
Lecture Notes in Computer Science 4615

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

Rogério de Lemos

Cristina Gacek

Alexander Romanovsky (Eds.)

Architecting
Dependable
Systems IV

13

Volume Editors

Rogério de Lemos
University of Kent, Computing Laboratory
Canterbury, Kent CT2 7NF, UK
E-mail: r.delemos@kent.ac.uk

Cristina Gacek
Alexander Romanovsky
Newcastle University, School of Computing Science
Newcastle upon Tyne, NE1 7RU, UK
E-mail: {cristina.gacek, alexander.romanovsky}@ncl.ac.uk

Library of Congress Control Number: 2007931900

CR Subject Classification (1998): D.2, D.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743

ISBN-10 3-540-74033-3 Springer Berlin Heidelberg New York

ISBN-13 978-3-540-74033-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12102341 06/3180 5 4 3 2 1 0

Foreword

On a recent visit to Sweden I had the pleasure of traveling by train between Stockholm
and Malmö over several segments that spanned a few days. The trains always ran on time
and were very comfortable. Particularly convenient was the fact that a passenger could
get on the Internet during the trip simply by using her ticket number as the access code.
One of the features on the on-line provider’s home page was a map of that area of Swe-
den, with the train’s current location updated in real-time. Impressed by this, I made a
point of mentioning it to my Swedish host, and the conversation quickly turned to how
much today’s systems, such as my train, rely on and are controlled by software.

My host subsequently relayed a somewhat less pleasant experience with the same
type of train on which I had just arrived. During one of his recent trips, the software
controlling the angle at which one of the train’s cars entered and exited curves was not
functioning properly. As a result, the G-force experienced by the passengers during
turns had almost doubled. The problem was fixed at the next station, where the train
sat idle for some time while it literally rebooted. I found myself having two reactions
to this story. As a traveler, my first thought was that it is a good thing we do not have
to reboot airplanes in mid-flight. As a software engineer, I wondered exactly how the
software was constructed and what caused this particular problem.

As this story illustrates, as “regular” people we constantly depend on software in
our daily lives, yet frequently do not realize it and rarely, if ever, stop to analyze the
implications of that dependence and the extent of the software’s actual dependability.
On the other hand, as software engineering professionals, we are not only becoming
increasingly aware of the importance of software dependability, but have amassed an
arsenal of techniques and tools to help us ensure it. Many of these techniques and
tools have traditionally been used to ensure dependability in existing systems “after
the fact,” that is, after the system has been designed, and possibly implemented and
even deployed. However, a new class of emerging techniques gives dependability
first-class status in the development of software-intensive systems by integrating de-
pendability into software engineering processes from their inception. These techniques
rely on a software system’s architecture as the principal driver of dependability.

This book is the fourth in a series of collected papers on software architecture-
based dependability solutions. The book addresses a number of on-going challenges
(such as system modeling and analysis for dependability and ensuring dependability in
distributed systems) as well as some timely issues (such as the role of the Architecture
Analysis and Design Language—AADL—standard in modeling dependable systems,
architecture-driven dependability in the automotive domain, and the benefits of fol-
lowing the model-driven architecture paradigm in ensuring software dependability).
This book joins its three companion volumes in forming an indispensable source for
the fast-growing community of software researchers and practitioners who are con-
fronting the challenges posed by this important topic and architecting the software
systems on which we rely every day.

Nenad Medvidovic
University of Southern California

Preface

This is the fourth book in a series on Architecting Dependable Systems we started
five years ago that brings together issues related to software architectures and the
dependability of systems. This book includes expanded and peer-reviewed papers
based on the selected contributions to the Workshop on Architecting Dependable
Systems (WADS), organized at the 2006 International Conference on Dependable
Systems and Networks (DSN 2006), and a number of invited papers written by recog-
nized experts in the area.

Identification of the system structure (i.e., architecture) early in its development
process makes it easier for the developers to make crucial decisions about system
properties and to justify them before moving to the design or implementation stages.
Moreover, the architectural level views support abstracting away from details of the
system, thus facilitating the understanding of broader system concerns. One of the
benefits of a well-structured system is the reduction of its overall complexity, which
in turn leads to a more dependable system that typically has fewer remaining faults
and is capable of dealing with errors and faults of different types in a well-defined,
cost-effective and disciplined way.

System dependability is defined as the reliance that can be justifiably placed on the
service delivered by the system. It has become an essential aspect of computer sys-
tems as everyday life increasingly depends on software. It is therefore a matter for
concern that dependability issues are usually left until too late in the process of sys-
tem development.

Making decisions and reasoning about structure happen at different levels of ab-
straction throughout the software development cycle. Reasoning about dependability
at the architectural level has recently been in the focus of researchers and practitioners
because of the complexity of emerging applications. From the perspective of software
engineering, traditionally striving to build software systems that are fault-free, archi-
tectural consideration of dependability requires the acceptance of the fact that system
models need to reflect that it is impossible to avoid or foresee all faults. This requires
novel notations, methods and techniques providing the necessary support for reason-
ing about faults (including fault avoidance, fault tolerance, fault removal and fault
forecasting) at the architectural level.

This book comes as a result of bringing together research communities of software
architectures and dependability, and addresses issues that are currently relevant to im-
proving the state of the art in architecting dependable systems. The book consists of four
parts: Architectural Description Languages, Architectural Components and Patterns,
Architecting Distributed Systems, and Architectural Assurances for Dependability.

The first part entitled “Architectural Description Languages” (ADLs) includes four
papers focusing on various aspects of defining and using ADLs with an aim to ensure
system dependability. The first paper of this part, “Architecting Dependable Systems
with the SAE Architecture Analysis and Description Language (AADL),” is prepared
by J. Tokar. The Avionics Systems Division of the Society of Automotive Engineers
(SAE) has recently adopted this language to support incorporation of formal methods

VIII Preface

and engineering models into analysis of software and system architectures. The SAE
AADL is a standard that has been specifically developed for embedded real-time
safety critical systems. It supports the use of various formal approaches to analyzing
the impact of system composition from hardware and software components and al-
lows the generation of system glue code with the performance qualities predicted. The
paper highlights features of AADL that facilitate the development of system architec-
tures and demonstrates how the features can be used to conduct a wide variety of
dependability analysis of the AADL architectural models. To help in the understand-
ing of AADL, the paper begins with a discussion of software and systems architecture
and then shows how the AADL supports these concepts.

The second paper, written by A.-E. Rugina, K. Kanoun and M. Kaâniche and enti-
tled “A System Dependability Modeling Framework using AADL and GSPNs,” de-
scribes a modeling framework that generates dependability-oriented analytical models
from Architecture Analysis and Design Language (AADL) specifications, which are
then used for evaluating dependability measures, such as reliability or availability.
The proposed stepwise approach transforms an AADL dependability model into a
Generalized Stochastic Petri Net (GSPN) by applying model transformation rules that
can be automated and then processed by existing tools.

P. Cuenot, D. Chen, S. Gérard, H. Lönn, M.-O. Reiser, D. Servat, R. T. Kolagari,
M. Törngren and M. Weber contribute to the book with the paper “Towards Improv-
ing Dependability of Automotive Systems by Using the EAST-ADL Architecture
Description Language.” Management of engineering information is critical for devel-
oping modern embedded automotive systems. Development time, cost efficiency,
quality and dependability all benefit from appropriate information management. Sys-
tem modeling based on an architecture description language is a way to keep this
information in one information structure. EAST-ADL is an architecture description
language for automotive embedded systems. It is currently refined in the ATESST
project. The focus of this paper is on describing how dependability is addressed in the
EAST-ADL. The engineering process defined in the EASIS project is used as an
example illustrating support for engineering processes in EAST-ADL.

The final paper of the first part is “The View Glue” written by A. Radjenovic and
R. Paige. It focuses on domain-specific architecture description languages (ADLs),
particularly for safety critical systems. In this paper, the authors outline the require-
ments for safety critical ADLs, the challenges faced in their construction, and present
an example – AIM – developed in collaboration with the safety industry. Explaining
the key principles of AIM, the authors show how to address multiple and cross-
cutting concerns through active system views and how to ensure consistency across
such views. The AIM philosophy is supported by a brief exploration of a real-life jet
engine case study.

The second part of this book is entitled “Architectural Components and Patterns”
and contains five papers. In the first paper, entitled “A Component-Based Approach
to Verification and Validation of Formal Software Models,” D. Desovski and B.
Cukic present a methodology for the automated decomposition and abstraction of
Software Cost Reduction (SCR) specifications. The approach enables one to identify
components in an SCR specification, perform the verification component by compo-
nent, and apply compositional verification methods. It is shown that the algorithms
can be used in large specifications.

 Preface IX

In the paper “A Pattern-Based Approach for Modeling and Analyzing Error Re-
covery,” A. Ebnenasir and B. H. C. Cheng present an object analysis pattern, called
the corrector pattern, that provides a generic reusable strategy for modeling error
recovery requirements in the presence of faults. In addition to templates for construct-
ing structural and behavioral models of recovery requirements, the corrector pattern
also contains templates for specifying properties that can be formally verified to en-
sure the consistency between recovery and functional requirements. Additional prop-
erty templates can be instantiated and verified to ensure the fault-tolerance of the
system to which the corrector pattern has been applied. This analysis method is vali-
dated in terms of UML diagrams and demonstrated in the context of an industrial
automotive application.

The third paper of this part, “Architectural Fault Tolerance Using Exception Han-
dling,” is written by R. de Lemos. This paper presents an architectural abstraction
based on exception handling for structuring fault-tolerant software systems. The pro-
posed architectural abstraction transforms untrusted software components into ideal-
ized fault-tolerant architectural elements (iFTE), which clearly separate the normal
and exceptional behaviors, in terms of their internal structure and interfaces. The
feasibility of the proposed approach is evaluated in terms of a simple case study.

R. Buskens and O. Gonzalez contribute to the book with the paper “Model-Centric
Development of Highly Available Software Systems.” They present the Aurora Man-
agement Workbench (AMW) as a solution to the problem of integration a high avail-
ability (HA) middleware with the system that uses it. AMW is an HA middleware and
a set of tools for building highly available distributed software systems. It is unique
in its approach to developing highly available systems: developers focus only on
describing key architectural abstractions of their system as well as system HA needs
in the form of a model. Tools then use the model to generate much of the code needed
to integrate the system with the AMW HA middleware, which also uses the model to
coordinate and control HA services at run-time. The paper discusses initial successes
using the approach proposed in developing commercial telecom systems.

The final paper of this part, written by L. Grunske, P. Lindsay, E. Bondarev, Y. Pa-
padopoulos and D. Parker and entitled “An Outline of an Architecture-Based Method
for Optimizing Dependability Attributes of Software-Intensive Systems,” provides an
overview of 14 different approaches for optimizing the architectural design of systems
with regard to dependability attributes and cost. As a result of this study, the authors
present a meta-method that specifies the process of designing and optimizing architec-
tures with contradicting requirements on multiple quality attributes.

Part three of the book is on “Architecting Distributed Systems” and includes six
papers focusing on approaches to architectural level reasoning about dependability
concerns of distributed systems. This part starts with a paper by P. Inverardi and L.
Mostarda that is entitled “A Distributed Monitoring System for Enhancing Security
and Dependability at an Architectural Level.” The paper presents the DESERT tool
that allows the automatic generation of distributed monitoring systems for enhancing
security and dependability of a component-based application at the architectural level.
The DESERT language permits one to specify both the component interfaces and
interaction properties in terms of correct component communications. DESERT uses
these specifications to generate one filter for each component. Each filter locally
detects when its component communications violate the property and can undertake a
set of reaction policies.

X Preface

In their paper, entitled “Architecting Dynamic Reconfiguration in Dependable Sys-
tems,” A. T. A. Gomes, T. V. Batista, A. Joolia and G. Coulson introduce a generic
approach to supporting dynamic reconfiguration in dependable systems. The proposed
approach is built on the authors’ view that dynamic reconfiguration in such systems
needs to be causally connected at runtime to a corresponding high-level software
architecture specification. More specifically, two causally connected models are de-
fined, an architecture-level model and a runtime-level model. Dynamic reconfigura-
tion is applied either through an architecture specification at the architectural level, or
through reconfiguration primitives at the runtime level. This approach supports both
foreseen and unforeseen reconfigurations—these are handled at both levels with a
well-defined mapping between them.

T. Dumitraş, D. Roşu, A. Dan and P. Narasimhan, in their paper “Ecotopia: An
Ecological Framework for Change Management in Distributed Systems,” present
Ecotopia, a framework for change management in complex service-oriented architec-
tures (SOA) that is ecological in its intent: it schedules change operations with the
goal of minimizing the service-delivery disruptions by accounting for their impact on
the SOA environment. Ecotopia handles both external change requests, such as soft-
ware upgrades, and internal changes requests, such as fault-recovery actions. The
authors evaluate the Ecotopia framework using two realistic change-management
scenarios in distributed enterprise systems.

In the fourth paper, entitled “Generic-Events Architecture: Integrating Real-World
Aspects in Event-Based Systems,” A. Casimiro, J. Kaiser, and P. Veríssimo describe
an architectural solution consisting of an object model environment, which can be
easily composed, representing software/hardware entities capable of interacting with
the environment, and an event model that allows one to integrate real-world events
and events generated in the system. The architectural solution and the event-model
permit one to compose large applications from basic components, following a hierar-
chical composition approach.

The fifth paper is by C. Heller, J. Schalk, S. Schneele, M. Sorea, and S. Voss and is
entitled “Flexible Communication Architecture for Dependable Time-Triggered Sys-
tems.” The authors propose an approach expressed in terms of a dependable and flexi-
ble communication architecture that supports flexibility in the use of time-triggered
technologies and delivers a highly effective, reliable and dependable system design.
This work is undertaken in the context of safety-critical aerospace applications.

The final paper of this part is by L. Baresi, S. Guinea, and M. Plebani and is enti-
tled “Business Process Monitoring for Dependability.” This paper proposes a dynamic
technique for ensuring that dependability requirements of service-based business
processes are maintained during runtime. The approach is based upon the concept of
supervision rules, which are the union of user-defined constraints. These rules are
used to monitor how a BPEL process evolves, and specify corrective actions that must
be executed when a set of constraints is violated. For facilitating the specification of
these rules, the authors provide suitable languages and tools that enable one to ab-
stract from the underlying technologies, and to hide how the system guarantees the
dependability requirements.

The fourth part of this book is on “Architectural Assurances for Dependability”
and contains three papers. The first paper, “Achieving Dependable Systems by Syner-
gistic Development of Architectures and Assurance Cases” by P. J. Graydon, J. C.

 Preface XI

Knight and E. A. Strunk, explains the basic principles of assurance-based develop-
ment, and shows how the proposed approach can be used to provide assurance case
goals for architectural choices. In this approach, first the architecture is developed to
provide evidence required in the assurance case, and then the assurance case is refined
as architectural choices are made. In this context, choices are better informed than an
architecture chosen in an ad hoc manner.

The next paper, entitled “Towards Evidence-Based Architectural Design for
Safety-Critical Software Applications,” is prepared by W. Wu and T. Kelly. This
paper proposes a Triple Peaks process framework, within which a system model,
deviation model, and mitigation model are proposed and linked together. The applica-
tion of this framework is supported by the use of Bayesian Belief Networks and colla-
tion of relevant evidence. The link between the three models is elaborated by means
of a case study. The core contribution of this paper is addressing safety using evi-
dence available at the architectural level.

The paper “Extending Failure Modes and Effects Analysis Approach for Reliabil-
ity Analysis at the Software Architecture Design Level,” by H. Sozer, B. Tekiner-
dogan and M. Aksit, shows how the Failure Mode and Effect Analysis (FMEA) and
Fault Tree Analysis (FTA) can be extended and used in combination for conducting
reliability evaluation of software systems at the architecture design level. The exten-
sions of FMEA and FTA are related to using a failure domain model for systematic
derivation of failures, prioritization of failure scenarios based on a user’s perception,
and an FTA impact analysis model that does not explicitly require a running system.
The software architecture reliability analysis approach (SARAH) proposed in the
paper is illustrated using an industrial case for analyzing the reliability of the software
architecture of a digital TV.

Architecting dependable systems is now a well-recognized area, attracting interest
and contributions from many researchers. We are certain that this book will prove
valuable for both developers designing complex applications and researchers building
techniques supporting them. We are grateful to many people who made this book
possible. Our thanks go to the authors of the contributions for their excellent work,
the DSN 2006 WADS participants for their active participation in the discussions, and
Alfred Hofmann from Springer for believing in the idea of a series of books on this
important topic and for helping us to get it published. Last but not least, we very
much appreciate the efforts of our reviewers who helped us in ensuring the high qual-
ity of the contributions. They are L. Baresi, L. Bass, T. V. Batista, J. Bryans, R.
Buskens, F. Castor Filho, B. H.C. Cheng, A. C. Costa, B. Cukic, D. Desovski, T.
Dumitras, J. Durães, A. Ebnenasir, L. Grunske, C. Heller, N. Henderson, M.
Kaâniche, K. Kanoun, T. Kelly, S. Kharchenko, M. Klein, H. Lönn, T. Maxino, L.
Mostarda, P. Narasimhan, R. F. Paige, P. Pelliccione, A. Radjenovic, S. Riddle, G.
Rodrigues, D. Rosu, A.-E. Rugina, S. Schneele, E. Strunk, B. Tekinerdogan, M.
Tichy, J. L. Tokar, S. Voss and several anonymous reviewers.

Rogério de Lemos
Cristina Gacek

Alexander Romanovsky

Table of Contents

Part 1. Architectural Description Languages

Architecting Dependable Systems with the SAE Architecture Analysis
and Description Language (AADL) . 1

Joyce L. Tokar

A System Dependability Modeling Framework Using AADL and
GSPNs . 14

Ana-Elena Rugina, Karama Kanoun, and Mohamed Kaâniche

Towards Improving Dependability of Automotive Systems by Using the
EAST-ADL Architecture Description Language . 39

Philippe Cuenot, DeJiu Chen, Sébastien Gérard, Henrik Lönn,
Mark-Oliver Reiser, David Servat, Ramin Tavakoli Kolagari,
Martin Törngren, and Matthias Weber

The View Glue . 66
Alek Radjenovic and Richard Paige

Part 2. Architectural Components and Patterns

A Component-Based Approach to Verification and Validation of Formal
Software Models . 89

Dejan Desovski and Bojan Cukic

A Pattern-Based Approach for Modeling and Analyzing Error
Recovery . 115

Ali Ebnenasir and Betty H.C. Cheng

Architectural Fault Tolerance Using Exception Handling 142
Rogério de Lemos

Model-Centric Development of Highly Available Software Systems 163
Rick Buskens and Oscar Gonzalez

An Outline of an Architecture-Based Method for Optimizing
Dependability Attributes of Software-Intensive Systems 188

Lars Grunske, Peter Lindsay, Egor Bondarev,
Yiannis Papadopoulos, and David Parker

XIV Table of Contents

Part 3. Architecting Distributed Systems

A Distributed Monitoring System for Enhancing Security and
Dependability at Architectural Level . 210

Paola Inverardi and Leonardo Mostarda

Architecting Dynamic Reconfiguration in Dependable Systems 237
Antônio Tadeu A. Gomes, Thais V. Batista, Ackbar Joolia, and
Geoff Coulson

Ecotopia: An Ecological Framework for Change Management in
Distributed Systems . 262

Tudor Dumitraş, Daniela Roşu, Asit Dan, and Priya Narasimhan

Generic-Events Architecture: Integrating Real-World Aspects in
Event-Based Systems . 287

António Casimiro, Jörg Kaiser, and Paulo Verissimo

Flexible Communication Architecture for Dependable Time-Triggered
Systems . 316

Christoph Heller, Josef Schalk, Stefan Schneele, Maria Sorea, and
Sebastian Voss

Business Process Monitoring for Dependability . 337
Luciano Baresi, Sam Guinea, and Marco Plebani

Part 4. Architectural Assurances for Dependability

Achieving Dependable Systems by Synergistic Development of
Architectures and Assurance Cases . 362

Patrick J. Graydon, John C. Knight, and Elisabeth A. Strunk

Towards Evidence-Based Architectural Design for Safety-Critical
Software Applications . 383

Weihang Wu and Tim Kelly

Extending Failure Modes and Effects Analysis Approach for Reliability
Analysis at the Software Architecture Design Level 409

Hasan Sozer, Bedir Tekinerdogan, and Mehmet Aksit

Author Index . 435

