Skip to main content

Seeded Tree Alignment and Planar Tanglegram Layout

  • Conference paper
Book cover Algorithms in Bioinformatics (WABI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4645))

Included in the following conference series:

Abstract

The optimal transformation of one tree into another by means of elementary edit operations is an important algorithmic problem that has several interesting applications to computational biology. We introduce a constrained form of this problem in which a partial mapping of a set of nodes in one tree to a corresponding set of nodes in the other tree is given, and present efficient algorithms for both ordered and unordered trees. Whereas ordered tree matching based on seeded nodes has applications in pattern matching of RNA structures, unordered tree matching based on seeded nodes has applications in co-speciation and phylogeny reconciliation. The latter involves the solution of the planar tanglegram layout problem, for which we give a polynomial-time algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chung, M.J.: O(n 2.5) time algorithms for the subgraph homeomorphism problem on trees. J. Algorithms 8, 106–112 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. DasGupta, B., et al.: On distances between phylogenetic trees. In: Proc. 8th Annual ACM-SIAM Symp. Discrete Algorithms, pp. 427–436. ACM Press, New York (1997)

    Google Scholar 

  3. Felsenstein, J.: Phylip - phylogeny inference package. Cladistics 5, 164–166 (1989)

    Google Scholar 

  4. Gardiner, K.J., Marsh, T.L., Pace, N.R.: Ion dependence of the bacillus subtilis rnase p reaction. J. Biol. Chem. 260, 5415–5419 (1985)

    Google Scholar 

  5. Haas, E.S., Brown, J.W.: Evolutionary variation in bacterial RNase P RNAs. Nucleic Acids Res. 26, 4093–4099 (1998)

    Article  Google Scholar 

  6. Harris, J.K., et al.: New insight into RNase P RNA structure from comparative analysis of the archaeal RNA. RNA 7, 220–232 (2001)

    Article  Google Scholar 

  7. James, B.D., et al.: The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell 52, 19–26 (1988)

    Article  Google Scholar 

  8. Jansson, J., Hieu, N.T., Sung, W.-K.: Local gapped subforest alignment and its application in fnding RNA structural motifs. J. Comput. Biol. 13, 702–718 (2006)

    Article  MathSciNet  Google Scholar 

  9. Le, S.-Y., Nussinov, R., Maizel, J.V.: Tree graphs of RNA secondary structures and their comparisons. Comput. Biomed. Res. 22, 461–473 (1989)

    Article  Google Scholar 

  10. Maidak, B.L., et al.: The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28, 173–174 (2000)

    Article  Google Scholar 

  11. Matula, D.W.: Subtree isomorphism in O(n 5/2). Ann. Discrete Math. 2, 91–106 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nye, T.M., Lio, P., Gilks, W.R.: A novel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics 22, 117–119 (2006)

    Article  Google Scholar 

  13. Pace, N.R., Brown, J.W.: Evolutionary perspective on the structure and function of ribonuclease P, a ribozyme. J. Bacteriol. 177, 1919–1928 (1995)

    Google Scholar 

  14. Page, R.D.M. (ed.): Tangled Trees: Phylogeny, Cospeciation, and Coevolution. The University of Chicago Press, Chicago (2002)

    Google Scholar 

  15. Page, R.D.M., Valiente, G.: An edit script for taxonomic classifications. BMC Bioinformatics 6, 208 (2005)

    Article  Google Scholar 

  16. Pinter, R.Y., et al.: Approximate labelled subtree homeomorphism. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 59–73. Springer, Heidelberg (2004)

    Google Scholar 

  17. Reyner, S.W.: An analysis of a good algorithm for the subtree problem. SIAM J. Comput. 6, 730–732 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shamir, R., Tsur, D.: Faster subtree isomorphism. J. Alg. 33, 267–280 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shan, H., Herbert, K.G., Piel, W.H., Shasha, D., Wang, J.T.L.: A structure-based search engine for phylogenetic databases. In: SSDMB 2002, pp. 7–10. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  20. Shapiro, B.A., Zhang, K.: Comparing multiple RNA secondary structures using tree comparisons. Comput. Appl. Biosci. 6, 309–318 (1990)

    Google Scholar 

  21. Valiente, G.: Algorithms on Trees and Graphs. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  22. Valiente, G.: A fast algorithmic technique for comparing large phylogenetic trees. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 371–376. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Woese, C.R., Pace, N.R.: Probing RNA structure, function, and history by comparative analysis. In: Gesteland, R.F., Atkins, J.F. (eds.) The RNA World, pp. 91–117. Cold Spring Harbor Laboratory Press (1993)

    Google Scholar 

  24. Zhang, K., Wang, L., Ma, B.: Computing similarity between RNA structures. In: Crochemore, M., Paterson, M.S. (eds.) Combinatorial Pattern Matching. LNCS, vol. 1645, pp. 281–293. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  25. Hugenholtz, P.: Exploring prokaryotic diversity in the genomic era. Genome Biol. 3, 1–8 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Raffaele Giancarlo Sridhar Hannenhalli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lozano, A., Pinter, R.Y., Rokhlenko, O., Valiente, G., Ziv-Ukelson, M. (2007). Seeded Tree Alignment and Planar Tanglegram Layout. In: Giancarlo, R., Hannenhalli, S. (eds) Algorithms in Bioinformatics. WABI 2007. Lecture Notes in Computer Science(), vol 4645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74126-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74126-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74125-1

  • Online ISBN: 978-3-540-74126-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics