Skip to main content

Space-Efficient Straggler Identification in Round-Trip Data Streams Via Newton’s Identities and Invertible Bloom Filters

  • Conference paper
Book cover Algorithms and Data Structures (WADS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4619))

Included in the following conference series:

Abstract

We study the straggler identification problem, in which an algorithm must determine the identities of the remaining members of a set after it has had a large number of insertion and deletion operations performed on it, and now has relatively few remaining members.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13, 422–426 (1970)

    Article  MATH  Google Scholar 

  2. Bollobás, B.: Random Graphs. Academic Press, New York (1985)

    MATH  Google Scholar 

  3. Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: An improved construction for counting Bloom filters. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 684–695. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Bose, P., Guo, H., Kranakis, E., Maheshwari, A., Morin, P., Morrison, J., Smid, M., Tang, Y.: On the false-positive rate of Bloom filters. Report, School of Comp. Sci. Carleton Univ. (2007), http://cg.scs.carleton.ca/~morin/publications/ds/bloom-submitted.pdf

  5. Broder, A., Mitzenmacher, M.: Network applications of Bloom filters: A survey. Internet Mathematics 1(4), 485–509 (2005)

    MathSciNet  Google Scholar 

  6. Capetanakis, J.I.: Tree algorithms for packet broadcast channels. IEEE Trans. Inf. Theory IT-25(5), 505–515 (1979)

    Article  MathSciNet  Google Scholar 

  7. Colbourn, Dinitz, Stinson: Applications of combinatorial designs to communications, cryptography, and networking. In: Walker (ed.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 187, Cambridge University Press, Cambridge (1999)

    Google Scholar 

  8. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most frequent items dynamically. ACM Trans. Database Syst. 30(1), 249–278 (2005)

    Article  MathSciNet  Google Scholar 

  9. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  10. DeBonis, A., Gasieniec, L., Vaccaro, U.: Generalized framework for selectors with applications in optimal group testing. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 81–96. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Du, D.-Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications, 2nd edn. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  12. Du, D.-Z., Hwang, F.K.: Pooling Designs and Nonadaptive Group Testing. World Scientific, Singapore (2006)

    MATH  Google Scholar 

  13. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved combinatorial group testing for real-world problem sizes. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, Springer, Heidelberg (2005)

    Google Scholar 

  14. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area web cache sharing protocol. IEEE/ACM Trans. Networking 8(3), 281–293 (2000)

    Article  Google Scholar 

  15. Farach, M., Kannan, S., Knill, E., Muthukrishnan, S.: Group testing problems with sequences in experimental molecular biology. In: SEQUENCES, p. 357. IEEE Press, New York (1997)

    Google Scholar 

  16. Ganguly, S., Majumder, A.: Deterministic k-set structure. In: Proc. 25th ACM SIGMOD Symp. Principles of Database Systems, pp. 280–289 (2006)

    Google Scholar 

  17. Georgiadis, L., Papantoni-Kazakos, P.: A collision resolution protocol for random access channels with energy detectors. IEEE Trans. on Communications COM-30(11), 2413–2420 (1982)

    Article  Google Scholar 

  18. Goodrich, M.T., Hirschberg, D.S.: Efficient parallel algorithms for dead sensor diagnosis and multiple access channels. In: SPAA. 18th ACM Symp. on Parallelism in Algorithms and Architectures, pp. 118–127. ACM Press, New York (2006)

    Google Scholar 

  19. Greenberg, A.G., Ladner, R.E.: Estimating the multiplicities of conflicts in multiple access channels. In: FOCS 1983. Proc. 24th Annual Symp. on Foundations of Computer Science, pp. 383–392. IEEE Computer Society Press, Los Alamitos (1983)

    Google Scholar 

  20. Greenberg, A.G., Winograd, S.: A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels. J. ACM 32(3), 589–596 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hofri, M.: Stack algorithms for collision-detecting channels and their analysis: A limited survey. In: Balakrishnan, A.V., Thoma, M. (eds.) Proc. Inf. Sem. Modelling and Performance Evaluation Methodology, Lecture Notes in Control and Info. Sci., vol. 60, pp. 71–85 (1984)

    Google Scholar 

  22. Hwang, F.K., Sós, V.T.: Non-adaptive hypergeometric group testing. Studia Scient. Math. Hungarica 22, 257–263 (1987)

    MATH  Google Scholar 

  23. Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly optimal communication complexity. IEEE Trans. Information Theory 49(9), 2213–2218 (2003)

    Article  MathSciNet  Google Scholar 

  24. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  25. Pippenger, N.: Bounds on the performance of protocols for a multiple-access broadcast channel. IEEE Trans. on Information Theory IT-27(2), 145–151 (1981)

    Article  MathSciNet  Google Scholar 

  26. Ruszinkó, M., Vanroose, P.: A code construction approaching capacity 1 for random access with multiplicity feedback. Report, Fakultät für Mathematik der Universität Bielefeld, Report no. 94-025 (1994), http://www.math.uni-bielefeld.de/sfb343/preprints/abstracts/apr94025.ps.gz

  27. Shoup, V.: A fast deterministic algorithm for factoring polynomials over finite fields of small characteristic. In: Proc. Int. Symp. Symbolic and Algebraic Computation, pp. 14–21. ACM Press, New York (1991)

    Google Scholar 

  28. Tsybakov, B.S.: Resolution of a conflict of known multiplicity. Problems of Information Transmission 16(2), 134–144 (1980)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Norbert Zeh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eppstein, D., Goodrich, M.T. (2007). Space-Efficient Straggler Identification in Round-Trip Data Streams Via Newton’s Identities and Invertible Bloom Filters. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73951-7_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73948-7

  • Online ISBN: 978-3-540-73951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics