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Abstract

In this paper, we show that it is possible to abstract program frag-
ments using real variables using formulas in the theory of real closed
fields. This abstraction is compositional and modular. We first propose
an exact abstraction for programs without loops. Given an abstract
domain (in a wide class including intervals and octagons), we then show
how to obtain an optimal abstraction of program fragments with re-
spect to that domain. This abstraction allows computing optimal fixed
points inside that abstract domain, without the need for a widening
operator.

1 Introduction

In program analysis, it is often necessary to derive relationships between
program variables automatically; thus, within the framework of abstract
interpretation [5], many numerical abstract domains have been developed.
In addition to finding relationships between the values of program variables
at a certain point, one may also want relationships between the input and
the output variables of a program fragment, for instance procedures, so
as to obtain a compositional and modular analysis. This paper presents
algorithms for obtaining formulas expressing such relationships, at various
degrees of precisions, as well as algorithms for extracting numerical results
from these formulas. We consider programs operating on real variables —
variables whose values lie in the real field (R).

Relational abstract domains — those considering relations between sev-
eral variables, as opposed to information on each variable separately — are
often designed assuming integer (Z), rational (Q) or real (R) variables in-
side the program to be studied. Why consider programs with real variables,
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which are not implementable in practice, while real-life program variables are
generally either integer, or floating-point? This is because these relational
domains suppose strong algebraic structures (ordered rings and fields) that
floating-point numbers do not have (addition is not even associative). Then,
real variables can be used as a sound model or abstraction of floating-point
variables, enabling the analysis of programs using floating-point variables.

While it is unsound to assume that floating-point computations behave
identically to real number computations, one can model floating-point com-
putations using non-deterministic real number computations: each floating-
point computation computes a result close to the ideal result, and the round-
ing error can be bounded. For instance, assuming IEEE-754 floating-point,
the behavior of floating-point addition x ⊕ y is over-approximated by the
real computation x ⊕ y = x + y + ǫ with |ǫ| ≤ ǫr|x + y| + ǫa chosen non-
deterministically, where ǫr and ǫa are nonnegative coefficients depending on
the floating-point type used. [9] Thus, relational abstract domains suitable
for programs over real numbers are a worthy tool for the study of programs
with floating-point computations.

This paper proposes an interpretation of real-valued programs without
loops as formulas in the theory of real closed fields. [3][1, Chapter 2] This
interpretation captures perfectly the input-output relationships of such pro-
grams. Furthermore, if one is given preconditions of the form fj(v1, . . . , vn) ≤
cj where vk are the input values of the variables of the programs, the fj are
polynomials and cj some coefficient, then one can obtain, automatically and
with arbitrary precision, c′j such that fj(v

′
1, . . . , v

′
n) ≤ c′j where v′k are the

output values of the variables of the program, and these c′j are optimal
bounds. Such pre-conditions and post-conditions encompass a wide variety
of abstract domains, including intervals, octagons, octahedra etc. [8, 4],
meaning that whole programs without loops can be algorithmically opti-
mally approximated with respect to these abstract domains.

In the case of programs with loops, we cannot hope to have such a
result, which would entail solving the halting problem. However, we show
how to obtain a formula defining the exact least fixed point of the optimal
abstraction of the program semantics. Again, we can then obtain numerical
values with arbitrary precision. No “widening operator” is used, and the loss
of precision entirely depends on the choice of constraints representable by
the abstract domain.

In section 2, we shall recall the definition and classical results of the the-
ory of real closed fields, and then we shall propose algorithms for bounding,
with arbitrary precision, real numbers defined by formulas in that theory.
In section 3, we shall define the language that we consider and give an “ex-
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act” abstract semantics of this language using formulas in the theory of real
closed fields. In section 4, we shall see how to get the optimal abstractions
we announced.

2 Mathematical preliminaries

Throughout the paper, we shall express relationships between real numbers
as formulas within the theory of real closed fields (polynomial equalities
and inequalities, logical connectors, quantifiers). This theory is powerful yet
decidable. We shall also obtain some real numbers as the unique solution
(or model) of a formula in that theory; we shall show that from such a
characterization we can compute approximations (lower and upper bounds)
with arbitrary precision.

2.1 Real closed fields and algebraic numbers

Let us recall the definition of the syntax and semantics of the theory of real
closed fields. In the rest of the paper, by “formula” we shall mean a formula
in that theory.

We consider the following formulaic language: atomic formulas are of the
form P (x, y, z, . . . ) ⊲⊳ C where C is a rational number, P is a polynomial
with rational coefficients, and ⊲⊳ is a comparison operator (<, ≤, =, 6=, ≥,
>); compound formulas are formed using logical connectors ¬, ∧, ∨, as well
as quantifiers ∃x and ∀x where x is a variable. If a formula contains no
quantifier, it is quantifier-free. The set of formulas on the set of variables V
is noted F(V ), while the set of quantifier-free formulas is noted FQF(V ).

Notions of free and bound variables are defined as usual. Model can-
didates m of a formula F are assignments for the free variables of F , an
assignment being a map from the set FV(F ) of free variables of F to the
reals. We say that a model candidate m is a model of F , and note m |= F ,
with the obvious definition. The set of models of F is noted M(F ). We
recall the following result: [1, Th. 2.77]

Theorem 1 (Tarski, 1951). There exists an algorithm E such that for
any formula F in the above language, the algorithm outputs a quantifier-free
formula E(F ) such that FV(E(F )) = FV(F ) and, for any model candidate
m, m |= F if and only if m |= E(F ).

In practice, one does not use Tarski’s algorithm, which has nonelemen-
tary complexity, but one rather uses cylindrical algebraic decomposition,
which has “only” 22n

complexity in the size of the formula. [3][1, Ch. 11]
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In many cases, we shall have a set V of “pre” variables and a set V ′,
a disjoint copy of V , of “post” variables; a variable x in V corresponds
to a copy x′ in V ′; we call formulas over such variables pre-post formulas.
These will encode input-output relationships of program fragments. To an
assignment a ∈ RV we associate an assignment a′ ∈ RV ′

. Given a pre-post
formula F and a set of assignments A ⊆ RV , we define associated “predicate
transformers”:

−→
F (A) = {b | ∃a ∈ A (a, b′) |= F} (1)
←−
F (A) = {b | ∃a ∈ A (b, a′) |= F} (2)

We shall compute using algebraic numbers. An algebraic number r will
be specified as a formula r̃ in the theory of real closed fields, with a single
free variable x, such that x 7→ r is the model of r̃. We can restrict the
formulas to conjunctions of polynomial equalities and inequalities without
loss of generality: if F is a quantifier-free formula with a single assignment
x 7→ r as model, it can algorithmically be put in disjunctive normal form C1∨
· · · ∨ Cn where C1, . . . , Cn are conjunctions; then inconsistent conjunctions
Ci can be removed algorithmically; any of the remaining conjunctions will
have a single model x 7→ r and fits our needs. Algebraic numbers specified in
this way can be algorithmically approximated to arbitrary precision, within
a framework of computable reals, as shown in the following section.

2.2 Computable reals

Our abstract domains will “compute” reals in an indirect way: instead of
computing the value of a real number (which is impossible to do exactly in
most cases), the abstract domain will define it as the unique solution of a
quantifier-free formula with one variable; for instance,

√
2 would be defined

as the unique x such that x2 = 2∧x > 0. In this section, we show that given
such a characterization, one can algorithmically bound the real number with
arbitrary precision; that is, given ǫ ∈ Q, ǫ > 0, obtain m,M ∈ Q such that
m ≤ x ≤ M and M − m ≤ ǫ. More generally, we shall show that for
any quantifier-free formula in the theory of real closed fields with one free
variable, we can obtain a finite description of its domain of validity, such
that all numbers used inside the description are computable with arbitrary
precision.1

1This is a generalization of a result of Turing, that real algebraic numbers are com-
putable [14, §1.vi].
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We define computable reals through approximation functions: instead of
a real r, which cannot be represented directly in a machine, we shall consider
a computable function r̃ taking a positive rational number ǫ as a parameter
and outputting a couple (m,M) of rational numbers such that M −m ≤ ǫ
and m ≤ r ≤M , called an ǫ-approximation.2

We shall give our algorithms in a “literate programming” or “proof-
carrying code” fashion, mixing each algorithm with a proof of its correctness.
For the sake of simplicity, we preferred to give all algorithms “from scratch”
instead of relying on advanced techniques.3

Let a and b be computable reals given by approximation functions ã and
b̃. It is straightforward to compare these two numbers, provided that we
know that they are different.

Algorithm Compare: Compare two computable reals known to be differ-
ent

If a 6= b, then there is an algorithm that decides whether a < b or
a > b given approximation functions ã and b̃: start with ǫ = 1; compare the
intervals ã(ǫ) and b̃(ǫ); if they do not overlap, the case is settled, otherwise
divide ǫ by 10 and try again. The algorithm will terminate at the latest
when ǫ < |b− a|/2.

This algorithm loops forever if a = b. Throughout the rest of this sec-
tion, we shall take precautions so that we never use Compare on operands
that could be equal.4 We then define elementary arithmetic operators over
approximation functions:

Algorithm Plus: Add two computable reals
a + b is also a computable real: for ǫ > 0, compute ǫ/2-approximations

[ma,Ma] of a, [mb,Mb] of b, and output [ma+mb,Ma+Mb] as a ǫ-approximation
of a+ b.

A similar algorithm works for a− b, defining Minus.

Algorithm Mult: Multiply two computable reals

2Turing’s original characterization of the class of computable reals [14] [15, Def. 4.1.12]
used machines that enumerated the decimals of the number. The class of computable reals
defined in this fashion is identical to ours, but there are drawbacks to this representation:
it may be necessary in order to compute the n-th digit of a result to go arbitrarily far in
the representation of the operands. We thus rather use a representation very close to that
of Weihrauch. [15, §1.3.2]

3Alternatively, the same result may be reached using published algorithms [1, Alg. 10.4
to 10.17] for isolating roots of polynomials, pairs of polynomials or finding the sign of a
polynomial at the roots of another, together with a dichotomy solving method.

4This is actually an essential restriction of any representation of computable reals. [15,
Th. 4.1.16]
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• compute a 1/2-approximation [ma,Ma] of a; if 0 ∈ [ma,Ma], then
write a · b = (a+1) · b− b and the problem is reduced to the case where
a cannot be zero;

• decide whether a < 0 or a > 0 by testing whether ma < 0: if a <
0, write a · b = −((−a) · b) and the problem is reduced to the case
where a > 0; we also have computed a upper bound La ∈ Q of a;

• do similarly with b and the problem is reduced to the case where b > 0;
we also have computed a upper bound Lb ∈ Q of b;

• compute a ǫ/(2Lb)-approximation [ma,M
′
a] of a and a ǫ/(2La)-appro-

ximation [mb,M
′
b] of b; let MA = min(M ′

A, La) and Mb = min(M ′
b, Lb)

and output [mamb,MaMb]; this is a ǫ-approximation of a.b sinceMaMb−
mamb = Ma(Mb −mb) +mb(Ma −ma) ≤ ǫ.

Now for three algorithms that will be later used as subroutines:

Algorithm DecideSign: Decide the sign of P (x) if P (x) 6= 0
It follows that if P ∈ Q[X], and r is a real given by r̃ such that P (r) 6= 0,

then we can decide whether P (r) < 0 or P (r) > 0 using Plus and Mult

over the polynomial structure, then Compare.

Algorithm FindRoot: Find the unique root of P in an interval [r1, r2] of
monotonicity

Let r1 < r2, given by r̃1 and r̃2, and P a polynomial such that P is strictly
increasing over [r1, r2], P (r1) < 0 and P (r2) > 0. Let ǫ > 0. Compute
[m1,M1] a ǫ-approximation of r1 and [m2,M2] an ǫ-approximation of r2.
If P (M1) ≥ 0, then [m1,M1] is an ǫ-approximation of r0. If P (m2) ≤ 0,
then [m2,M2] is a ǫ-approximation of r0. We thus suppose P (M1) < 0 and
P (m2) > 0 and apply a dichotomy algorithm between the two, until we
reach the desired precision.

Algorithm FindRootInf: Find the unique root of P in an interval (−∞, r2]
of monotonicity5

If we know that P is strictly increasing on (−∞, r2], P (r2) > 0, noting r
the root of P such that r < r2, then, similarly, let ǫ > 0; compute [m2,M2]
a ǫ-approximation of r2; if P (m2) ≤ 0 then [m2,M2] is a ǫ-approximation
of r. If P (m2) > 0 then take k ∈ N, −k < m2, k increasing until P (−k) < 0;
then apply the dichotomy algorithm between −k and m2.

Let us recall a familiar result, which we shall use with K = Q and
K ′ = R:

5We note open intervals (a, b), closed intervals [a, b].
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Lemma 2. Let K be a field and K ′ an extension of K. If ξ ∈ K ′ is
a common root of nonzero polynomials P and Q from K[X], then it is a
root of their greatest common divisor gcd(P,Q) in K[X]. Thus, co-prime
polynomials have no common root.

Proof. K[X] is a principal ring [7, Ch. 4, Th. 1.2], there exist polynomials
A and B in K[X] such that gcd(P,Q) = A.P +B.Q. The result follows by
applying both members of the equation to ξ.

Several of our algorithms operate on sign diagrams. A sign diagram for a
nonzero polynomial P ∈ Q[X] is a sequence −, r̃1,+, r̃2,−, r̃3,+, . . . , r̃n,+,
where the r̃i are approximation functions for the roots of P . Such a diagram
means that the polynomial function P (x) is negative for large negative x,
then passes a root r1 that can be approximated to arbitrary precision by r̃1,
then becomes positive, etc.

Sign diagrams for polynomials of degrees 0 and 1 are straightforward to
compute, as are the first and final signs of the diagram for any polynomial,
which are obtained from the parity of the degree of the polynomial and the
sign of the leading coefficient. Given the diagram of P and a nonnegative
exponent e, it is straightforward to compute the diagram for P e; and given
the diagram for P and a coefficient a ∈ Q, it is also straightforward to
compute the diagram for aP .

Given two polynomials P and Q with no common roots, one obtains the
sign diagram for P.Q through a simple sorted list merging procedure using
Compare. This algorithm, however, does not apply in case P and Q have
common roots. We use the fact (Lem. 2) that the common roots of P and Q
are the roots of the greatest common divisor gcd(x, y) of these polynomials
to work around this difficulty. gcd(x, y) can be computed using Euclid’s
algorithm.

Algorithm SignDiagram: Compute the sign diagram of a polynomial
We shall now show how to compute the sign diagram of a polynomial P

by induction on the degree n of P . We have already noted that it is trivial to
compute diagrams for polynomials of degrees 0 and 1. We now shall suppose
that we can compute the sign diagrams of polynomials of degree less than n,
and show that we can compute the sign diagram of a polynomial of degree n.
First, define a subroutine:

Algorithm SignDiagramProduct:
Take as input a list (P1, e1), . . . , (Pm, em) of couples each formed of a

polynomial of degree less than n and a positive exponent, output the sign
diagram of the product P e1

1 × · · · × P em
m . We proceed by induction on the
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sum of the degrees of P1, . . . , Pm. If this sum is 0 or 1, then the case is
trivial.

• Check whether there exist Pi and Pj (i 6= j) not co-prime; if so,
compute Qi = Pi/ gcd(Pi, Pj) and Qj = Pj/ gcd(Pi, Pj), then replace
(Pi, ei) and (Pj , ej) by (Qi, ei), (Qj, ej), (gcd(Pi, Pj), ei+ej) in the list.
The sum of the degrees has decreased by the degree of gcd(Pi, Pj), but
the product P e1

1 × · · · × P em
m has stayed the same, and thus we can

solve the problem through a recursive call.

• Otherwise, the Pi are pairwise co-prime. Since they all have degree
less than n, we can obtain their sign diagrams. We then apply the
exponent algorithm, then the algorithm for the sign diagrams of a
product of polynomials with no common roots.

Consider now a polynomial P of degree n.

• If P and its derivative P ′ are not co-prime, then let Q = P/ gcd(P,P ′).
Q and gcd(P,P ′) will have degree at most n−1, so we can invoke Sign-

DiagramProduct and obtain the sign diagram of their product P .

• If they are co-prime: P only has single roots. Compute the sign di-
agram of P ′, which gives us intervals of monotonicity for P . Then,
compute the sign diagram of P as follows:

– The leftmost sign is deduced from the leading coefficient and par-
ity of the degree of P . Without loss of generality, we shall suppose
it is positive.

– Compute the sign of P (r1) (using DecideSign) where r1 is the
first root in the sign diagram of P ′; this is possible because r1 is
not a root of P . If it is negative, search for a root of P to the left
of r1 using FindRootInf.

– For each subsequent root rk of P ′, compute the sign of P (rk) (us-
ing DecideSign), and if it is different from the sign of P (rk−1),
search for a root of P in [rk−1, rk] using FindRoot.

For a system S of polynomial equalities or inequalities over a real vari-
able x, we call validity diagram a sequence b0, r1(B1), b1, r2(B2), . . . , rm(Bm)
where r1, . . . , rm are given by approximation functions r̃1, . . . , r̃m, and the
bi and Bi are booleans; b0 says whether S is always or never satisfied over
(−∞, r1), B1 whether S is satisfied at r1, b1 whether S is always or never
satisfied over (r1, r2) and so on.
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Algorithm Domain: Domain of validity of a quantifier-free formula with
one free variable

Consider now a quantifier-free formula F with one free variable, made
up of of polynomial equalities and inequalities Pi ⊲⊳ 0. Similarly as in
SignDiagramProduct, take greatest common divisors until obtaining a
base Bk of pairwise co-prime polynomials such that for all i, Pi can be
written Pi = Be1

1 × · · · × Bem
m . Compute the sign diagrams of all Bk. The

validity diagram of F can be computed from the Bk using, as previously, a
variant of the merging of sorted lists and the fact the Bk, pairwise, have no
common roots.

By preprocessing formulas through quantifier elimination, we can algo-
rithmically approximate to arbitrary precision any (algebraic) real defined
by a formula in the theory of real closed fields.

Corollary 3. If F is a formula of the theory of real closed fields with one
free variable, such that F defines a single real, then this real is algebraic and
can be algorithmically approximated to arbitrary precision.

3 Concrete and exact abstract semantics

We consider a simple block-structured programming language without loops,
and a concrete semantics as the binary relation between input variables and
output variables. This concrete semantics can be exactly represented using
formulas in the theory of real closed fields.

3.1 Concrete semantics

We consider the following language L:

• Real expressions are constructed over: real variables (taken in a set
V of variable names), arithmetic operators (+, −, /, ×), integer con-
stants.

• Boolean expressions are constructed from atomic formulas using ∨, ∧,
¬

• Atomic formulas are constructed from real expressions and relational
operators (<, >, =, ≤, ≤, ≥)

• The only control construct is if-then-else, where the condition is a
boolean expression.
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• The only instruction is the assignment x := e, where x is a real variable
and e a real expression.

• There is a nondeterministic choice instruction x := [m,M ], choosing
x between m and M .

A program in L has a concrete semantics as a binary relation over RV :
(pre, post) ∈ JP K if it is possible to reach the state post at the end of the
execution of P starting from the state pre.

For the sake of simplicity, we shall consider the sub-language Ls where
expressions in assignments are to be simple, with only a single operator, and
arithmetic expressions in boolean expressions are to be variables; programs
in L can be turned into equivalent programs in Ls using additional variables
to store intermediate results.

It is immediate that all results in the rest of the paper persist if one
replace the theory of real close fields with another arithmetic theory admit-
ting quantifier elimination (Presburger arithmetic, or the theory of rational
or real inequalities).

3.2 Quantifier-free closed real field formulas

We compile programs without loops, compositionally, into quantifier-free
formulas from the theory of real closed fields such that for a program P , the
formula JP KF models the input-output relationship JP K exactly.

We consider disjoint copies V ′ and V∃ of the set V : V will be used for
free formula variables denoting the input values of program variables, V ′ for
free variables denoting the output values of program variables, and V∃ for
variables bound by existential quantifiers, which are to be removed from the
formulas by quantifier elimination. JKF is defined as follows:

Arithmetics Addition Ja := b+ cKF
△

= a′ = b+ c

Subtraction Ja := b− cKF
△

= a′ = b− c
Multiplication Ja := b ∗ cKF

△

= a′ = b× c
Division Ja := b/cKF

△

= b = a′ × c

Tests Jif c then p1 else p2K
△

= (c ∧ Jp1KF ) ∨ (¬c ∧ Jp2KF )

Composition JP1;P2KF
△

= E(∃v1 . . . ∃vn f1 ∧ f2) where f1 is JP1KF where
all variables in V ′ have been replaced by their copy in V∃, f2 is JP2KF

where all variables in V have been replaced by their copy in V∃, and
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v1, . . . , vn are the free variables of f1 and f2 that are in V∃. This is the
only place where we need quantifier elimination.

Nondeterministic choice Jx := [m,M ]KF
△

= m ≤ x′ ≤M
Proposition 4. Let P be a program in Ls. Let pre, post ∈ RV . Then
(pre, post) ∈ JP K if and only if (pre, post′) |= JP KF .

Alternatively, we could allow formulas including quantifiers and defer
quantifier elimination until it is actually needed.

What happens with programs with loops? On programs operating over
integers, one can obtain logical relations linking inputs and outputs: se-
quences of values of program variables across iterations can be encoded into
couples of integers using Gödel’s β function [16, Chapter 7], and one can thus
construct a finite formula defining the strongest loop invariant. 6 Then, of
course, there is no way to decide the formulas obtained.

In the case of programs with reals, the situation is different. There exist
some programs such that there is no formula in the theory of real closed fields
that precisely links the inputs and the outputs. Consider, for instance:

s=0; x=1; k=1;

while (k < n) { x=x/k; s=s+x; k=k+1; }

As n→∞, the output s of this program increases and tends to exp(1).
Let us suppose that there exists a relationship P (n, s′) in the theory of

real closed fields between the initial value of n and the final value of s. The
formula

(∀n∃s′ P (n, s′)⇒ s′ ≤ l) ∧ (∀b (∀n∃s′ P (n, s′)⇒ s′ ≤ b) =⇒ l ≤ b). (3)

defines a single real, the least upper bound of the possible outputs, which is
exp(1). By Cor. 3, this real is algebraic; but it is well-known that exp(1) is
transcendental, a contradiction. Thus, in general, strongest loop invariants
cannot be expressed within the theory of real closed fields. We shall thus
aim at expressing some kind of loop invariant, not necessarily the strongest.

4 Optimal abstraction over polynomial constraint

domains

We now consider the abstraction of program states (in RV ) using domains
defined by polynomial constraints. This family of domains includes many

6A similar construction proves Cook’s theorem: Floyd-Hoare axiomatic semantics on
programs using integers is complete with respect to Peano’s arithmetic [16, Th. 7.5].
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“classical” numerical abstract domains. We shall show that, with respect to
such domains, optimal abstractions are computable (in the sense of: one can
compute approximations to arbitrary precision) for programs without loops.
Furthermore, we shall show that least fixed points in such domains are also
computable; we thus obtain a semantics for loops, optimal in a certain sense.
Finally, we shall see how to define a general computable abstract semantics
for programs with loops.

Throughout this section, we shall be concerned with the forward propa-
gation problem: given an abstract precondition s♯ and a program fragment

P , characterize an abstract postcondition e♯ such that
−−→
JP K ◦ γf (s♯) ⊆ γf (e♯)

(“if this precondition holds, then this postcondition must also hold”), and
in particular an optimal e♯ in a certain sense. However, all results work if

one seeks to compute preconditions, using
←−−
JP K (“if this postcondition holds,

then the input of the program must have fit this precondition”).

4.1 Polynomial constraint domains: definition

A polynomial constraint domain D♯
f is defined by a family (fλ)λ∈Λ of poly-

nomials,7with variables in V . An element of D♯
f is either ⊥, either a vector

in (−∞; +∞]Λ of parameters. (We assume Λ 6= ∅.)8
The γf : D♯

f → P
(

RV
)

maps each element of D♯
f to the set of pro-

gram states that it represents, that is, its concretization: γf (⊥) = ∅, and
γf ((xλ)λ∈Λ) is the set of variable assignments a ∈ RV such that for all λ,

fλ(a) ≤ xλ. We exclude from D♯
f vectors x such that γ(x) would be empty,

that is, vectors specifying inconsistent constraints; we do so in order to have
⊥ as the sole representation of the empty set.

Several “classical” numerical domains can be interpreted as polynomial
constraint domains:

Intervals Polynomials are v and −v, for all v ∈ V .

Difference matrices Polynomials are v1 − v2, for all v1, v2 ∈ V .

7Polynomials are used to define constraints of the form fλ(v1, . . . , vn) ≤ dλ. More
generally, our framework applies to any predicate Pλ(v1, . . . , vn; dλ) of the theory of real
closed fields, such that the set of models M(dλ) for the v1, . . . , vn is left-continuous with
respect to the parameter dλ: M(inf Dλ) =

⋂

dλ∈Dλ
M(dλ). All the results given in the

following sections also apply to that extended framework.
8We can also consider an additional family of predicates without parameters, abstracted

by their truth value.
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Octagons Polynomials are ±v, for all v ∈ V , and ±v1 ± v2, for all v1, v2 ∈
V . [8]

Octahedra Polynomials are ±v1±v2±· · ·±vn, for all v1, v2, . . . , vn ∈ V . [4]

Template linear constraints Restriction to linear polynomials. [12]

Such a domain can be fitted with a straightforward complete lattice
structure (⊑,⊔,⊓), making γf increasing with respect to ⊑ and ⊆:

• ⊥ is the unique least element;

• x ⊑ y, x, y ∈ (−∞,+∞]Λ, if for all λ ∈ Λ, xλ ≤ yλ;

• the least upper bound and greatest lower bounds of a family of vectors
are defined coordinate-wise.

We can also provide an optimal abstraction function9 αf such that
(αf , γf ) form a Galois connection [5, §4.2.2]: αf (∅) = ⊥; αf (S) (where
S 6= ∅) is the vector (xλ)λ∈Λ where xλ = sups∈S fλ(s). From its definition,
it is obvious that αf preserves least upper bounds. [5, Prop. 6]

αf distinguishes among several possible abstractions of some set X the
abstraction αf (X) such that αf (X) is minimal. Not only does this avoid
taking a non-optimal abstraction — if we chose y♯ when there exists x♯ such
that X ⊆ γf (x♯) ( γf (y♯), then y♯ is a non-optimal choice as an abstraction
— but it also provides for a “canonical” representation. Indeed, the con-
cretization function γf is injective in the case of the intervals, but needs not
be so in general. In the case of the difference matrices and the octagons,
there may be an infinity of abstract elements with the same concretization:
if we have the constraints v1− v2 ≤ C1,2, v2− v3 ≤ C2,3, and v1− v3 ≤ C1,3,
then we get the same concretization as long as C1,3 ≤ C1,2 + C2,3. These
domains, however, are fitted with a reduction or closure operation10 such
that they provide results that are minimal with respect to ⊑. In this exam-
ple, the closure operation realizes that the constraint v1 − v3 ≤ C1,2 + C2,3

can be derived from the first two and can be used to refine the third one

9Neither αf nor γf are computable functions: they operate on unbounded sets of
rational or real numbers. The purpose of this paper is to show how to compute certain
quantities defined mathematically using αf or γf .

10The lower closure operation αf ◦ γf is defined for every Galois connection [5, §4.2.2],
but it needs not be computable in general. In the case of difference matrices and octagons
with rational coefficients, it is effectively computable by a shortest path algorithm, and
certain operations require their operands to be closed. [8, §V.B]
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if C1,2 + C2,3 < C1,3. The closure operation can also detect that some con-
straints are inconsistent and the result should be ⊥.

Let ψ : P
(

RV
)

→ P
(

RV
)

. A function ψ♯ : D♯
f → D♯

f is said to be an

abstraction of ψ if ∀d♯ ∈ D♯
f , ψ◦γf (d♯) ⊆ γf ◦ψ♯(d♯). The optimal abstraction

of ψ is αf ◦ ψ ◦ γf . In program analysis in general, it is possible that this
optimal abstraction is not computable. However, in the next sub-section, we
shall show that this optimal abstraction is computable on programs without
loops with the kind of domains that we consider here.

4.2 Optimal abstraction without fixed points

In section 3.2, we have shown that the input-output relationship of concrete
program variables can be represented as a formula in the theory of real
closed fields. Such a formula links the output value of the program variables
to their input values. Here, we shall see that the optimal abstraction of a
program fragment with respect to a polynomial constraint abstract domain
can also be represented as a formula in that theory; that is, we shall give a
formula linking the input and output parameters for these constraints.

Consider now a set of program states abstracted by d♯ ∈ D♯
f , and a pre-

post formula φ over RV × RV ′

. We are interested in finding the optimal

abstraction of
−→
φ (d♯). We will show that, in the case where d♯ 6= ⊥, the

coefficients of the vector defining this optimal abstraction d♯′ are related to
the coefficients of d♯ through a formula of the theory of real closed fields,
and that the cases where ⊥ appear are settled by deciding a formula of that
theory.

An element of d♯ is either ⊥, or a vector, indexed by λ ∈ Λ, of dλ ∈ R ∪
{+∞}. We use a representation using only real variables: (db, (dλ)λ∈Λ, (d̄λ)λ∈Λ),
where:

• d♯ = ⊥ is encoded by db = 1 and any other value elsewhere;

• d♯ = (d♯
λ)λ∈Λ is encoded as follows: db = 0 and for all λ ∈ Λ, either

d♯
λ <∞ and dλ = d♯

λ, d̄λ = 0, or d♯
λ =∞ and d̄λ = 1.

If d♯ = ⊥, then this optimal abstraction is obviously ⊥. For the sake of
ease of notation, let Λ = {1, . . . ,m} and V = {v1, . . . , vn}. Let abstracts(d, x)
be the formula d̄ = 1∨ (d̄ = 0∧ x ≤ d). Let isNonEmpty(d♯) be the formula
∃v1 . . . ∃vn abstracts(d1, f1(v1, . . . , vn))∧· · ·∧abstracts(dm, fm(v1, . . . , vn)); if

isNonEmpty(d♯) is false then
−→
φ (d♯) = ∅ and, again, ⊥ is an optimal abstrac-

tion. abstracts(d, x) may be decided algorithmically by quantifier elimination
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if the d1, . . . , dm are rational numbers or algebraic numbers specified as in
Sec. 2.2.

Let

step(φ, d♯)
△

= db = 0 ∧ ∃v1 . . . ∃vn abstracts(d1, f1(v1, . . . , vn))∧
· · · ∧ abstracts(dm, fm(v1, . . . , vn)) ∧ φ. (4)

The models of step(φ, d♯) are exactly the assignments for v′1, . . . , v
′
n such that

(v′1, . . . , v
′
n) ∈ −→φ ◦ γf (d♯). Now, we need to define the image of that set by

αf using formulas.
The projections of those assignments over the fλ constraints are defined

by:

stepλ(φ, d♯, x)
△

= ∃v′1 . . . ∃v′n step(φ, d♯) ∧ x = fλ(v′1, . . . , v
′
n) (5)

The following formula has models (d, d̄) |= isSup(d, x, P ) such that d̄ = 1
if {x | P (x)} has no upper bound, and otherwise d̄ = 0 and d = sup{x |
P (x)}:

isSup(d, x, P )
△

= (d̄ = 1 ∧ ∀y∃x y ≤ x ∧ P (x))∨
(d̄ = 0 ∧ (∀x P (x) =⇒ x ≤ d) ∧ (∀y(∀x P (x) =⇒ x ≤ y) =⇒ d ≤ y)

(6)

Thus, the formula for defining the optimal parameter for the constraint

indexed by λ is: supStepλ(φ, d♯, d′)
△

= isSup(d′, x, stepλ(φ, d♯, x)).
Finally, we define:

abstrStep(φ, d♯, d′
♯
)

△

= (d′b = 1 ∧ ¬∃v′1 . . . ∃v′n step(φ, d♯))∨
(d′b = 0 ∧ supStep1(φ, d

♯, d′1) ∧ · · · ∧ supStepm(φ, d♯, d′m)) (7)

We thus have lifted a formula φ between concrete states to an optimal
formula abstrStep(φ, d♯, d′♯) between abstract states, and the following holds:

Theorem 5. Let φ be an input-output formula over variables V . Then, the
constructed formula abstrStep(φ, d♯, d′♯) has models (d♯, d′♯) |= abstrStep(φ, d♯, d′♯),
where d♯ = (db, (dλ)λ∈Λ, (d̄λ)λ∈Λ) and d′♯ = (d′b, (d

′
λ)λ∈Λ, (d̄

′
λ)λ∈Λ), exactly

such that d′♯ = αf ◦
−→
φ ◦ γf (d♯).

We can in particular take φ to be the formula defining the input-output
relationships of a program in L (that is, with real variables without loops),
following the constructs in §3.2. By using 2.2 we can state:
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Corollary 6. Let (D♯
f , αf , γf ) be the polynomial constraint domain defined

by a finite family of polynomials (fλ)λ∈Λ. There is an algorithm that com-

putes, given P a program in L, and an element d♯ ∈ D♯
f with rational co-

efficients, rational bounds on the coefficients of the optimal approximation

αf ◦
−−→
JP K◦γf (d♯), with arbitrary precision. The same holds with

←−−
JP K or if the

coefficients of d♯ are algebraic numbers defined by real closed field formulas.

While we can obtain rational bounds, it is possible that the optimal
coefficients are irrational: the optimal output interval of if(x <0 || x*x

>= 2) { x=0; } is [0,
√

2].

4.3 Optimal abstract fixpoints

We shall now show that we can also derive a relationship, expressed as a
formula in the theory of real closed fields, between the parameters of an
abstract state s♯ and the least fixed point of the abstract semantics of a
program fragment greater than s♯. This gives a formula linking the param-
eters of the abstraction of the precondition of a loop to the parameters of
an output abstract postcondition.

Let φ be a pre-post formula (over V ∪ V ′) and let s♯ ∈ D♯
f . We are

interested in the least fixed point (in D♯
f ) of αf ◦

−→
φ ◦γf . We shall show that

it is possible to characterize such a fixed point using a formula in the theory
of real closed fields. This means that for any polynomial constraint abstract
domain, and any formula (for instance, a formula expressing the semantics
of a program), the least fixed point in the abstract domain can be effectively
computed.

In order to analyze program loops and similar constructs, we are inter-
ested in the strongest invariant containing some set z0; an invariant of a
monotonic function f is a post-fixed point, that is, z such that f(z) ⊑ z.
We recall the following result, similar to Tarski’s fixed point theorem:

Lemma 7. Let (Z,⊑,⊔,⊓) be a complete lattice and z0 ∈ Z. Let ψ : Z → Z
be an order-preserving operator. Then ψ has a least post-fixed point above z0,
noted lpfpz0

ψ; and this least post fixed point is inf{z ∈ Z | z0 ⊑ z∧f(z) ⊑ z}.
lpfp⊥ f is the least fixed point of f .

It is possible to define ⊑ using a formula such that d♯ ⊑ d′♯ ⇐⇒
(d♯, d′♯) |= incl(d♯, d′♯) where:

incl(d♯, d′
♯
)

△

= db = 1 ∨ (d′b = 0 ∧ lessEq(d1, d
′
1) ∧ · · · ∧ lessEq(dm, d

′
m)) (8)

less(d, d′)
△

= d̄′ = 1 ∨ (d̄′ = 0 ∧ d̄ = 0 ∧ d ≤ d′) (9)
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Now define:

isFix(d♯, ψ♯, d♯
0)

△

= incl(d♯
0, d

♯) ∧ ψ♯(d♯, d♯)

isLfp(d♯, ψ♯, d♯
0)

△

= isFix(d♯, ψ♯, d♯
0) ∧ ∀d′′♯ isFix(d′′♯, ψ♯, d♯

0)⇒ incl(d♯, d′′♯)

From these definitions, the following holds:

Theorem 8. Let ψ♯ be a formula over the variables d♯ = (db, (dλ)λ∈Λ, (d̄λ)λ∈Λ)
and d′♯ = (d′b, (d

′
λ)λ∈Λ, (d̄

′
λ)λ∈Λ), such that (d♯, d′♯) |= ψ♯ defines an order-

preserving function
−→
ψ♯ : d♯ 7→ d′♯. Then, isLfp(d♯, ψ♯, d♯

0) has models (d♯, d♯
0) |=

isLfp(d♯, ψ♯, d♯
0) such that d♯ is the least fixed point of

−→
ψ♯ over d♯

0.

By taking ψ♯ = abstrStep(φ, d♯, d′♯) and applying theorem 5 :

Corollary 9. Let φ be an input-output formula over variables V . Then,
the constructed formula isLfp(d♯, abstrStep(d♯, ψ, d′♯), o♯) has models (d♯, o♯),
where d♯ = (db, (dλ)λ∈Λ, (d̄λ)λ∈Λ) and o♯ = (ob, (oλ)λ∈Λ, (ōλ)λ∈Λ), exactly

such that d♯ = lpfpo♯(αf ◦
−→
φ ◦ γf ).

The application to program analysis is that fixpoints in the abstract do-
main may be approximated optimally, without the use of any widening op-
erator :

Corollary 10. Let (D♯
f , αf , γf ) be the polynomial constraint domain de-

fined by a finite family of polynomials (fλ)λ∈Λ. There is an algorithm that

computes, given P a program in L, and an element s♯ ∈ D♯
f with ratio-

nal coefficients, bounds on the coefficients of the optimal approximation

lpfps♯(αf ◦
−−→
JP K ◦ γf ), with arbitrary precision. The same holds with

←−−
JP K

and/or if the coefficients of s♯ are algebraic numbers defined by real closed
field formulas.

In order to compute an abstraction of the postcondition of a program
while (condition) { block } given an abstraction s♯ of the precondition, one
can compute an abstraction of the reachable states at the head of the loop,
and filter by ¬condition. The set of reachable states at the head of the loop
is the least fixpoint of X 7→ JblockK(X ∩ JconditionK) greater than γ(s♯), and
an abstraction of this set is sought as a post-fixpoint of Jcondition; blockK♯

greater than s♯. Generally, this post-fixpoint is obtained using a widening
operator [5, §4.3]: a sequence of candidates s♯

1, s
♯
2, . . . is tried for being post-

fixpoints, with a guarantee of termination; however, there is no guarantee
of optimality. The above corollary gives an optimal characterization of the
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least fixed point d♯ of Jcondition; blockK♯ above s♯, through formulas linking
the coefficients of d♯ to those of s♯. Using the algorithms in §2.2, we can
obtain bounds on the coefficients of this least fixed point, with arbitrary
precision.

Note, however, that the optimal result that we obtain is the least fixed
point within the abstract domain. In general, it is not the most precise
abstraction of the concrete least fixed point. Computing the most precise
abstraction of least fixed point would entail being able to solve the halting
problem, and since the programs over the reals include the programs over
the integers, this is impossible.

The difference between the two is as follows: instead of computing the
abstraction αf (lpfpψ) of the least fixed point of an operator, we compute
lpfpψ♯ the least fixed point of the optimal abstraction of that operator,
ψ♯ = αf ◦ ψ ◦ γf . If ψ is the semantics of a program fragment without
loops, then ψ is additive (the image of a union of sets is the union of the
images of these sets); so is αf (the image of a union of sets is the least upper
bound of the images of these sets). Then, lpfpψ =

⋃

n ψ
n(∅) [5, §4.1] and

αf (lpfpψ) = αf (
⊔

n ψ
n(∅)) =

⊔

n αf ◦ ψn ◦ γf (⊥). In comparison, lpfpψ♯ is
⊔

n(αf ◦ψ◦γf )n(⊥). Note that the two are identical if γf ◦αf ◦ψ◦γf = ψ◦γf .
γf ◦ αf is a upper closure operator that maps each set W ⊆ RV to the least
superset representable in the abstract domain. This means that the whole
loss of precision (difference between αf (lpfpψ) and lpfpψ♯) is caused by the
loss of precision introduced by this closure.

4.4 Abstracting programs with loops

In section 4.2, we have shown how to effectively compute a family of op-
timal relations, which we shall note JP K→♯

f , between the coefficients of an

abstract value d♯ in a polynomial constraint domain and those of the optimal

abstraction of the postcondition, αf ◦
−−→
JP K ◦ γf .

In section 4.3, we have shown how to effectively compute a family of opti-
mal relations between the coefficients of an abstract value d♯ in a polynomial

constraint domain and those of the least fixpoint of αf ◦
−−−−−−−−−−−−→
Jcondition; blockK◦γf

greater than d♯.
We can thus define a modular, compositional, forward abstract semantics

JP K→♯
f by induction on the structure of the program. Given P , this seman-

tics yields a family of formulas in the theory of real closed fields, linking the
parameters of an abstract precondition d♯ inD♯

f and the parameters of an ab-

stract postcondition d♯′ in D♯
f such that each of these parameters is uniquely
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defined. By using the algorithms given in section 2.2, these relationships can
be used to compute the parameters in d♯′ to arbitrary precision.

5 Related works and conclusion

We have defined an optimally precise abstract domain for programs without
loops, based on formulas within the theory of real closed fields. This ab-
stract domain can be used to derive optimal abstract transformers for a wide
class of other domains, including familiar ones such as the interval and oc-
tagons domains. In addition, it can be also be used to provide optimal fixed
points within those domains. The symbolic results that are computed can be
algorithmically bounded with arbitrary precision, after applying quantifier
elimination.

We have therefore demonstrated that, for a class of domains, widening
operators are not needed in order to compute invariants. Moreover, our
method, contrary to widenings, produces invariants that are optimal in a
certain sense (the least invariant verifiable by the abstract transfer function).

There have been several published approaches to finding nonlinear re-
lationships between program variables. One approach obtains polynomial
equalities through computations on ideals using Gröbner bases [11]. This
work only deals with equalities (not inequalities), uses a classical approach
of computing output constraints from a set of input constraints (instead of
finding relationships between the two sets of constraints), and deals with
loops using a widening operator. In comparison, our approach abstracts
whole program fragments, and is modular — it is possible to “plug” the
result of the analysis of a procedure at the location of a procedure call.

Kapur, in some other work [6], proposes to use quantifier elimination
to obtain invariants: he considers program invariants with parameters, and
derives constraints over those parameters from the program.11 Our work
improves on his by noting that least invariants of the chosen shape can be
obtained, not just any invariant; that the abstraction can be done modu-
larly and compositionally (a program fragment can be analyzed, and the
result of its analysis can be plugged into the analysis of a larger program),
or combined into a “conventional” abstract interpretation framework (by us-
ing invariants of a shape compatible with that framework), and that the
resulting invariants can be “projected” to obtain numerical quantities.

There have been other methods proposed for generating invariants from
fixed parametric “shapes”, using constraints over the parameters. Some ap-

11We thank Enea Zaffanella for pointing out this work to us.
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proaches apply numerical algorithms, such as linear programming [12] or
other forms of constraint solving. One difference with our work is that such
methods will solve the invariant problem for one set of numerical values
for input constraints, while we provide formulas that are valid for all sets
of inputs (and then, that can be instanciated as many times as necessary
to obtain numerical invariants). Some of the proposed techniques consider
non-linear invariants; for instance, some [13, 10] find coefficients for alge-
braic equalities (P (v1, . . . , vn) = 0), using techniques of Gröbner bases. Our
technique finds optimal algebraic inequalities, and, furthermore, obtains con-
straints linking their parameters to constraints on program inputs.

Quantifier elimination in the theory of real closed fields is a very costly
operation; thus, our algorithms, taken “as is”, are likely not to be tractable
beyond simple cases. However, from a theoretical point of view, it is inter-
esting to note that widening operators are not needed in order to guarantee
the computability of least fixed points in e.g. the real interval domain. We
also hope that “approximate”quantifier elimination techniques (providing Q
such that ∃x P =⇒ Q, instead of Q such that ∃x P ⇐⇒ Q) may make
some of our algorithms more tractable. Some experiments suggest that the
algorithms can be made more efficient in the linear case, using geometric
techniques, and we hope to provide more results in that respect.

With respect to applications, we envision the automatic synthesis of
transfer functions for “conventional” abstract interpreters. One limitation
of systems such as Astrée [2] is that, for each program construct, and each
abstract domain, an abstract transfer function must be programmed by
hand. If one feels like a whole block of instructions should be analyzed as a
whole, in order to get more precision, then one has to derive the necessary
transfer function and implement it, with risks of introducing bugs. We think
that techniques such as the one in this paper, or improvements thereof, could
be used to provide generic transfer functions, possibly through dynamic code
generation.
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