Skip to main content

Advances in Neural-Symbolic Learning Systems: Modal and Temporal Reasoning

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 77))

Three notable hallmarks of intelligent cognition are the ability to draw rational conclusions, the ability to make plausible assumptions, and the ability to generalise from experience. Although human cognition often involves the interaction of these three abilities, in Artificial Intelligence they are typically studied in isolation. In our research programme, we seek to integrate the three abilities within neural computation, offering a unified framework for learning and reasoning that exploits the parallelism and robustness of connectionism. A neural network can be the machine for computation, inductive learning, and effective reasoning, while logic provides rigour, modularity, and explanation capability to the network. We call such systems, combining a connectionist learning component with a logical reasoning component, neural-symbolic learning systems. In what follows, I review the work on neural-symbolic learning systems, starting with logic programming and then looking at how to represent modal logic and other forms of non-classical reasoning in neural networks. The model consists of a network ensemble, each network representing the knowledge of an agent (or possible world) at a particular time point. Ensembles may be seen as in different levels of abstraction so that networks may be fibred onto (combined with) other networks to form a structure combining different logical systems or, for example, object-level and meta-level knowledge. We claim that this quite powerful yet simple structure offers a basis for an expressive yet computationally tractable cognitive model of integrated reasoning and learning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. d’Avila Garcez, A.S.: Fewer epistemological challenges for connectionism. In Cooper, S.B., Lowe, B., Torenvliet, L., eds.: Proceedings of Computabil-ity in Europe, CiE 2005. Volume LNCS 3526., Amsterdam, The Netherlands, Springer-Verlag (2005) 139-149

    Google Scholar 

  2. d’Avila Garcez, A.S., Gabbay, D.M., Ray, O., Woods, J.: Abductive reasoning in neural-symbolic systems. TOPOI: An International Review of Philosophy (2007) doi:10.1007/s11245-006-9005-5.

    Google Scholar 

  3. Valiant, L.G.: Three problems in computer science. Journal of the ACM 50 (2003) 96-99

    Article  Google Scholar 

  4. d’Avila Garcez, A.S., Broda, K., Gabbay, D.M.: Neural-Symbolic Learning Systems: Foundations and Applications. Perspectives in Neural Computing. Springer-Verlag (2002)

    Google Scholar 

  5. d’Avila Garcez, A.S., Lamb, L.C., Gabbay, D.M.: Connectionist modal logic: Representing modalities in neural networks. Theoretical Computer Science 371 (2007) 34-53

    Article  MATH  MathSciNet  Google Scholar 

  6. d’Avila Garcez, A.S., Lamb, L.C., Gabbay, D.M.: Connectionist computations of intuitionistic reasoning. Theoretical Computer Science 358 (2006) 34-55

    Article  MATH  MathSciNet  Google Scholar 

  7. d’Avila Garcez, A.S., Lamb, L.C.: A connectionist computational model for epistemic and temporal reasoning. Neural Computation 18 (2006) 1711-1738

    Article  MATH  MathSciNet  Google Scholar 

  8. d’Avila Garcez, A.S., Gabbay, D.M.: Fibring neural networks. In: Proceedings of 19th National Conference on Artificial Intelligence AAAI’04, San Jose, California, USA, AAAI Press (2004) 342-347

    Google Scholar 

  9. McCarthy, J.: Epistemological challenges for connectionism. Behaviour and Brain Sciences 11 (1988) 44

    Google Scholar 

  10. Smolensky, P.: On the proper treatment of connectionism. Behavioral and Brain Sciences 11 (1988) 1-74

    Article  Google Scholar 

  11. Gardenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press (2000)

    Google Scholar 

  12. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall (1999)

    Google Scholar 

  13. Bader, S., d’Avila Garcez, A.S., Hitzler, P.: Computing first order logic programs by fibring artificial neural networks. In: Proceedings of International FLAIRS Conference, Florida, USA, AAAI Press (2005) 314-319

    Google Scholar 

  14. Bader, S., Hitzler, P., Hölldobler, S., Witzel, A.: A fully connectionist model generator for covered first-order logic programs. In: M. Veloso, ed.: Proceedings of International Joint Conference on Artificial Intelligence IJCAI07, Hyderabad, India (2007) 666-671

    Google Scholar 

  15. Hölldobler, S.: Automated inferencing and connectionist models. Postdoctoral Thesis, Intellektik, Informatik, TH Darmstadt (1993)

    Google Scholar 

  16. Shastri, L., Ajjanagadde, V.: A connectionist representation of rules, variables and dynamic binding. Technical report, Dept of Computer and Information Science, University of Pennsylvania (1990)

    Google Scholar 

  17. Bologna, G.: Is it worth generating rules from neural network ensembles? Journal of Applied Logic 2 (2004) 325-348

    Article  MATH  MathSciNet  Google Scholar 

  18. d’Avila Garcez, A.S., Broda, K., Gabbay, D.M.: Symbolic knowledge extraction from trained neural networks: A sound approach. Artificial Intelligence 125 (2001) 155-207

    Article  MATH  MathSciNet  Google Scholar 

  19. d’Avila Garcez, A.S., Zaverucha, G.: The connectionist inductive learning and logic programming system. Applied Intelligence 11 (1999) 59-77

    Article  Google Scholar 

  20. Hitzler, P., Hölldobler, S., Seda, A.K.: Logic programs and connectionist networks. Journal of Applied Logic 2 (2004) 245-272 Special Issue on Neural-Symbolic Systems.

    Article  MATH  MathSciNet  Google Scholar 

  21. Jacobsson, H.: Rule extraction from recurrent neural networks: A taxonomy and review. Neural Computation 17 (2005) 1223-1263

    Article  MATH  MathSciNet  Google Scholar 

  22. Setiono, R.: Extracting rules from neural networks by pruning and hidden-unit splitting. Neural Computation 9 (1997) 205-225

    Article  MATH  Google Scholar 

  23. Sun, R.: Robust reasoning: integrating rule-based and similarity-based reason-ing. Artificial Intelligence 75 (1995) 241-296

    Article  Google Scholar 

  24. d’Avila Garcez, A.S., Elman, J., Hitzler, P., eds.: Proceedings of IJCAI International Workshop on Neural-Symbolic Learning and Reasoning NeSy05, Edinburgh, Scotland (2005)

    Google Scholar 

  25. d’Avila Garcez, A.S., Hitzler, P., Tamburrini, G., eds.: Proceedings of ECAI International Workshop on Neural-Symbolic Learning and Reasoning NeSy06, Trento, Italy (2006)

    Google Scholar 

  26. Shastri, L.: Advances in SHRUTI: a neurally motivated model of relational knowledge representation and rapid inference using temporal synchrony. Applied Intelligence 11 (1999) 79-108

    Article  Google Scholar 

  27. Hölldobler, S., Kalinke, Y.: Toward a new massively parallel computational model for logic programming. In: Proceedings of the Workshop on Combining Symbolic and Connectionist Processing, ECAI 94. (1994) 68-77

    Google Scholar 

  28. Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Arti-ficial Intelligence 70 (1994) 119-165

    Article  MATH  Google Scholar 

  29. Thrun, S.B.: Extracting provably correct rules from artificial neural networks. Technical report, Institut fur Informatik, Universitat Bonn (1994)

    Google Scholar 

  30. Smolensky, P., Legendre, G.: The Harmonic Mind: From Neural Computation to Optimality-Theoretic Grammar. MIT Press, Cambridge, Mass (2006)

    Google Scholar 

  31. Page, M.: Connectionist modelling in psychology: A localist manifesto. Behavioral and Brain Sciences 23 (2000) 443-467

    Article  Google Scholar 

  32. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representa-tions by error propagation. In Rumelhart, D.E., McClelland, J.L., eds.: Parallel Distributed Processing. Volume 1. MIT Press (1986) 318-362

    Google Scholar 

  33. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag (1987)

    Google Scholar 

  34. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9 (1991) 365-385

    Article  Google Scholar 

  35. d’Avila Garcez, A.S., Lamb, L.C.: Neural-symbolic systems and the case for non-classical reasoning. In Artemov, S., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J., eds.: We will show them! Essays in Honour of Dov Gabbay. International Federation for Computational Logic, College Publications, London (2005) 469-488

    Google Scholar 

  36. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press (1995)

    Google Scholar 

  37. d’Avila Garcez, A.S., Gabbay, D.M., Lamb, L.C.: Value-based argumentation frameworks as neural-symbolic learning systems. Journal of Logic and Compu-tation 15 (2005) 1041-1058

    Article  MATH  MathSciNet  Google Scholar 

  38. d’Avila Garcez, A.S., Lamb, L.C., Broda, K., Gabbay, D.M.: Applying connectionist modal logics to distributed knowledge representation problems. International Journal on Artificial Intelligence Tools 13 (2004) 115-139

    Article  Google Scholar 

  39. Vardi, M.: Why is modal logic so robustly decidable? In: Descriptive Complexity and Finite Models. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society (1996) 149-184

    Google Scholar 

  40. Orgun, M.A., Ma, W.: An overview of temporal and modal logic programming. In: Proc. Inl. Conf. Temporal Logic. LNAI 827, Springer (1994) 445-479

    Google Scholar 

  41. Hölldobler, S., Kalinke, Y., Storr, H.P.: Approximating the semantics of logic programs by recurrent neural networks. Applied Intelligence 11 (1999) 45-58

    Article  Google Scholar 

  42. Gabbay, D.M.: Fibring Logics. Oxford Univesity Press (1999)

    Google Scholar 

  43. Gabbay, D.M., Hunter, A.: Making inconsistency respectable: Part 2 - meta-level handling of inconsistency. In: Symbolic and Quantitative Approaches to Reasoning and Uncertainty ECSQARU’93. Volume LNCS 747., Springer-Verlag (1993)129-136

    Google Scholar 

  44. d’Avila Garcez, A.S., Lamb, L., Gabbay, D.M.: Connectionist Non-Classical Reasoning. Cognitive Technologies. Springer-Verlag (2007) to appear.

    Google Scholar 

  45. Muggleton, S., Raedt, L.: Inductive logic programming: theory and methods. Journal of Logic Programming 19 (1994) 629-679

    Article  MathSciNet  Google Scholar 

  46. Gabbay, D.M.: Elementary Logics: a Procedural Perspective. Prentice Hall, London (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garcez, A.S.d. (2007). Advances in Neural-Symbolic Learning Systems: Modal and Temporal Reasoning. In: Hammer, B., Hitzler, P. (eds) Perspectives of Neural-Symbolic Integration. Studies in Computational Intelligence, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73954-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73954-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73953-1

  • Online ISBN: 978-3-540-73954-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics