
R. de Lemos et al. (Eds.): Architecting Dependable Systems IV, LNCS 4615, pp. 262–286, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Ecotopia: An Ecological Framework for
Change Management in Distributed Systems

Tudor Dumitraş1, Daniela Roşu2, Asit Dan2, and Priya Narasimhan1

1 ECE Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2 IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA

tudor@cmu.edu, drosu@us.ibm.com, asit@us.ibm.com,
priya@cs.cmu.edu

Abstract. Dynamic change management in an autonomic, service-oriented
infrastructure is likely to disrupt the critical services delivered by the
infrastructure. Furthermore, change management must accommodate complex
real-world systems, where dependability and performance objectives are
managed across multiple distributed service components and have specific
criticality/value models. In this paper, we present Ecotopia, a framework for
change management in complex service-oriented architectures (SOA) that is
ecological in its intent: it schedules change operations with the goal of
minimizing the service-delivery disruptions by accounting for their impact on
the SOA environment. The change-planning functionality of Ecotopia is split
between multiple objective-advisors and a system-level change-orchestrator
component. The objective advisors assess the change-impact on service
delivery by estimating the expected values of the Key Performance Indicators
(KPIs), during and after change. The orchestrator uses the KPI estimations to
assess the per-objective and overall business-value changes over a long time-
horizon and to identify the scheduling plan that maximizes the overall business
value. Ecotopia handles both external change requests, like software upgrades,
and internal changes requests, like fault-recovery actions. We evaluate the
Ecotopia framework using two realistic change-management scenarios in
distributed enterprise systems.

Keywords: Dynamic Change Management, Service Orchestration, Fault-
Tolerant Architecture, Performability, Autonomic Computing.

1 Introduction

Enterprises demand highly available online systems and satisfactory service levels
(e.g., average response time) in the face of change. The kinds of changes that can
occur are diverse, and can include recovery actions in response to failures, or
upgrades due to new versions of software that become available. Current change-
management strategies, for the most part, tend to execute a change request as soon as
possible (e.g., as soon as a fault is detected or an upgrade is requested), rather than
looking for the best time to do so. The downtime (or the perceived lack of
responsiveness/availability) due to change management can disrupt the performance
expectations of services and have an adverse effect on business.

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 263

Generate
List of

Change
Operations

Generate
Change

Schedule

External: Requests for
HW & SW Upgrade

Internal: System Management
Events (e.g. faults, expected

workload changes)

Timed Change
Schedule

Enterprise SLAs

Change Planner

(e.g., response time,
availability,
recovery time)

Generate
List of

Change
Operations

Generate
Change

Schedule

External: Requests for
HW & SW Upgrade

Internal: System Management
Events (e.g. faults, expected

workload changes)

Timed Change
Schedule

Enterprise SLAs

Change Planner

(e.g., response time,
availability,
recovery time)

Fig. 1. Dynamic change management is likely to disrupt the critical services running in the IT
infrastructure. Ecotopia handles changes based on both external requests (e.g., software
upgrades) and events detected internally by the autonomic management infrastructure (e.g.,
faults) while taking into account their impact of the service-level agreements. The output is a
timed schedule that seeks to wait for the most opportune time to apply each change operation
and to maximize the enterprise business value.

Industry analysts indicate that "unmanaged change is one of the leading causes of
downtime or missed service-level agreements (SLAs)." [1] Gartner Group states that
“to address the 80 percent of unplanned downtime caused by "people failures,"
enterprises should invest in improving their change and problem management
processes (to reduce downtime caused by application failures) and in automation
tools, such as job scheduling and event management (to reduce downtime caused by
operator errors).” [2] Thus, we hypothesize that it is more appropriate to seek the most
opportune time to execute the change operations in a distributed service-oriented
infrastructure, based on the change’s impact on the service-level objectives (e.g.
response time, availability, and recovery time). Such an impact-sensitive change-
management strategy aims to respect the overall performance and dependability
guarantees of the running services, yet allowing the system to incorporate changes of
various kinds.

Fig. 1 illustrates the main elements of the change-planning problem. In typical IT
infrastructures, there are multiple kinds of change operations, originating from
various sources. Some changes are planned in advance (e.g., deploying new
applications, upgrading obsolete software, increasing the system capacity), and are
derived from an external request for change (RFC). In other cases, changes are due to
“firefighting” (i.e., mitigating the negative effects of unplanned situations), and are
triggered by internal system-management events, e.g., faults or load surges. Change
requests are characterized by a set of (partially) ordered change operations and by
change objectives such as the deadline for implementing the change. The change-
operation planner must produce a timed change-schedule for executing the changes
and, in the process, must consider both the impact of the changes on all the relevant
quality-of-service requirements as expressed by service-level objectives (SLOs), as
well as the objectives of each change operation.

An SLO defines bounds and targets for a level-of-service metric (e.g., response
time, recovery time, availability), called Key Performance Indicator (KPI). An SLO
also has a specific business value metric (e.g., the penalties associated with a missed

264 T. Dumitraş et al.

change deadline or with a degraded performance) for gauging the utility of fulfilling
the objective [3]. The change schedule must maximize the aggregated business value,
associated with all of the enterprise’s SLOs. This optimization must span a long time-
horizon, to account for both transient effects that might occur during the change
execution, and permanent effects that might persist after the change has been
finalized.

The change planner must be “ecological” in nature, i.e., it must assess the impact
of the change on the environment and its SLOs by considering a number of factors:
the inter-dependencies among various system components, the available prior
knowledge of workload fluctuations or anticipated load surges during prime-time, as
well as the degree of resource sharing across heterogeneous, off-the-shelf components
that sometimes span independent administrative domains. In these environments, the
high-level service objectives translate into component-level objectives that can be
managed by component-specific configuration managers. For example, a workload
manager prioritizes and routes the service requests by monitoring the response-time
objectives, while a dependability manager primes backup nodes in anticipation of
failures and performs recovery by monitoring the availability objectives. These
managers use extensive, and sometimes proprietary, domain knowledge (e.g.,
workload characteristics, resource-utilization models), and can perform sophisticated
request classification, prioritization, monitoring and request routing [4].

As a result, we believe that the complexity and the distributed nature of objective-
management in real-world systems makes it unfeasible for a fully centralized change-
operation planner to directly assess the impact of change operations on each service
KPI. Rather, the impact on service KPIs should be estimated by the component-
specific managers that control these services. However, component-specific managers
might not be able to directly assess SLO business values necessary for estimating the
overall change-impact, either because they do not directly implement the enterprise
SLO models or because the service spans multiple managers and administrative
domains.

Building on this principle, we propose Ecotopia, a change-management framework
that decouples the impact assessment (handled by multiple objective advisors, e.g.,
performance and dependability advisors) from the change-operation scheduling
(handled by a change orchestrator). The orchestrator builds the change-operation
schedule and estimates its business value impact based on the service KPIs predicted
by the objective advisors. The advisors are software components that incorporate the
domain knowledge to answer "what-if" questions about service KPIs (such as
performance and availability forecasts), given a description of the change operations
and the timing properties associated with their execution. The orchestrator leverages
the advisors’ predictions to compute the per-objective and the aggregate business
value, and to converge towards an optimal change-operation schedule through an
iterative refinement process. The objective advisors themselves can be composite,
third-party services.

The novel characteristics of the Ecotopia framework for orchestrating change-
management operations are:

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 265

− Rich “what-if” interaction model that enables the use of fine-grained objective-
advisor knowledge for an effective change scheduling decision. Our “what-if”
model includes:
• Timeline of prediction points: the advisors inform the orchestrator of the

expected workload changes during the scheduling timeline. The orchestrator
uses these guidelines to bootstrap the scheduling algorithms.

• Proactive actions: the advisors can inform the orchestrator about specific
actions that may improve the impact on KPIs during related change
operations. The orchestrator can include these operations in the final schedule
if they result in an improved overall business-value.

− Integrated management of both internal (e.g., faults, workload changes) and
external (e.g., upgrades, capacity increases) changes. This approach is necessary
because both types of changes affect a common pool of resources and services.
Existing solutions [5, 6] assume different decision makers for the two types of
changes.

− Complex business value functions for SLOs and change-request deadlines that can
change along with the underlying enterprise service models, enabled by
compliance with WS-Agreement standard [3]. Existing solutions support only
priority-based models [5] or embedded, hard-coded utility functions [4, 7, 8].

− Optimization based on the long-term impact of change on performance and
dependability objectives, accounting for both the time during and after execution of
the change. Existing solutions consider only one of the two impact components
(e.g., [7] considers the impact during change execution, [5, 9] consider the impact
after the change).

In Section 2 we compare Ecotopia with the state of the art in impact-aware change
management. Section 3 describes the design of Ecotopia framework and Section 4
describes the current implementation. Section 5 presents two case studies of change
management that we use to validate our architecture. Section 6 discusses the
applicability of our ecological approach for realistic systems and outlines directions
for future work.

2 Background

In their seminal paper, Segal and Frieder [10] identify a set of general requirements
for any dynamic updating system: preserving program correctness (during and after
the update), minimizing human intervention, supporting program restructuring and
low-level program changes (e.g., both implementations and interfaces), supporting
distributed programs (communicating across mutually distrustful administrative
domains), not requiring special-purpose hardware and not constraining the language
and environment. Their survey illustrates that in general, research has focused on
mechanisms for implementing change at different levels of granularity (e.g. replacing
components, objects, procedures), rather than on impact assessment and coordination
of distributed changes. Kramer and Magee [11] note that faults, as well as live
upgrades, might have a disruptive effect on the functionality of a distributed system,
and that the techniques to mitigate these problems could be combined in a unified

266 T. Dumitraş et al.

framework. For instance, a change-management system that totally separates the
functional application concerns from the configuration management concerns (such as
Kramer and Magee's Conic system), can provide a good basis for implementing fault
recovery [11]. Conversely, an infrastructure built for fault-tolerance can provide a
good basis for live upgrades because of the inherent redundancy [12, 13]. For
example, a fault-tolerant CORBA system using the interception approach provides all
the ingredients needed for dynamic change management of CORBA objects,
including an interceptor (i.e., the indirection layer needed when switching to a new
version), replication mechanisms (for incrementally upgrading some replicas while
others continue to provide service) and state extraction/restoration mechanisms (for
maintaining consistency between versions) [12].

In the Ecotopia framework, we also adopt this unifying approach of considering
both external (e.g., software upgrades) and internal change requests (e.g., operations
needed to mitigate the effects of a fault). Additionally, the goal of our ecological
framework is to manage the impact of change-management on the SOA environment
(the running services and the existing resources). We assess this impact by asking and
answering “what-if” questions about the outcome of the change operations. We
assume some advance knowledge of the workload, as a running system has different
behavioral profiles depending on the system load and the outcome of the changes will
depend on the workload as well. Ecotopia tries to minimize the negative impact on the
environment by using the answers to the “what-if” questions to determine the most
opportune time to apply the changes, given the existing resources, the state of the
running services and the workload.

2.1 Workload Prediction

Many workloads are characterized by a day-night periodicity [14]: the incoming
request load increases during the day, with comparable peak request-rates from day to
day, and decreases at nighttime to a very low baseline level. System administrators
take advantage of this knowledge to over-provision the system for the highest expected
loads [15] and to run maintenance activities (such as change management) during the
night. There are also workloads with more complex patterns. The 1998 World Cup
workload1 [16] shows that the incoming load increases suddenly around game times,
with lower peaks for the games played over a weekend. This trend is typical for sites
dedicated to sporting events; this can be observed on Alexa.com2 [17], by comparing
statistics for two different sites covering the same event (e.g., f1.com and fi-live.com):
even if the peak loads are different, the access patterns are the same. On-line auction
sites, such as ebay.com, exhibit similar load surges before the closing time of an
auction. Furthermore, recognizable patterns of warnings and notifications that precede
system events may facilitate the workload prediction [18, 19].

Ecotopia uses the ability to predict when the system is under high and low load for
optimizing across multiple service-level objectives. For instance, an enterprise system

1 This is the workload of a website dedicated the 1998 soccer World Cup in France. With 1.4

billion requests in the server logs, this is the largest web workload ever analyzed.
2 Alexa is a tool for comparing statistics on the popularity and workloads of different websites.

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 267

may have two objectives: performance, expressed as average response time, and
dependability, expressed as the expected recovery time after a system failure. After a
fault (which, unlike a failure, does not completely disable the system), Ecotopia relies
on knowledge of the workload to schedule the reconfiguration operations when the
incoming load is low and avoid the penalties due to downtime during a busy period.
Note that we do not assume that flash-crowd events (sudden load surges due to an
unexpected increase in the site’s popularity) are predictable; however, we show that
exploiting irregular, but predictable workloads – such as the World Cup 98 trace [16]
– allows Ecotopia to improve the scheduling of change operations when pursuing
multiple objectives. Workload prediction is an optional part of the framework;
Ecotopia’s orchestrator can function with third-party advisors that answer “what-if”
questions without providing workload predictions, e.g., [8].

2.2 “What-if” Questions

Existing service-orchestration products [5, 20], perform resource arbitration between
node groups by evaluating the impact just after the resource changes are enacted.
While allowing the orchestration of distributed services [4], this approach is limited
because it ignores the long-term impact of change management (e.g. interaction with
expected workload change). The CHAMPS project [7] focuses on scheduling
operations to satisfy external RFC deadlines. It develops a complex dependency-
tracking framework and it formulates the scheduling problem as the optimization of a
generic cost function given a set of constraints (representing the impact during
change, e.g., due to service unavailability), providing a centralized approach for both
scheduling and impact analysis. Our work is based on the observation that centralized
impact evaluation is not appropriate for complex enterprise environments.

The problem of optimizing business value in a decentralized manner has also been
addressed in the context of autonomic management of storage systems. Hippodrome
[9] refines the initial configuration of a storage system through an iterative process,
using a performance model to estimate the throughput and capacity of a particular
configuration. Like our framework, Hippodrome separates between optimization and
impact assessment, although the interactions between the two components are more
tightly integrated and is based on a proprietary protocol. We submit that for complex
systems integrating multi-vendor components we need an open communication
protocol, for instance based on Web Services. The K2 middleware [21] goes further in
distributing the autonomic management functionality by eliminating the centralized
decision-maker and allowing individual “allocation pools” to manage their own
objectives. In K2, distributed decision algorithms determine the goal configuration
and the allocation pools start moving in that direction; if conditions change part-way
through reconfiguration, the system changes its direction without having to invalidate
the previous plan. However, none of these systems consider the evolution in time of
the KPIs and the long-term impact of their decisions which are necessary for avoiding
system instability and minimizing the overall business impact.

Thereska et al. [8] define a “resource advisor” predicting the impact of data
placement and encoding choices on performance. The advisor has a hierarchical
design, based on several ”what-if” modules (for predicting the CPU, network and disk
delays and cache hit rates) that can be combined together for end-to-end KPI

268 T. Dumitraş et al.

predictions. Although it does not account for the detailed KPI evolution (it does not
attempt to predict incoming request rates), the advisor continuously monitors the
infrastructure and uses historical data to overprovision the system based on the peak
loads observed. The authors report that prediction errors are less than 15% in most
cases. This is an example of a third-party objective advisor that could be connected to
the Ecotopia framework. Our orchestrator doesn’t need to know the details of the
performance models for storage systems; instead, it can use the “what-if” predictions
to perform an ecological change management.

2.3 Timing the Application of Change Operations

The idea of waiting for the most opportune time to apply a change is widely accepted
with respect to security patches for enterprise infrastructures. Beattie et al. [22] show
that there is a sweet-spot for the time when security patches should be applied.
Patches applied too early, without enough testing in the field, may introduce critical
bugs or may conflict with local configurations. Patches applied too late leave the
system exposed to security threats for an extended period of time. The authors argue
that patching should be delayed until the risk of a security breach outweighs the risk
of introducing bugs, and they develop a mathematical model for estimating the
optimal time to apply a security patch.

Gorbenko et al. [23] tackle the problem of achieving high dependability of
composite Web Services undergoing online upgrades of their components. They
advocate running multiple versions of a service in parallel and using third-party
interception middleware to switch to a new replica when the confidence in its
correctness is sufficiently high. The “confidence in correctness” metric is computed
based on comparing the responses from different versions of a service and using
Bayesian inference to reason about future failure rates. This approach is the closest to
our focus on the long-term impact of change operations, except that we use impact
assessment across multiple service-level objectives and we use standard metrics, such
as business value, for evaluating this impact.

Roşu et al. [24] introduce the approach of evaluating change plans based on actual
SLO business values, which are computed by the orchestrator based on the service
KPIs provided by objective advisors. Ecotopia extends this approach to a compressive
“what-if” protocol appropriate for management of complex change requests. Other
change orchestration solutions evaluate change plans in disconnection from the actual
SLO of the enterprise, based on hard-coded utility models embedded in the resource
advisors [4, 5, 8]. In [25], the change manager uses WS-Agreement specification to
define business value parameters whereas the specification of the objective and
business value functions is hard-coded in the orchestrator implementation. Neither of
these approaches is appropriate for systems in which the objective and value models
can evolve in time.

3 Design of an Ecological Change-Management Framework

A primary design goal for a change-management framework that targets distributed,
service-oriented infrastructures is to make minimal assumptions about the kinds of

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 269

“knobs” that the various software components are prepared to expose to a change-
management system for enabling the control of change impact. The key to achieving
this goal is the separation of scheduling and impact analysis. In Ecotopia, these tasks
are performed by different components, which may come from different providers.

Service orchestration refers to an executable business process that combines
multiple services by defining their interactions dynamically, with the goal of aligning
the behavior of the composite service with the business objectives [20]. Ecotopia
contains an orchestration engine that queries multiple objective advisors for KPI
predictions and combines their outputs into a change-operation schedule. The
predictions are based on detailed domain knowledge of each system component, but
this knowledge is not exposed outside the objective advisors. Instead, the advisors
answer simple “what-if” questions [8] about the impact of concrete change operations
on service KPIs, considering the workload and the tentative schedules of these
operations. The orchestration is driven by the enterprise SLAs, which define methods
for computing the business value [3] that corresponds to the predicted KPI values.
The business value reflects the utility of a given change schedule, allowing us to
compare schedules and make an “ecological” choice: considering the impact on the IT
environment, we select the change schedule that minimizes the service-delivery
disruptions and that maximizes the overall business value.

General assumptions. We assume that KPI predictions can be derived from some
knowledge of future incoming loads, either because the workloads exhibit clear trends
[14, 16], or because fluctuations are preceded by recognizable patterns of warnings
and notifications [18, 19]. Furthermore, we assume that the execution times of all the
change operations submitted to the Ecotopia orchestrator can be estimated and that
services do not have hard real-time constraints (which is typical of enterprise
systems).

3.1 Framework Components

Fig. 2 illustrates the main components and interactions in the Ecotopia framework.
The ChangeManager receives high-level RFCs, decomposes them into finer-grained
change operations and related dependencies, and forwards them to a centralized
component called the orchestrator. The orchestrator receives the list of change
operations and their execution constraints and generates a change plan through an
iterative process. Distributed components called objective advisors analyze the impact
of planned change operations; the orchestrator identifies the relevant advisors by
querying the SystemConfigurationDatabase. The objective advisors represent
the service managers in the infrastructure and can use manager-specific knowledge to
estimate the impact of a change plan on the service KPIs. The orchestrator consumes
these estimations and schedules the change operations with the goal of maximizing
the overall business value. The interaction between the orchestrator and the advisors
is based on the Web Services standard, which facilitates compatibility in a complex
system with components built by different providers. The orchestrator sends the final
schedule to the ScheduleExecutor, which triggers the change operations at
the indicated times. The ChangeManager is analogous to the Task Graph Builder

270 T. Dumitraş et al.

Orchestrator
Maximize Overall Business Value

P
red

icted
 K

P
Is

R
eso

u
rce A

rb
itratio

n

R
eq

u
ests

Te
n

ta
ti

ve
 S

ch
ed

u
le

C
h

an
g

e O
p

eartio
n

s

A
d

viso
rs

Change
Manager

Schedule Executor

Final
Schedule

R
es

ou
rc

es

Dependability
Advisor

Performance
Advisor

<schedule>
<time/>
<action/>

</schedule>

<change>
<action/>
</change>

<deadline/>

System

Configuration

RFC

Initiate Resource
Actions

Analyze Impact
on KPIs

Objective Advisors

SLAs
System
Management
Events

P
ro

active A
ctio

n
s

Orchestrator
Maximize Overall Business Value

P
red

icted
 K

P
Is

R
eso

u
rce A

rb
itratio

n

R
eq

u
ests

Te
n

ta
ti

ve
 S

ch
ed

u
le

C
h

an
g

e O
p

eartio
n

s

A
d

viso
rs

Change
Manager

Schedule Executor

Final
Schedule

R
es

ou
rc

es

Dependability
Advisor

Performance
Advisor

<schedule>
<time/>
<action/>

</schedule>

<change>
<action/>
</change>

<deadline/>

System

Configuration

RFC

Initiate Resource
Actions

Analyze Impact
on KPIs

Objective Advisors

SLAs
System
Management
Events

P
ro

active A
ctio

n
s

Fig. 2. Ecotopia’s distributed ecological architecture for change management separates the
tasks of impact assessment (performed by the objective advisors) and change scheduling
(performed by the orchestrator). The orchestrator receives requests for change, queries the
objective advisors with “what-if” questions about the tentative change schedule and uses the
answers to refine the schedule with the goal of maximizing business value. The “what-if”
interactions are based on an open protocol that allows the integration of third-party objective
advisors.

from [7], and the ScheduleExecutor is similar to the TIO Provisioning Manager
[5]. In this paper, we focus on the orchestrator, the objective advisors and their
interactions, which are novel.

Objective advisors. The objective advisors (e.g., performance and dependability
advisors) exploit the functionality provided by the component-specific configuration
managers. The advisors can be hierarchical and may span multiple administrative
domains in order to manage end-to-end KPIs (in a similar manner to the resource
advisor described in [8]). The Ecotopia advisors estimate the impact of observed,
predicted, or scheduled events on a few service KPIs; for instance, we can define a
performance advisor that predicts violations of the response-time objectives. The
predictions do not depend on the actual enterprise business-value models, which are
handled by the orchestrator.

The API of the advisors contains two functions, shown in see Table 1.
GetCurrentKPIs() queries the KPI predictions if changes are not applied and it is
used to assess the baseline for the change impact. GetImpactKPIs() retrieves the
KPI predictions given a tentative change-operation schedule and is used to assess the
impact the change schedule. These function invocations are synchronous (i.e., the
requestor waits to receive the KPI predictions before proceeding). The reply includes
the KPI predictions for the entire time horizon of the decision. This might span

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 271

multiple timeline points where the service KPIs change due to specific events such as
expected workload changes or failures. These timeline points are called prediction
points. The advisor reply includes one set of KPI predictions for each prediction point
on the decision horizon. The replies can also suggest a set of proactive actions that
are expected to improve the KPIs in conjunction with the change operations (e.g., a
“checkpoint database” action might reduce the recovery time). Proactive actions are
included in the final change-operation schedule only if they improve the overall
business value.

Orchestrator. The orchestrator is a resource broker and a change–operation planner.
The orchestrator starts scheduling a group of change operations in two situations (see
Table 1): (i) InitiateChange() indicates that a change sequence has been initiated,
following a RFC; (ii) InitiateResourceBrokering() indicates that a predicted
or observed infrastructure event (e.g., a fault, a workload change) mandates a resource
reassignment. All of these invocations on the orchestrator are asynchronous (i.e., a
response containing the schedule is not provided immediately). During the scheduling
process, the orchestrator communicates with the objective advisors, asking “what-if”
questions in order to assess the impact of tentative change-operation schedules on the
future service KPI values.

Table 1. APIs of the Ecotopia framework components

Orchestrator

InitiateChange():
request for scheduling a group of change operations derived from an RFC.

InitiateResourceBrokering(): request for reallocation of resources (e.g. nodes)
to mitigate the impact of an event detected by the system management infrastructure (e.g.
a hardware fault).

ChangeSLA():
request for integration of SLA updates.

Objective Advisors

GetCurrentKPIs():
request for current KPI predictions for a given time interval, assuming no change applied
(i.e., only infrastructure events such as workload variation or node failures will occur).

GetImpactKPIs(): request for KPI predictions over a given time interval for a
schedule of change operations.

Based on the predicted KPIs, the orchestrator creates a tentative change-operation

schedule and computes its overall business value (BV). The SLA defines service-level
objectives based on the monitored KPIs (e.g., a target for the average response-time)
and associates a business-value function to each SLO (e.g., a penalty for each request
that misses the target). The orchestrator computes the overall BV for a particular state
of the system by adding the business values of all the services and SLOs defined in

272 T. Dumitraş et al.

the service-level agreement. A change schedule will modify the overall BV by
altering the state of the system and its monitored KPIs. When the orchestrator needs
to choose among several alternative options for changing the system (e.g., whether to
include a proactive action in the schedule or not; all the possible times for scheduling
a change operation), it uses the overall BV to select the best change-operation
schedule. The overall BV reflects the utility of a change schedule and provides a way
of comparing the effects of changes affecting multiple KPIs and SLOs.

The orchestrator is also invoked when an SLA has changed through
ChangeSLA(), which indicates a modification in the overall business-value
calculations. The orchestrator retrieves the new SLOs and the corresponding BV
expressions and automatically updates its scheduling engine (more comprehensive
mechanisms for managing SLAs updates are described in [24]). This is a reflexive
hook allowing the orchestrator to update itself. In this case the change is applied
immediately or at a specified time in the future, so it does not go through the
scheduling process. New service-level agreements are typically defined in order to re-
align the business and IT objectives of the enterprise; therefore, the effect of the new
SLAs must be reflected as soon as they are available.

The goal of change-operation scheduling is to maximize the business value for a
certain time horizon. The Ecotopia orchestrator computes schedules for change-
operation groups, which correspond to a request for change (RFC) or to a request for
resource brokering. A schedule indicates when each individual change operation from
the group will start executing. Using the overall business value, defined in the current
SLAs, to compare different schedules, the orchestrator converges, through an iterative
process, to the best feasible schedule.

3.2 “What-If” Interaction Protocol

The interaction protocol is at the heart of the Ecotopia framework. As shown in
Fig. 2, a change sequence is initiated by the ChangeManager with the
InitiateChange() function, or by an advisor with the InitiateResource
Brokering() function. The orchestrator initiates the “what-if” interaction by calling
the GetCurrentKPIs()functions of each of the advisors to learn about their
prediction points during the decision time horizon and to establish a baseline state for
assessing the impact of the proposed schedules. Then the orchestrator creates and
refines schedules through an incremental process. It invokes the GetImpactKPIs()
functions on each of the advisors to acquire the KPI predictions necessary for
assessing the impact of each of the proposed partial and complete schedules.

The orchestrator and the objective advisors exchange all the information about the
current change group and change-operation schedule needed to asses the impact on
the KPIs and to improve the schedule. Table 2 summarizes these parameters.

A change operation is defined by a name, a scope and a set of properties. The
name is an enterprise-specific descriptor (e.g., "Upgrade database software to version
10.0") recognized by all of the related objective advisors and service managers. The
scope identifies the resources (e.g., "database node DB1") involved by the operation.

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 273

Table 2. Scheduling parameters

CG(n, e1…n, d1…n, R, D) Change-operation group
n Number of change operations in the group
ei Change operation
ei

' Optional change operation
di Duration of change operations ei
R(ei,ej) True if ei must be executed before ej
D Deadline of the change group
m Number of prediction points
Ppk Prediction point
TH Time horizon for scheduling and impact assessment
ti Time instant when change operation ei is scheduled to

begin.

The properties are a list of <name, value> pairs that describe operation
characteristics such as the duration of executing the operation, the additional load
imposed, etc. Change operations can be mandatory, such as the operations derived
from an RFC, or optional, such as the resource-brokering operations. The scheduler
can discard optional operations if they do not improve the business value. The set of
operations in a group may expand during the scheduling process due to the proactive
actions suggested by the objective advisors; in general, proactive actions can be
considered optional.

Each change group defines a partial order among its constituent operations,
indicating their precedence dependencies. A group may also specify a deadline for
completing the execution of all its constituent operations and a business-value
expression reflecting the penalty of late completion, which will be factored into the
overall business value of the system to be maximized by the orchestrator. If the
deadline information is missing, then the aggregated business value of the SLOs is the
only criterion for selecting a schedule. A change-operation group can be preempted
by the arrival of a group with a higher priority (e.g., if a previous change has damaged
the system and needs to be rolled back).

The orchestrator uses the current KPI predictions as scheduling guidelines. The
scheduler starts by invoking the GetCurrentKPIs() function of the objective
advisors to retrieve the future variation of all the relevant KPIs due to infrastructure
events (e.g., faults, workload surges) and changes that have already been scheduled.
These prediction points indicate the time instants when the objective advisors expect
the KPIs to change. After the scheduling of a change group is completed, the advisors
add its impact on the infrastructure to the current KPI predictions.

To minimize the communication costs, the orchestrator might cache business-value
information for partial schedules. Each unique schedule is tagged with an identifier
(similar to a hash key), known to the orchestrator and advisors, and its related KPI
predictions are saved. The orchestrator retrieves the predictions whenever it modifies
the partial schedule by adding one or more change-operations, and thereby avoids
repeating most of the computations.

274 T. Dumitraş et al.

4 Ecotopia Implementation

In this paper, we focus on the implementation of Ecotopia’s orchestrator. The
objective advisors rely on functionality provided by component-specific configuration
managers [4, 5, 26, 27]. These managers encapsulate the extensive, and sometimes
proprietary, domain knowledge (e.g., workload characteristics, resource-utilization
models), needed for assessing the impact of change operations on the service KPIs.
For evaluating our framework, we have developed configurable emulators for the
goal-advisors. We implement the orchestrator and the objective advisors as Web
Services, which means that the orchestrator can interact with any third-party advisors
that support the “what-if” interaction protocol described in Section 3.2.

4.1 Objective-Advisor Implementation

While the orchestrator is a centralized component, the objective advisors are
distributed. Ecotopia uses an objective advisor for each SLO of each service defined
the service-level agreement. For example, a performance advisor monitors the service
to assess the response time, and a dependability advisor assesses the recovery time
and the availability based on the amount of redundancy available in the current
configuration. We implement the objective advisors in our framework in a
hierarchical manner: as each service is composed of several other services, the advisor
that corresponds to a top-level service queries several lower-level advisors
corresponding to the component services. Every resource from the IT infrastructure is
treated as a service: the network, the CPU, the disk, etc. have service-level objectives
specifying the target for a set of KPIs, such as response time, throughput and recovery
time.

The service composition and the mapping of services onto physical resources
define a request queuing-path for each service. A change operation modifies this
queuing path, either by altering its structure (e.g., by defining a new service
composition), or by modifying the parameters of the component queues (e.g., by
replacing a CPU with a faster one or by removing a replica from a load-balanced
system). The advisors use this domain knowledge to answer "what-if" questions about
service KPIs (such as performance and availability forecasts), based on the
description of the change operations and the schedule.

The advisors corresponding to the primitive services contain analytical models of
the corresponding resources and estimate the value of the KPIs based on the workload
and configuration. For instance, the performance advisors estimate the response time
of a primitive resource using the operational laws of queuing theory [28, 29], based
on the incoming request rates and the known peak throughput of the resource. Higher-
level advisors compute their KPI predictions by combining the outputs of the lower-
level advisors along the corresponding queuing path. The composite queuing paths
can be either sequential (e.g., a request travels through a front-end, a local-area
network and then a back-end) or parallel (e.g., a load-balancer forwards the request to
one of several servers for further processing). The parallel queuing paths do not
necessarily have the same length; for instance, a request for a data item present in a
proxy cache has a shorter path than a request that results in a cache miss and that

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 275

timet0 t1 t2 t3 tn

R
es

po
ns

e
Ti

m
e ≈

timet0 t1 t2 t3 tn

R
es

po
ns

e
Ti

m
e ≈

Fig. 3. A KPI (e.g., average latency) varies in time, depending on the workload and the system
configuration. We represent this variation by a vector of <t, KPI(t)> pairs indicating the time
when a KPI changes and the new value. This corresponds to a step function as shown in the
figure.

needs to be forwarded to the application server for processing. The parallel queues
have probabilities associated with each alternative path representing the percentage of
requests that travel along those paths.

Our implementation is similar to the resource advisor described in [8]; in addition,
we leverage workload predictions to estimate the long-term KPI variation. KPIs
change in time; therefore, the advisors provide KPI estimations as time-varying
functions KPI(t). A KPI value is assumed to hold for a period of time, until some
event causes the KPI to take another value. This means that KPI(t) is a step function,
as shown in Fig. 3. When replying to the invocation of GetCurrentKPIs(), the
objective advisor will provide a list of pairs <Ppk, KPI(Ppk)>, indicating the times
(prediction points) Ppk when the KPI is expected to change and the corresponding
KPI values (see Table 2). GetImpactKPIs() returns a similar list, indicating the
effect of the suggested change schedule on the KPIs, computed using the service
queuing-path created by the change.

4.2 Orchestrator Implementation

The orchestrator generates change-operation schedules, which associate start times t1,
t2 … tn with operations e1, e2 … en, respectively, which have the respective durations
d1, d2 … dn (see Table 2). The schedule must comply with the partial ordering among
operations and the group deadline D (if defined). During scheduling, the orchestrator
queries the objective advisors for predictions of the impact on KPIs during the
relevant time-horizon and uses these predictions to compute the overall business value
and to refine the schedule. The time horizon TH must be long enough to include the
deadline D, but in general will be longer, in order to account for the KPI impact after
the change has been executed. The aim of the scheduling process is to provide the
best possible business value.

The orchestrator does not know the closed-form equation that yields the overall
business value because part of this computation is performed inside the objective
advisors, which act as black boxes for the orchestrator. In scheduling-theory terms,
this means that the scheduling problem has an unknown objective function [30].
Given that the complexity of scheduling algorithms depends on their objective
functions, it is impossible for us to reason about the complexity of our problem.
Moreover, even if we had a closed-form expression for the business value, this would
most likely be a non-regular objective function (a regular objective function is non-
decreasing in the completion times of the change operations); there are few theoretical
results for scheduling problems with non-regular objective functions. We therefore

276 T. Dumitraş et al.

focus on approximate scheduling algorithms that make the best effort to compute a
solution close to the optimal schedule.

Business-value model. The SLO business values are functions that associate a dollar
value with various levels of service provided by the system. A service-level objective
defines a target for a particular KPI. A service may have multiple SLOs (some of
these objectives may track a common KPI, e.g., the target bounds for average latency
and maximum latency), and each SLO has a business-value function. Since the KPIs
change in time (see Fig. 3), the business values are also time-variable functions. At
time t, a KPI value is KPI(t) and the corresponding business value is:))((tKPIBVSLO

.

For each KPI that changes at times t0, t1,… tn, the business value for the time interval
[t0, tn] is computed using a weighted average:

()
()()

0

1

0
1

0

)(
],[

tt

tttKPIBV
ttBV

n

n

i
iiiSLO

nSLO −

−
=
∑

−

=
+

 (1)

The business-value functions of different SLOs are designed to be additive. They
are used for reasoning about the multiple impacts of various change operations and
for selecting the best trade-offs. We add the business values of all the SLOs to
compute the overall business value, which reflects the utility of the proposed schedule
of operations:

() ()],[],[0
 All

0 n
SLO

SLOnAll ttBVttBV
k

k∑=
(2)

Scheduling assumptions. In this paper, we make a few simplifying assumptions
about our scheduling problem. First, we assume that all the operations in a change
group are mandatory (there are no proactive actions). Second, we assume that all the
change-operation groups have explicit deadlines. When not defined explicitly, the
deadline can be fixed to the end of the time horizon for business-value evaluation; it
makes no sense to schedule operations past this time horizon because we would not
be able to see their impact on the business value. Third, the operations in a change
group are totally ordered (i.e. an operation must complete before the next one can
begin). While these assumptions are somewhat constraining, we believe that in
practice there are many change-management situations that satisfy these constraints
(we provide an example in Section 5).

Scheduling algorithms. The algorithms we have implemented are based on the
following pattern. Each operation ek has a feasible scheduling interval, defined by the
earliest and latest times when ek can be scheduled to allow enough time for the prior
and subsequent operations:

∑∑ =

−

=
−≤≤ n

ki ik

k

i i dDtd
1

1
 (3)

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 277

time

Pp1 Pp2 Ppm

D

≈

ek

dk{e1,…ek-1} {ek+1,…en}
tk

time

Pp1 Pp2 Ppm

D

≈

ek

dk{e1,…ek-1} {ek+1,…en}
tk

Fig. 4. Our Greedy algorithm for scheduling change operations first chooses the change
operation ek and the time tk that yield the best business value. This placement splits the timeline
and the change-operation group in two, and we apply the same algorithm to the two halves of
the problem.

Using these bounds, we try to schedule each change operation at the earliest
possible time, the latest possible time and at all the m prediction points (time instants
indicating the future variation of the KPIs) that fall within this feasible interval.

The baseline scheduler is a backtracking algorithm that generates and evaluates all
of the possible placements for the change operations in a group. We start with the first
event e1 and we place it at all the prediction points from its feasibility interval (t1=0,
t1=Pp1, t1=Pp2, etc.). For each of these values of t1, we repeat the algorithm for the
remaining operations and the new boundaries of the timeline (since we have started
with the first operation, the deadline stays the same and the start time becomes t1+d1,
the time when e1 will complete). When we have successfully scheduled all the
operations from the change group, we compute the corresponding business value by
invoking GetImpactKPIs() on the relevant advisors. We then backtrack to try other
possible placements of en, then of en-1 etc., and we save the schedule that generates the
highest business value.

If the KPIs are expressed as step functions, as shown in Fig. 3, and the business
values are linear functions of the KPI values (which would make them step functions
as well), this algorithm generates the optimal schedule. For each operation ek, there
may be m assignments of tk. An assignment of tn-1 will be tested in combination with
m assignments of tn. An assignment of tn-2 will be tested with m assignments of tn-1,
each of which will be tested with m assignments of tn; therefore, an assignment of tn-2
requires m2 more operations for determining the best corresponding business value.
By induction, this algorithm, henceforth called Backtracking, has the worst-case
complexity O(mn).

A more realistic scheduler uses a polynomial best-effort algorithm that is not
guaranteed to provide an optimal solution. We achieve this with a greedy algorithm:
we place each operation ek at each prediction point from its feasibility interval and we
compute the business value that corresponds to this placement (during this step, we
are only interested in the impact of ek, so we invoke GetImpactKPIs() on the
relevant advisors for a schedule that contains only ek). We select the operation and the
placement that yield the best possible business value. This placement splits
the timeline and the change-operation group in two, and the same algorithm is applied
recursively to the two segments of the problem, as shown in Fig. 4. Operations e1…ek-

1 will be scheduled between [0, tk], and operations ek+1…en will be scheduled between
[tk+dk, D].

The first iteration of this algorithm performs nm BV comparisons. In the worst
case, the timeline partitioning will be skewed such that e1 will be chosen and all the
prediction points will fall after t1+d1. the second iteration will then require m(n-1) BV

278 T. Dumitraş et al.

comparisons. Since there are n iterations, this algorithm (Greedy1) has the
complexity O(n2m).

This algorithm has the disadvantage that it tends to give priority to the short
operations that have a small negative impact. These operations get the best
placements, sometimes leaving the large operations to be scheduled during busier
periods, thus affecting the overall business value. To avoid this situation, we can
modify the selection condition in the following manner: at each iteration, we choose
the operation ek that displays the largest business value variation depending on the
scheduling time. This strategy leads to selecting the operation most sensitive to
placement first. This algorithm, called Greedy2, has the same complexity as the
previous one: O(n2m).

Schedule Stability. The schedules generated by the orchestrator remain constant in
the absence of any additional change requests, SLA updates or system management
events such as faults or workload changes. Fig. 5 shows that all the changes that might
affect the final schedules are always initiated outside the scheduling loop involving
the orchestrator and the advisors, which ensures the stability of our protocol. The
advisors generate deterministic KPI predictions for a given change group (i.e., the
same tentative schedule will yield the same predictions).3 The predictions returned by
GetCurrentKPIs() will be adjusted in between change groups because the
effects of the change that has just been scheduled are factored into the KPI
predictions; however, no such adjustment is performed inside the scheduling loop.
The algorithms presented above are guaranteed to converge if the KPI predictions are
deterministic for a given change group. Other autonomic management systems based
on iterative optimization loops [9, 21] may oscillate between borderline decisions
because a resource reconfiguration will affect the performance metrics which may
subsequently trigger another reconfiguration. Ecotopia, where all of the changes are
initiated outside the scheduling loop and the “what-if” analysis considers a long time-
horizon, guarantees that such infinite cyclic dependencies are broken and that
thrashing cannot occur.

Canceling and Undoing Scheduled Changes. One corner case when the KPI
predictions are not deterministic is when a fault or a load-surge prediction occurs
while the scheduling loop is executing. Rather than updating the KPI predictions, in
this case, we cancel the scheduling of the change group in order to avoid confusing
the scheduler. Moreover, a fault or a load surge will typically be associated with a
change request that has the highest urgency, so it is important to start scheduling this
change as soon as possible. In general, whenever the orchestrator receives an urgent
change request, it will preempt the currently executing scheduling process, and will
start working on the new request immediately.

In some cases, it becomes obvious that a scheduled change does not have the
desired effect and must be abandoned. If the change group has been scheduled but not
yet implemented, it can be canceled easily. More often, however, this decision is
taken only after the change has been finalized. In this case, another change has to be

3 The interaction protocol described in Section 3.2 also relies on this property because the

orchestrator and the advisors cache the KPI predictions corresponding to partial schedules.

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 279

Schedule
Execution

Orchestrator

OrchestratorOrchestratorObjective AdvisorsChange
Manager

System
Management

RFC

Change
Group

Tentative
Schedule

Final
Schedule

KPI
Predictions

SLAs

Fault
Notifications

Workload
Predictions

Monitoring
Data

Schedule
Execution

Orchestrator

OrchestratorOrchestratorObjective Advisors
OrchestratorOrchestratorObjective AdvisorsChange

Manager

System
Management

RFC

Change
Group

Tentative
Schedule

Final
Schedule

KPI
Predictions

SLAs

Fault
Notifications

Workload
Predictions

Monitoring
Data

Fig. 5. The scheduling loop of Ecotopia is designed such that all the change requests originate
from outside of the iterative interaction between the orchestrator and the objective advisors.
This ensures that the scheduling process does not oscillate between borderline decisions.

scheduled to undo the effects of the previous one. The logs of the orchestrator can
assist this operation by defining the reverse operations needed to undo the undesirable
change, but the process must be guided by an administrator since the autonomic
infrastructure has failed to take into account the negative effects of the change. In
many cases, these errors are due to bad SLAs, which then have to be reworked by the
system administrator. If the KPI predictions are accurate enough, we are confident
that human interventions for correcting the orchestrator’s decisions will be
uncommon. Note that, since the decision to undo is not made by the orchestrator, the
stability guarantees described above are not affected.

5 Case Study: Two-Tiered Enterprise Infrastructure

We consider a two-tiered system, where the physical hosts are organized in
independently-managed node-groups. The first tier is a node group of application
servers managed by application server middleware (e.g., IBM WebSphere Extended
Deployment [6]) and the second tier is a node group of database servers, managed by
database cluster infrastructure (e.g., Oracle Clusterware [27]). The two node-group
managers perform various management tasks (e.g., load balancing, request routing,
fault recovery).

This infrastructure, illustrated in Fig. 6, provides two services, each mapped onto
corresponding application-server and database services. The two services processing
Web transactions are load-balanced across three application-servers, Srv1 to Srv3.
These front-end services query two database services that connect to separate
database partitions. The database group comprises three nodes:

− DB1 acts as primary server for Service1 and as backup for Service2;
− DB2 is part of the logical primary server for Service2, which is distributed on

two database nodes;

280 T. Dumitraş et al.

Srv2

Srv1

Srv3

App. Server
Group DB Group

Database

Service 1 Primary
Service 2 Backup

Service 2
Primary

Service 2 Primary
Service 1 Backup

Service 1

Service 2
DB1

DB2 DB3

Front-end Srv2Srv2

Srv1Srv1

Srv3Srv3

App. Server
Group DB Group

Database

Service 1 Primary
Service 2 Backup

Service 2
Primary

Service 2 Primary
Service 1 Backup

Service 1

Service 2

Service 1

Service 2
DB1

DB2 DB3

Front-endFront-end

Fig. 6. Example: two-tier system

− DB3 is also part of the logical primary for Service2 and it is a backup for
Service1 as well.

Each of the two enterprise services has response time, recovery time and
availability objectives. The business value associated with these SLOs depends on the
related KPIs, such as ‘total number of transactions’, ‘number of transactions with
response time below target’, etc.

A performance advisor evaluates the impact of change operations on the end-to-
end response time for each service by exploiting the knowledge provided by the node-
group managers (e.g., expected workload variations, service overheads). Similarly, a
dependability advisor evaluates the impact on the recovery time and the availability
SLOs.

5.1 Qualitative Evaluation

For evaluating the Ecotopia change-management framework in this context, we
discuss two realistic change-management scenarios for this case study: a crash of
node DB1 and an upgrade of the database software. We complement this analysis with
measurements illustrating the trade-off between the cost and the loss of optimality of
different scheduling algorithms (Section 5.2).

Scenario 1: Hardware crash. When the dependability advisor detects the crash of
DB1, the corresponding node-group manager takes immediate recovery measures. The
database recovery manager handles the failover of Service1 to its backup node,
DB3. As a result, DB3 handles queries for both services, while DB2 continues to
handle only queries for Service2. However, since the database group now has
fewer nodes, and an accompanying higher risk of failing the availability objectives,
the change-management system must decide whether removing one node from the
application server group and adding it to the database group would improve the
overall business value and when these operations should be scheduled.

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 281

Srv1

Srv2

Srv3

DB1

DB2
DB3

Workload
(Service1)

Resp. Time
(Service1)

Resp. Time
(Service2)

Recov. Time
(Service 1)

Recov. Time
(Service2)

Availability
(Service1)

Availability
(Service2)

B
us

in
es

s V
al

ue

t

t

t

t

t

t

t

t

Remove node from App. Srv

Crash

Add node to DB Group

Workload
(Service2)

Checkpoint

H-off

H-off

(a)

(b)

(c)

(d)

Srv1

Srv2

Srv3

DB1

DB2
DB3

Workload
(Service1)

Resp. Time
(Service1)

Resp. Time
(Service2)

Recov. Time
(Service 1)

Recov. Time
(Service2)

Availability
(Service1)

Availability
(Service2)

B
us

in
es

s V
al

ue

t

t

t

t

t

t

t

t

Remove node from App. Srv

Crash

Add node to DB Group

Workload
(Service2)

Checkpoint

H-off

H-off

(a)

(b)

(c)

(d)

Fig. 7. Hardware crash and fault-management scenario

Fig. 7 shows the impact of these change operations. After the crash of DB1, the
lack of a backup leads to a sharp decrease of the predicted availability of Service1
and a drop in the corresponding business value – indicated by point (a) in the figure.
However, since the load of Service2 is high at this point, transferring a node from
the application-server group to the database group would fail to meet the response
time objective. Therefore, the orchestrator delays the change operations until the load
of Service2 decreases, at point (b). During the node transfer, the response time
decreases for both services, but after the hand-off – point (c) – the response times, as
well as the availability of Service1, may return to normal. However, since
Service2 has been continuously sending queries to the database, its log kept
growing, leading to an increase of the recovery time. To solve this problem, the
dependability advisor requests a proactive action in the form of a database checkpoint
(synchronizing the modified data blocks in memory with the disk and shortening the
log processed during recovery). After the checkpoint, indicated by point (d), the
response time and the recovery time for Service2 decrease to normal operating
levels.

Scenario 2: Database upgrade. A similar impact analysis must be undertaken when
upgrading the database software (Fig. 8). In this case, a request for change is
decomposed into finer-grained change operations: each database node is upgraded
separately and, for upgrading DB1, Service1 is handed off to DB3 (its backup)
before the upgrade and restored at the end. The analysis must consider the impact of

282 T. Dumitraş et al.

WAS1

WAS2

WAS3

DB1

DB3

Workload
Service 2

B
us

in
es

s V
al

ue

t

t

DB2

Workload
Service 1

Resp. Time
(Service 1)
Resp. Time
(Service 2)

Recov. Time
(Service 1)

Recov. Time
(Service 2)

Availability
(Service 1)

Availability
(Service 2)

t

t

t

t

t

t

Upgrade
Upgrade

H-off

H-offUpgradeH-off

H-off

WAS1

WAS2

WAS3

DB1

DB3

Workload
Service 2

B
us

in
es

s V
al

ue

t

t

DB2

Workload
Service 1

Resp. Time
(Service 1)
Resp. Time
(Service 2)

Recov. Time
(Service 1)

Recov. Time
(Service 2)

Availability
(Service 1)

Availability
(Service 2)

t

t

t

t

t

t

Upgrade
Upgrade

H-off

H-offUpgradeH-off

H-off

Fig. 8. Database-upgrade scenario

these operations on service objectives and their corresponding business values. For
instance, if the load on Service1 is high, we can reorder the change operations to
perform the upgrades on nodes DB2 and DB3, which are used by Service2. In fact,
the upgrade of DB1 must be delayed until both services register low incoming request
rates because a high request rate during the upgrade may overload DB3, which also
handles both Service1 and Service2. By delaying the upgrade, the penalties
incurred for violating the response time objectives are minimal, thus maximizing the
aggregate business value for the duration of the changes. The reordering must take
into account the dependencies between change operations; thus, the hand-offs of
Service1 should precede and follow the upgrade of DB1.

These scenarios show that delaying the change operations may sometimes improve
the overall business value. Such situations are typical of change management in an
enterprise infrastructure; similar operations occur at a much larger scale in many real-
life deployments. This illustrates the complexity of predicting the impact of change
due to the strong dependencies on the actual implementations of objective managers.
Our framework addresses these issues by delegating the impact assessment to
objective-specific advisors that encapsulate all the relevant domain knowledge.

5.2 Quantitative Evaluation

Using a traditional scheduler, which does not optimize for long-term impact [5, 7, 9,
21], would result in executing all of the change operations as soon as possible, instead
of waiting for the most opportune time when the incoming load is low. The outcome
of such impact-insensitive scheduling is a missed opportunity for optimizing the
overall business value. Instead, the scheduling algorithms presented in Section 4.2

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 283

0.5 0.6 0.7 0.8 0.9 1
10

1

10
2

10
3

10
4

10
5

Optimality

B
V

 E
va

lu
at

io
ns

Greedy1
Greedy2
Backtracking

0.5 0.6 0.7 0.8 0.9 1
10

0

10
2

10
4

10
6

Optimality

C
om

pa
ris

on
s

Greedy1
Greedy2
Backtracking

Fig. 9. Scheduling algorithms: trade-off between cost and loss of optimality. The Greedy
algorithms are polynomial and yield schedules with a business value within 95% of the optimal
achievable business value, which is computed using the exponential backtracking algorithm.

find the optimal schedule for these two scenarios and the run-times of all the
algorithms – including the exponential backtracking scheduler – are comparable (less
than 1s).

We also test our scheduler using several randomly-generated input sets, and we
explore the trade-off between complexity and the loss of optimality. The most
appropriate complexity measure is the number of times the business value needs to be
evaluated, since these evaluations require communication between the orchestrator
and the advisors; we do not report the run-times because they depend heavily on the
hardware resources used for simulation. The loss of optimality shows how close the
BV of the resulting schedule was to the BV of the optimal schedule, as generated by
the backtracking algorithm. Fig. 9 shows that, for small problems (e.g., 5 change
operations and 10 KPI prediction points), the two (polynomial) greedy algorithms
obtain near-optimal results and they need one or two orders of magnitude fewer BV
evaluations than the exponential, optimal backtracking algorithm.

For larger problems, we cannot use the backtracking algorithm and, therefore, we
cannot measure the loss of optimality of the greedy schedulers. For 100 change events
and 100 prediction points, the greedy algorithms required up to 36673 business-value
evaluations and 67342 comparisons, sometimes with significant differences between
the two algorithms (between 3% and 68%). Greedy1 also exhibits a higher variance
of the number of BV evaluations than Greedy2. While we could easily construct a
scenario where Greedy2 performs better than Greedy1, the two algorithms
produced identical schedules for all but one of the randomly generated scenarios.

6 Discussion

By focusing on the communication protocol for impact assessment rather than on
building a monolithic change-management system, Ecotopia facilitates changes that
might span multiple independent administrative domains and that might target
heterogeneous software infrastructures. Our generic orchestrator can communicate

284 T. Dumitraş et al.

with third-party advisors, which are built with specific, proprietary domain
knowledge about a service/system/vendor, and construct schedules using only the
information available from such advisors. This approach mirrors the philosophy of
Service-Oriented Architectures, which is to focus on interaction protocols rather than
on implementation bindings.

The separation between scheduling and impact assessment makes Ecotopia
applicable to realistic systems, although it may limit its optimization capabilities
when the advisors cannot provide a comprehensive impact analysis (e.g., some
services may not provide latency estimations, which are required for end-to-end
response-time management). Moreover, the KPI predictions will inevitably have a
degree of inaccuracy, especially when the time frame of the predictions is far ahead in
the future. The orchestrator will generate change schedules even with imperfect
information about the system; however, the quality of the schedules will improve with
accurate impact analysis. If the advisors provide incorrect information, the
orchestrator might take the system to a state with unacceptable service levels; in this
case, a downgrade or the rollback of the changes can be scheduled using the same
process described above. This raises two questions that we plan to investigate in the
future: how much prediction inaccuracy can the orchestrator tolerate while keeping its
ability to offer meaningful recommendations, and what kind of predictions and impact
analysis can the advisors perform to enable ecological change-management planning.

Another open question is how to determine the typical size of realistic change-
operation groups, which is important for selecting a good scheduling algorithm. The
optimal scheduling-algorithm works well for the case study presented in this paper;
however, we cannot use it for change groups with more than 10 operations, because
of its exponential complexity. For very large problem sets, we may need to use
heuristics such as genetic algorithms or simulated annealing [30]. We also plan to
investigate the possibility of defining an adaptive scheduler that selects the best
algorithm depending on the properties of the change-operation group (e.g., its size).

The best way to express the KPI variation in time also warrants further exploration.
The step function representation used in this paper might be too constraining; for
instance, it cannot describe a recovery time that increases linearly with the increase
over time of the database log, as depicted in Fig. 7. However, this representation is
easy to understand and to use (as opposed to a describing a generalized function), and
it can approximate well an arbitrary KPI trajectory if enough change points are
selected. Furthermore, using the change points as scheduling guidelines, allows us to
use simple algorithms even for a scheduling problem with an unknown objective
function.

7 Conclusions

This paper investigates the problem of performing dynamic change management
while maximizing the aggregate business value across all SLOs of the enterprise. We
propose Ecotopia, a novel ecological framework for change management that tackles
the complexity and the distributed nature of SLO management in real-world systems
by separating the impact assessment (performed by the objective advisors) from the
scheduling and business-value computation and aggregation (performed by the

 Ecotopia: An Ecological Framework for Change Management in Distributed Systems 285

orchestrator). A novel “what-if” interaction protocol between advisors and
orchestrator enables an efficient computation of SLO business values and change
schedule refinement, Ecotopia performs ecological change management by taking
into account the impact on the enterprise SLOs, the long-term KPI variations and the
heterogeneous types and sources of change operations (both internal and external).
We validate our framework using two realistic change scenarios that emphasize that
impact assessment is essential for maximizing the business value. Our preliminary
simulations compare the trade-offs between the cost and the loss of optimality of three
scheduling strategies.

Acknowledgments. The authors would like to thank Biswaranjan Bhattacharjee and
Joel Wolf of IBM Research, Florin Oprea of Carnegie Mellon University, as well as
Jean-Charles Fabre of LAAS CNRS for their input during the early stages of this
research.

References

1. Kirkley, J.: Aligning IT and Business as the Economy Rebounds. Enterprise Leadership,
BMC Software 2 (2004)

2. Gartner Group: High Availability Q&A: Failures, Standards and Metrics. Networked
Systems Management Research Note QA-05-2701 (1998)

3. Global Grid Forum: Web services agreement specification (WS-Agreement). Draft,
version 11 (2004)

4. Whalley, I., et al.: Experience with collaborating managers: node group manager and
provisioning manager. Cluster Computing 9, 401–416 (2006)

5. IBM Tivoli Intelligent Orchestrator, http://www-306.ibm.com/software/tivoli/products/
intell-orch

6. IBM WebSphere Extended Deployment, http://www-306.ibm.com/software/webservers/
appserv/extend

7. Keller, A., et al.: The CHAMPS system: Change management with planning and
scheduling. In: Network Operations and Management Symposium, pp. 395–408. Seoul,
Korea (2004)

8. Thereska, E., et al.: Informed Data Distribution Selection in a Self-predicting Storage
System. In: International Conference on Autonomic Computing, Dublin, Ireland (2006)

9. Anderson, E., et al.: Hippodrome: Running Circles Around Storage Administration. In:
USENIX Conference on File and Storage Technologies (FAST ’02), Monterey, CA,
13(2002)

10. Segal, M., Frieder, O.: On-the-fly program modification: Systems for dynamic updating.
IEEE Software 10, 53–65 (1993)

11. Kramer, J., et al.: Towards Unifying Fault and Change Management. In: Workshop on
Future Trends of Distributed Computing Systems in the 1990s, Cairo, Egypt, pp. 57–63
(1990)

12. Moser, L.E., et al.: Eternal: fault tolerance and live upgrades for distributed object
systems. In: DARPA Information Survivability Conference and Exposition (DISCEX 00),
Hilton Head, SC, pp. 184–196 (2000)

13. Bloom, T., Day, M.: Reconfiguration in Argus. In: Workshop on Configurable Distributed
Systems, London, England, pp. 176–187 (1992)

286 T. Dumitraş et al.

14. Dilley, J.: Web server workload characterization. Technical Report HPL-96-160, Hewlett-
Packard Laboratories (1996)

15. Vallamsetty, U., et al.: Characterization of E-Commerce Traffic. Electronic Commerce
Research 3, 167–192 (2003)

16. Arlitt, M., Jin, T.: A workload characterization study of the 1998 World Cup Web site.
IEEE Network 14, 30–37 (2000)

17. www.alexa.com
18. Pertet, S., Narasimhan, P.: Proactive Recovery in Distributed CORBA Applications. In:

International Conference on Dependable Systems and Networks (DSN), Florence, Italy,
pp. 357–366 (2004)

19. Zhang, Q., et al.: Workload-aware load balancing for clustered Web servers. IEEE
Transactions on Parallel and Distributed Systems 16, 219–233 (2005)

20. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36, 46–52 (2003)
21. Golding, R.A., Wong, T.M.: Walking toward moving goalposts: agile management for

evolving systems. Hot topics in autonomic computing, HotAC, Dublin, Ireland (2006)
22. Beattie, S., et al.: Timing the Application of Security Patches for Optimal Uptime. In:

Large Installation System Administration Conference, Philadelphia, PA, pp. 233–242
(2002)

23. Gorbenko, A., et al.: Dependable Composite Web Services with Components Upgraded
Online. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable
Systems III. LNCS, vol. 3549, pp. 92–121. Springer, Heidelberg (2005)

24. Roşu, D., Dan, A.: Managing end-to-end lifecycle of global service policies. In:
International Conference on Service Oriented Computing, Amsterdam, The Netherlands,
pp. 570–575 (2005)

25. Keller, A.: Automating the Change Management Process with Electronic Contracts. In:
International Workshop on Service Oriented Solutions for Cooperative Organizations,
Yorktown Heights, NY, pp. 99–107 (2005)

26. WebSphere Extended Deployment Version 5.1 Information Center (2004)
27. Oracle Corporation: Oracle Real Application Cluster 10g. Oracle Technical White Paper

(2005)
28. Lazowska, E., et al.: Quantitative System Performance: Computer System Analysis sing

Queuing Network Models. Prentice-Hall, Englewood Cliffs (1984)
29. Urgaonkar, B., et al.: An analytical model for multi-tier internet services and its

applications. In: International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), Banff, Alberta, Canada, pp. 291–302 (2005)

30. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Englewood
Cliffs (2002)

	Ecotopia: An Ecological Framework for Change Management in Distributed Systems
	Introduction
	Background
	Workload Prediction
	“What-if” Questions
	Timing the Application of Change Operations

	Design of an Ecological Change-Management Framework
	Framework Components
	“What-If” Interaction Protocol

	Ecotopia Implementation
	Objective-Advisor Implementation
	Orchestrator Implementation

	Case Study: Two-Tiered Enterprise Infrastructure
	Qualitative Evaluation
	Quantitative Evaluation

	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

