbors in some way and consider the first two neighbors. Denote the small item bys
and the sizes of its neighboring parts byw1 andw2. In bin i, wi is combined with a partsi of the small
item s (i = 1, 2).

We haves1 + s2 ≤ 1/2. If s1 ≤ w2, we can cut off a part of sizes1 from w2 and put it in bin 1,
while puttings1 in bin 2. This removes neighborw1 from the small items.

Otherwise,w2 < s1 ≤ 1/2, which means that we can puts1 into bin 2 without taking anything
out of bin 2: we havew2 < 1/2 ands1 + s2 ≤ 1/2. Again,w1 is no longer a neighbor ofs (or even
connected tos).

4

Thus we can remove one neighbor froms. We can continue in this way untils has only one neighbor
left. �

Lemma 4.2 An item of size in((i− 1)/2, i/2] has at mosti neighbors for alli ≥ 2.

Proof Denote the items of size in((i − 1)/2, i/2] by typei items. We can consider the items one by
one in each tree of the forest.

Consider a tree with at least one typei item for somei > 1 that has at leasti + 1 neighbors. We
want to create edges between its neighbors and remove edges from the item to the neighbors. However,
these neighbors may be typei items themselves, or some other typej ≥ 1.

We root the tree at an arbitrary item. Let the type of this itembe i. On this item we apply the
procedure detailed below. After doing this, the item has an edge to at mosti other items. We define
levels in the tree in the natural way. Level 1 contains the root, level 2 now contains at mosti items. We
do not change any edges going up from a particular level.

The items in level 2 undergoes the same procedure if necessary. That is, if the number of its neigh-
bors is larger than its type. Afterwards, it only hasi neighbors, one of which is on level 1. The other
neighbors have moved to some lower level.

The procedure to remove a single neighbor of a typei item is as follows. For each item, we apply
this procedure until it has at mosti outgoing edges. Consider a typei item x which is connected to at
leasti + 1 other items (generally: at leasti downlevel items). Say partmj of itemx is with partwj of
some other item in binj for j = 1, . . . , i′ wherei′ > i. If we are not dealing with the root of the tree,
let wi′ be the uplevel node.

We sort the firsti′ − 1 ≥ i bins of this set in order of nondecreasing size ofmj. Since the total size
of item x is at mosti/2, we then havem1 +m2 ≤ 1. These two parts can thus be put together in one
bin. This means cutting one of the neighbors into two and moving it downlevel. We can do this as long
as the item has more thani neighbors. �

5 A 7/5-approximation for k = 2

Let k = 2. We call items of size in(1/2, 1] mediumand remaining itemslarge. Our algorithm works
as follows. We present it here in a simplified form which ignores the fact that it might run out of small
items in the middle of step 2(b) or while packing a large item in step 4. We will show later how to deal
with these cases while maintaining an approximation ratio of 7/5. See Figure 1.

We begin by giving an example which shows that this algorithmis not optimal. For some integerN ,
consider the input which consists of4N small items of size2/N , 2N medium items of size1 − 1/N ,
3N medium items of size1− 2/N .

ALG packs the items of size1 − 1/N in 4N bins, together with4N small items. It needs3N(1 −
2/N) = 3N − 6 bins for the remaining medium items. Thus it needs7N − 6 bins in total.

OPT places3N small items in separate bins (one per bin), andN small items are split into two equal
parts. This gives5N bins in which there is exactly enough room to place all the medium items.

Theorem 3 This algorithm achieves an absolute approximation ratio of7/5.

The analysis has three cases, depending on whether the algorithm halts in step 3, 5 or 6. The easiest
case among these is without a doubt step 5, at least as long as all bins packed in step 5 contain two small
items.

5.1 Algorithm halts in step 5

Based on inequality (1), we define weights as follows.

5

1. Sort the small items in order of increasing size, the medium items in order of decreasing size,
and the large items in order of decreasing size.

2. Pack the medium items one by one, as follows, until you run out of medium or small items.

(a) If the current item fits with the smallest unpacked small item, pack them into a bin.

(b) Else, pack the current item together with the twolargestsmall items in two bins.

3. If no small items remain unpacked, pack remaining medium and large items using Next Fit and
halt. Start with the medium items.

4. Pack all remaining small items in separate bins. Pack the large items one by one into these bins
using Next Fit (starting with the largest large item and smallest small item).

5. If any bins remain that have only one small item, repack these small items in pairs into bins
and halt.

6. Pack remaining large items using Next Fit.

Figure 1: The approximation algorithm fork = 2

Definition 1 The weight of an item of sizewi is ⌈wi⌉/2.

In our proofs, we will also use weights of parts of items, based on considering the total weight of an
item and the number of its parts. By Definition 1, small and medium items have weight1/2. Therefore,
we have the following bounds on total weight of bins packed inthe different steps:

2.(a) 1/2 + 1/2 = 1

2.(b) We pack three items of weight1/2 in two bins, or3/4 weight per bin on average.

4. Consider a large item which is packed ing bins, that is, together with in totalg small items. Its
size is strictly larger thang−1

2 and thus its weight is at leastg/4. Each small item has a weight of
1/2, so we pack a weight of at3g/4 in theseg bins.

5. 1/2 + 1/2 = 1

This immediately proves an upper bound of4/3 on the absolute approximation ratio. There is, however,
one special case: it can happen that one small item remains unpaired in step 5. Since this case requires
deeper analysis, we postpone it till the end of the proof (Section 5.5).

5.2 Critical items

Definition 2 A critical item is a medium item that the algorithm packs in Step 2(b).

From now on, for the analysis we use a fixed optimal packing, denoted by OPT. We consider the
critical items in order of decreasing size. Denote the current item byx. We will consider how OPT
packsx and define anadjusted weightbased on how much spacex occupies in the bins of OPT. Denote
the adjusted weight of itemi byWi. The adjusted weights will satisfy the following condition:

n
∑

i=1

⌈wi⌉
2

≤
n
∑

i=1

Wi ≤ OPT. (3)

6

Specifically, we will haveWi ≥ ⌈wi⌉/2 for i = 1, . . . , n. Thus the numbersWi will generate a better
lower bound forOPT, that we can use to show a better upper bound for our algorithm. This is the central
idea of our analysis. We initializeWi = ⌈wi⌉/2 for i = 1, . . . , n. There are four cases.

Case 1 OPT packsx by itself.In this case we givex adjusted weight 1, and so our algorithm packs an
adjusted weight of 1 in each of the (two) bins that containx.

Case 2 OPT packsx with partof a small item.Againx and the bins withx get an adjusted weight of
1. This holds because when OPT splits a small item (or a mediumitem), it is as if it packs two small
items, both of weight1/2. Therefore such an item gets adjusted weight 1. We can transfer the extra1/2
from the small item tox.

Case 3 OPT combinesx with a completesmall itemy. Since our algorithm starts by considering the
smallest small items,y must have been packed earlier by our algorithm, i.e. with a larger medium item
x′ (which is not critical!). If OPT packsx′ alone or with part of a small item, it has an adjusted weight
of 1 (Cases 1 and 2). Thus the bin withx′ has an adjusted weight of3/2, and we transfer1/2 to x.
If OPT packsx′ with a full small itemy′, theny′ is packed with a larger non-critical itemx′′ by our
algorithm, etc. Eventually we find a non-critical medium item x∗ which OPT packs alone or with part
of a small item, or for which Case 4 holds. The difference between the weight and the adjusted weight
of x∗ will be transferred tox. Note that the bin in which our algorithm packsx∗ has a weight of 1 since
x∗ is non-critical. All intermediate itemsx′, x′′, . . . have weight1/2 and are non-critical as well, and we
change nothing about those items.

Case 4 OPT packsx with a split medium or large item, or splitsx itself.
Since there might be several critical items for which Case 4 holds, we need to consider how OPT

packs all these items to determine their adjusted weight. Weare going to allocate adjusted weights to
items according to the following rules:

1. Each part of a small item (in the OPT packing) gets adjustedweight1/2.

2. A part of a large item which is in a bin by itself gets adjusted weight 1.

3. A part of a large item which is combined with some other itemgets adjusted weight1/2.

We do not change the weight of non-critical items. The critical items receive an adjusted weight
which corresponds to the number of bins that they occupy in the packing of OPT. As noted above, this
packing consists of trees and loops. Loops were treated in Case 1. To determine the adjusted weights, we
consider thenon-medium items that are cut into parts by OPT. Each part of such an item is considered
to be a single item for this calculation and has adjusted weights as explained above. We then have that
the optimal packing consists only of trees with small and medium items, and loops. It can be seen that
each part of a non-medium item (for instance, part of a large item) which is in a tree has weight1/2.

Consider a treeT in the optimal packing. Denote the number of edges (bins) in it by t. Since all
items inT are small or medium, there aret+1 items (nodes) inT by Lemmas 4.1 and 4.2. Any items that
are small (or part of a small item) or medium but non-criticalhave adjusted weight equal to the weight
of a regular small or medium item which is1/2. Denoting the number of critical items inT by c, we find
that thet+ 1− c non-critical items have weightt+1−c

2 . All items together occupyt bins in the optimal
packing. This means we can give the critical items each an adjusted weight of(t− t+1−c

2)/c = 1
2 +

t−1
2c

while still satisfying (3). This expression is minimized bytaking c maximal,c = t + 1, and is then
t/(t+ 1). We can therefore assign an adjusted weight oft/(t+ 1) to each critical item inT .

7

Since the algorithm combines a critical item with two small items of weight (at least)1/2, it packs
a weight of1 + t/(t+ 1) = 2t+1

t+1 in two bins, or2t+1
2t+2 per bin. This ratio is minimized fort = 2 and is

5/6.
However, let us consider the caset = 2 in more detail. If the OPT tree with itemx (which is now

a chain of length 2) consists of three critical items, then the sum ofsizesof these items is at most2.
Our algorithm packs each of these items with two small items which do not fit with one such item. Let
the sizes of the three medium items bem1,m2,m3. Let the two small items packed withmi besi,j for
j = 1, 2. We have thatm1 +m2 +m3 ≤ 2 butmi + si,j > 1 for i = 1, 2, 3 andj = 1, 2. Summing
up the last six inequalities and subtracting the one before,we get that the total size of all nine items is at
least4. Thus the area guarantee in these six bins is at least2/3.

If one of the items in the chain is (a part of) a small or large item, or a medium non-critical item, it
has adjusted weight1/2. This leaves an adjusted weight of3/4 for the other two items. In this case we
pack at least3/4+1 = 7/4 in two bins, or7/8 per bin. Fort ≥ 3, we also find a minimum ratio of7/8.

Thus we can divide the bins with critical items into two subtypes:A with an adjusted weight of5/6
and area2/3, andB with an adjusted weight of (at least)7/8 and area1/2.

5.3 Algorithm halts in step 3

We divide the bins that our algorithm generates into types. We have

1. groups of two small items and one medium item in two bins

2. pairs of one small item and one medium item in one bin

3. groups of four or more medium items in three or more bins

4. groups of three medium items in two bins

5. one group of bins with 0 or more medium items and all the large items

Note that bins of type 4 contain a total weight of at least3/4 (3/2 per two bins), as well as a total size
of at least3/4 (3 items of size more than1/2 in two bins). Thus, whether we look at sizes or at weights,
it is clear that these bins can be ignored if we try to show a ratio larger than4/3.

Furthermore, in the bins of type 5 we ignore that some of the items may be medium. The bounds
that we derive for the total size and weight packed into thesebins still hold if some of the items are only
medium-sized.

The bins of type 1 contain the critical items. We say the bins with subtypeA are of type1a, and
the bins with subtypeB are of type1b. Definex1a, x1b,x2, x3, x4 as the number of bins with types
1a, 1b, 2, 3, and 5, respectively.

Consider the bins of type 3. Letk be the number of groups of medium items. Letti ≥ 3 be the
number of bins in group1 ≤ i ≤ k. The items in groupi have total size more thanti−1/2, since the last
bin contains a complete medium item. The total weight of a group is ti+1

2 , since it containsti +1 items,

each of weight12 . We get that the total size of items in bins of type 3 is at least
∑k

i=1(ti − 1
2) = x3 − k

2 ,

and the total weight of these items is
∑k

i=1
ti+1
2 = x3+k

2 .
We find two different lower bounds on OPT.
Adjusted weight:

OPT ≥ 5

6
x1a +

7

8
x1b + x2 +

x3
2

+
k

2
+

x5
2
. (4)

Size:

OPT ≥ 2

3
x1a +

x1b
2

+
x2
2

+ x3 −
k

2
+ max(x5 − 1, 0). (5)

8

Multiplying the first inequality by45 and the second one by35 we get

7

5
OPT ≥ 16

15
x1a + x1b +

11

10
x2 + x3 +

k

10
+

2

5
x5 +

3

5
max(x5 − 1, 0). (6)

If x5 = 0 we are done. Else, (5) is strict and we get

OPT >
2

3
x1a +

x1b
2

+
x2
2

+ x3 −
k

2
+ x5 − 1. (7)

This meansx3 andx5 occur with the same fractions in (4) and (7). Thus we can setx3 := x3 + x5 and
x5 := 0. Adding (4) and (7) and dividing by 2 gives

OPT >
3

4
(x1a + x2 + x3) +

11

16
x1b −

1

2
.

This implies we are done ifx1a + x2 + x3 ≥ 3
4x1b + 14. Clearly, this holds if any ofx1a, x2 or x3 are

at least 14. Finally, by (4) we are also done if

5

6
x1a +

7

8
x1b + x2 +

x3
2

+
k

2
≥ 5

7
(x1a + x1b + x2 + x3).

This holds if
5

42
x1a +

9

56
x1b +

2

7
x2 +

k

2
≥ 3

14
x3.

Since we may assumex3 < 14, we are in particular done ifx1b ≥ 18 or k ≥ 6.
This leaves a limited set of options for the values ofx1a, x1b, x2, x3 andk that need to be checked.

It is possible to verify that for almost all combinations, wefind OPT ≥ 5
7ALG. One exception isx3 = 3,

k = 1. However, going back to the original variables, this meansx3 + x5 = 3 andk = 1. But x3 is
either 0 or at least 3. Ifk = 1, we must havex3 = 3 andx5 = 0, so we treated this case already. Two
other cases require special attention and are described below.

Special cases Step 2(b) requires two small items. If only one is left at thispoint, and there is also no
remaining medium item with which it could be packed, we redefine it to be a medium item and pack it
in step 3. This leads to it being packed in a bin of type 3 (or 4).Note that in this case, this small item and
any medium item we tried to pack with it in Step 2 have total size more than 1. Thus if the small item
ends up in a group of type 4 (a group of two bins), the total sizeof the items in these bins (as well as the
total weight) is still at least 3/2, and we can ignore these bins in the analysis. Therefore the analysis still
holds.

There are two cases whereOPT < 5
7ALG is possible. Ifx2 = 1 andx5 = 2, a packing into two

bins could exist in case there is only one large item. (If the bins counted inx5 contain two medium
items, then we have that the three medium items require (at least) two bins and the small item requires
an extra bin.) If such a packing exists, it works as follows: pack first the medium item, then the large
item (partially in the second bin), then the small item. If this gives a packing into two bins, this is how
our algorithm packs the items. Otherwise we already have an optimal packing.

If x1b = 4, x2 = 1 andx5 = 5, it is a simple matter to try all possible packings for the items in 7
bins and check if one is valid. (We can try all possible forests on at most 13 nodes and at most 7 edges.)
If there is no packing in 7 bins, then our algorithm maintainsthe ratio of7/5. If there is one, we use it.

5.4 Algorithm halts in step 6

In this case we have the following bin types.

1. groups of two small items and one medium item in two bins

9

2. pairs of one small item and one medium item in one bin

3. groups of large items with small items

4. one group of large items

By definition, the type 1 bins contain the critical items. We again make a distinction between type1a
bins with subtypeA and type1b bins with subtypeB. In type 2 bins, the weight is 1.

Consider a large item which occupies 2 bins of type 3. This item has weight of 1 and is combined
with two small items in two bins, giving a weight of 1 per bin. The large item also has size more than
1, so an area of at least1/2 is packed per bin. Comparing this to type1b bins, which have a weight
guarantee of only7/8 but also an area guarantee of1/2, we find that we may assume there are no such
type 3 bins (with a large item occupying two bins).

Now consider a large item which occupies 4 bins of type 3. Now we find an overall weight of at
least 3, as well as an overall size of at least 3 (since the large item did not fit with 3 small items in 3
bins). Since we plan to show a ratio larger than4/3, we can ignore such bins as well. This also holds for
large items that occupyg ≥ 5 bins: the weight of the large item is at leastg/4 if g is even and at least
(g + 1)/4 if g is odd.

We may therefore assume that all bins of type 3 form groups of three bins, containing a weight of at
least5/2 and an area of at least 2. This gives a weight of5/6 per bin and an area of2/3 per bin, just like
type1a. We denote the number of type1b items byx1 and the number of type1a and 3 items byx3.

Adjusted weight:

OPT ≥ 7

8
x1 + x2 +

5

6
x3 + x4/2. (8)

Size:

OPT ≥ 1

2
x1 +

2

3
x2 +

2

3
x3 +max(x4− 1, 0). (9)

Multiplying and adding as in the previous section gives

5

7
OPT ≥ x1 +

6

5
x2 +

16

15
x3 +

2

5
x4 +

3

5
max(x4 − 1, 0).

If x4 = 0, we are done. Otherwise, we are done if1
5x2 +

1
15x3 ≥ 3

5 , which holds ifx2 ≥ 3 or x3 ≥ 9.
Adding (8) and (9) gives that we are done if3

4(x3 + x4) ≥ 5
7 (x3 + x4) +

1
2 . This holds in particular

if x4 ≥ 14. Finally, from (8) we get that we are done if956x1 ≥ 3
14x4, implying that we are done if

x1 ≥ 4
3 · 14, or x1 ≥ 19. Again this gives us a limited amount of choices to examine. Almost all give

us an approximation ratio of7/5. The one exception to this case isx4 = 2 andx2 = 1, which we can
treat as in the previous section (repack into 2 bins if possible). Other problematic cases, like (x4 = 2
andx1 = 1) and (x4 = 2 andx3 = 1), cannot occur becausex1 is even andx3 is 0 or at least 2.

A special case: not enough small items to cover some large item If we run out of small items while
packing some large item, this large item is considered to be packed in step 6. That is, we ignore the
small items packed with this large item in our analysis, and in the last bin containing the large item we
immediately continue with the remaining unpacked large items. It can be seen that this does not affect
the weight or the area guarantee that we use for the group of large items (indeed, the weight guarantee
improves somewhat, but we ignore this).

5.5 One small item is unpaired in step 5

By our analysis so far concerning the critical items, we knowthat bins packed in step 2(a) have weight 1.
Bins in step 2(b) are packed in pairs which have adjusted weight at least5/6, so5/3 per pair, although

10

a pair only needs10/7 if we want to show an approximation ratio of7/5. Bins in step 5 which contain
a pair of small items have weight 1.

Thus if some items are packed in step 2(a) or 5 (as a pair), we can transfer1/4 of adjusted weight to
the bin with only one small item. If a pair of bins is packed in step 2(b), we can transfer5/21 of adjusted
weight to the bin with the small item, which then has more than5/7 of adjusted weight.

The only case left is where some bins are packed in step 4, and one bin in step 5 (with one item). If
there is a large item which is packed into an odd numberg of bins, the weight of it is at least(g + 1)/4
and we are again done since we can transfer1/4. If g is even and at least 4, the weight isg/4.

If g = 2, the weight of the large item is 1 and we find a weight of 1 per bin. So we may assume
g ≥ 4 for all groups. This means that all groups have an area guarantee of at least3/4.

Suppose all large items are packed into even numbers of bins.Denoting the total number of bins
that we pack byb, we find thatb is odd (since there is exactly one bin with only one small item) and
thatb is equal to the number of small items that we pack. The weight packed into these bins is at least
(b− 1)/4 + b/2. If 4|b− 1, this implies(b− 1)/4 + (b+ 1)/2 bins are needed by OPT, which is more
than3b/4.

If 4 ∤ b− 1, there is at least one group of size 6 or more. In this case we work with area guarantees:
the area guarantee in a group of size 6 is 5, and we find an area guarantee of 5 for this group plus the
lone bin with one small item, or an area guarantee of5/7 per bin. (The remaining groups all have area
guarantee of at least3/4.) This concludes the proof of Theorem 3.

6 Conclusions

In this paper, we gave the first upper bounds for generalk for this problem. Furthermore we provided
an efficient algorithm fork = 2. An interesting question is whether it is possible to give anefficient
algorithm with a better approximation ratio fork = 2 or for largerk. In a forthcoming paper [5] we will
present approximation schemes for these problems. However, these schemes are less efficient than the
algorithms given in this paper already forǫ = 2/5.

References

[1] Luitpold Babel, Bo Chen, Hans Kellerer, and Vladimir Kotov. Algorithms for on-line bin-packing
problems with cardinality constraints.Discrete Applied Mathematics, 143(1-3):238–251, 2004.

[2] Alberto Caprara, Hans Kellerer, and Ulrich Pferschy. Approximation schemes for ordered vector
packing problems.Naval Research Logistics, 92:58–69, 2003.

[3] Fan Chung, Ronald Graham, Jia Mao, and George Varghese. Parallelism versus memory allocation
in pipelined router forwarding engines.Theory of Computing Systems, 39(6):829–849, 2006.

[4] Leah Epstein. Online bin packing with cardinality constraints. InProc. of the 13th Eur. Symp. Alg.
(ESA 2005), pages 604–615, 2005. To appear in SIAM Journal on Discrete Mathematics.

[5] Leah Epstein and Rob van Stee. Approximation schemes forpacking splittable items with cardi-
nality constraints. Manuscript.

[6] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the theory of NP-
Completeness. W. H. Freeman and Company, New York, 1979.

[7] David S. Johnson. Fast algorithms for bin packing.Journal of Computer and System Sciences,
8(3):272–314, 1974.

11

[8] Hans Kellerer and Ulrich Pferschy. Cardinality constrained bin-packing problems.Annals of
Operations Research, 92:335–348, 1999.

[9] K. L. Krause, V. Y. Shen, and Herbert D. Schwetman. Analysis of several task-scheduling algo-
rithms for a model of multiprogramming computer systems.Journal of the ACM, 22(4):522–550,
1975.

[10] K. L. Krause, V. Y. Shen, and Herbert D. Schwetman. Errata: “Analysis of several task-scheduling
algorithms for a model of multiprogramming computer systems”. Journal of the ACM, 24(3):527–
527, 1977.

[11] André van Vliet. An improved lower bound for online binpacking algorithms.Information Pro-
cessing Letters, 43(5):277–284, 1992.

[12] Andrew C. C. Yao. New algorithms for bin packing.Journal of the ACM, 27:207–227, 1980.

12

	Introduction
	NP-hardness of the problem (in the strong sense)
	The NEXT FIT Algorithm
	The structure of the optimal packing for k=2
	A 7/5-approximation for k=2
	Algorithm halts in step 5
	Critical items
	Algorithm halts in step 3
	Algorithm halts in step 6
	One small item is unpaired in step 5

	Conclusions

