Skip to main content

Topology Independent Protein Structural Alignment

  • Conference paper
Algorithms in Bioinformatics (WABI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4645))

Included in the following conference series:

  • 1064 Accesses

Abstract

Protein structural alignment is an indispensable tool used for many different studies in bioinformatics. Most structural alignment algorithms assume that the structural units of two similar proteins will align sequentially. This assumption may not be true for all similar proteins and as a result, proteins with similar structure but with permuted sequence arrangement are often missed. We present a solution to the problem based on an approximation algorithm that finds a sequence-order independent structural alignment that is close to optimal. We first exhaustively fragment two proteins and calculate a novel similarity score between all possible aligned fragment pairs. We treat each aligned fragment pair as a vertex on a graph. Vertices are connected by an edge if there are intra residue sequence conflicts. We regard the realignment of the fragment pairs as a special case of the maximum-weight independent set problem and solve this computationally intensive problem approximately by iteratively solving relaxations of an appropriate integer programming formulation. The resulting structural alignment is sequence order independent. Our method is insensitive to gaps, insertions/deletions, and circular permutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bar-Yehuda, R., Halldorsson, M.M., Naor, J., Shacknai, H., Shapira, I.: Scheduling split intervals. In: 14th ACM-SIAM SODA, pp. 732–741. ACM Press, New York (2002)

    Google Scholar 

  4. Binkowski, T.A., Adamian, L., Liang, J.: Inferring functional relationship of proteins from local sequence and spatial surface patterns. J. Mol. Biol. 332, 505–526 (2003)

    Article  Google Scholar 

  5. Binkowski, T.A., DasGupta, B., Liang, J.: Order independent structural alignment of circularly permutated proteins. In: EMBS 2004, pp. 2781–2784 (2004)

    Google Scholar 

  6. Chen, L., Wu, L., Wang, Y., Zhang, S., Zhang, X.: Revealing divergent evolution, identifying circular permutations and detecting active-sites by protein structure comparison. BMC Struct. Biol. 6, 18 (2006)

    Article  Google Scholar 

  7. Hermoso, J.A., Monterroso, B., Albert, A., Galan, B., Ahrazem, O., Garcia, P., Martinez-Ripoll, M., Garcia, J.L., Menendez, M.: Structural Basis for Selective Recognition of Penumococcal Cell Wall by Modular Endolysin from Phage Cp-1. Structure v11, 1239 (2003)

    Article  Google Scholar 

  8. Hobohm, U., Sander, C.: Enlarged representative set of protein structures. Protein Science 3, 522 (1994)

    Article  Google Scholar 

  9. Holm, L., Park, J.: DaliLite workbench for protein structure comparison. Bioinformatics 16, 566–567 (2000)

    Article  Google Scholar 

  10. Jung, J., Lee, B.: Protein structure alignment using enviromental profiles. Prot. Eng. 13(8), 535–543 (2000)

    Article  Google Scholar 

  11. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  Google Scholar 

  12. Lindqvist, Y., Schneider, G.: Circular permutations of natural protein sequences: structural evidence. Curr. Opinions Struct. Biol. 7, 422–427 (1997)

    Article  Google Scholar 

  13. Liu, L., Iwata, K., Yohada, M., Miki, K.: Structural insight into gene duplication, gene fusion and domain swapping in the evolution of PLP-independent amino acid racemases. FEBS LETT v528, 114–118 (2002)

    Article  Google Scholar 

  14. Meszaros, C.S.: Fast Cholesky factorization for interior point methods of linear programming. Comp. Math. Appl. 31, 49–51 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mizuguchi, K., Deane, C.M., Blundell, T.L, Overington, J.P.: HOMSTRAD: a database of protein structur alignments for homologous families. Protein Sci. 7, 2469–2471 (1998)

    Article  Google Scholar 

  16. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of proteins database for the investigation of sequences and structure. J. Mol. Biol. 247, 536–540 (1995)

    Google Scholar 

  17. Peisajovich, S.G., Rockah, L., Tawfik, D.S.: Evolution of new protein topologies through multistep gene rearrangements. Nature Genetics 38, 168–173 (2006)

    Article  Google Scholar 

  18. Ponting, R.B., Russell, R.B.: Swaposins: circular permutations within genes encoding saposin homologues. Trends Biochem Sci. 20, 179–180 (1995)

    Article  Google Scholar 

  19. Suzuki, M., Takamura, Y., Maeno, M., Tochinai, S., Iyaguchi, D., Tanaka, I., Nishihira, J., Ishibashi, T.: Xenopus laevis Macrophage Migration Inhibitory Factor is Essential for Axis Formation and Neural Development. J. Biol. Chem. 279, 21406–21414 (2004)

    Article  Google Scholar 

  20. Szustakowski, J.D., Weng, Z.: Protein structure alignment using a genetic algorithm. Proteins: Structure, Function, and Genetics 38, 428–440 (2000)

    Article  Google Scholar 

  21. Tabtiang, R.K., Cezairliyan, B.O., Grand, R.A., Cochrane, J.C., Sauer, R.T.: Consolidating critical binding determinants by noncyclic rearrangement of protein secondary structure. PNAS 7, 2305–2309 (2004)

    Google Scholar 

  22. Van Duyne, G.D., Ghosh, G., Maas, W.K., Sigler, P.B.: Structure of the oligomerization and L-arginine binding domain of the arginine repressor of Escherichia coli. J. Mol. Biol. 256, 377–391 (1996)

    Article  Google Scholar 

  23. Zhu, J., Weng, Z.: FAST: A Novel Protein Structure Alignment Algorithm. PROTEINS: Structure, Function, and Bioinformatics 58, 618–627 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Raffaele Giancarlo Sridhar Hannenhalli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dundas, J., Binkowski, T.A., DasGupta, B., Liang, J. (2007). Topology Independent Protein Structural Alignment . In: Giancarlo, R., Hannenhalli, S. (eds) Algorithms in Bioinformatics. WABI 2007. Lecture Notes in Computer Science(), vol 4645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74126-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74126-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74125-1

  • Online ISBN: 978-3-540-74126-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics