Skip to main content

Generalized Pattern Search and Mesh Adaptive Direct Search Algorithms for Protein Structure Prediction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4645))

Abstract

Proteins are the most important molecular entities of a living organism and understanding their functions is an important task to treat diseases and synthesize new drugs. It is largely known that the function of a protein is strictly related to its spatial conformation: to tackle this problem, we have proposed a new approach based on a class of pattern search algorithms that is largely used in optimization of real world applications. The obtained results are interesting in terms of the quality of the structures (RMSD–C α ) and energy values found.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anfinsen, C.B., Haber, E., Sela, M., White, F.H.: The Kinetics of Formation of Native Ribonuclease during Oxidation of the Reduced Polypeptide Chain. PNAS 47(9), 1309–1314 (1961)

    Article  Google Scholar 

  2. Levinthal, C.: Are there pathways for protein folding? J. Chim. Phys. 65(1), 44–45 (1968)

    Google Scholar 

  3. Dennis Jr., J.E., Torczon, V.: Direct Search Methods on Parallel Machines. SIAM Journal on Optimization 1, 448 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lewis, R.M., Torczon, V.: Pattern search algorithms for linearly constrained minimization. SIAM Journal on Optimization 10(3), 917–941 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Audet, C., Dennis Jr., J.E.: Mesh Adaptive Direct Search Algorithms for Constrained Optimization. SIAM Journal on Optimization 17, 188 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kokkolaras, M., Audet, C., Dennis, J.E.: Mixed variable optimization of the number and composition of heat intercepts in a thermal insulation system. Technical Report, Rice University (June 22, 2000)

    Google Scholar 

  7. Kim, D.E., Chivian, D., Baker, D.: Protein structure prediction and analysis using the robetta server. Nucleic Acids Research 32(Web-Server-Issue), 526–531 (2004)

    Article  Google Scholar 

  8. Anile, A.M., Cutello, V., Narzisi, G., Nicosia, G., Spinella, S.: Determination of protein structure and dynamics combining immune algorithms and pattern search methods. Natural Computing 6(1), 55–72 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shi, J., Blundell, T.L., Mizuguchi, K.: FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310(1), 243–257 (2001)

    Article  Google Scholar 

  10. Rost, B., Schneider, R., Sander, C.: Protein fold recognition by prediction-based threading. J. Mol. Biol. 270(1-10), 26 (1997)

    Google Scholar 

  11. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods. SIAM Review 45, 385 (2004)

    Article  MathSciNet  Google Scholar 

  12. Coope, I.D., Price, C.J.: Frame Based Methods for Unconstrained Optimization. Journal of Optimization Theory and Applications 107(2), 261–274 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Coope, I.D, Price, C.J.: On the Convergence of Grid-Based Methods for Unconstrained Optimization. SIAM Journal on Optimization 11, 859 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Congdon, P.: Bayesian Statistical Modelling. Meas. Sci. Technol. 13, 643 (2002)

    Article  Google Scholar 

  15. Foloppe, N., MacKerell Jr., A.D.: All-atom empirical force field for nucleic acids: I. parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of Computational Chemistry 21(2), 86–104 (2000)

    Article  Google Scholar 

  16. MacKerell Jr., A.D., Bashford, D., Bellott, M., Dunbrack Jr., R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., et al.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102(18), 3586–3616 (1998)

    Article  Google Scholar 

  17. Marcote, I., Separovic, F., Auger, M., Gagne, S.: A Multidimensional 1H NMR Investigation of the Conformation of Methionine-Enkephalin in Fast-Tumbling Bicelles. Biophys. J. 86, 5578–5583 (2004)

    Article  Google Scholar 

  18. Klepeis, J.L., Pieja, M.J., Floudas, C.A.: Hybrid Global Optimization Algorithms for Protein Structure Prediction: Alternating Hybrids. Biophysical Journal 84(2), 869–882 (2003)

    Google Scholar 

  19. Cutello, V., Narzisi, G., Nicosia, G.: A multi-objective evolutionary approach to the protein structure prediction problem. Journal of The Royal Society Interface 3(6), 139–151 (2006)

    Article  Google Scholar 

  20. Kaiser Jr., C.E., Lamont, G.B., Merkle, L.D., Gates Jr., G.H., Pachter, R.: Polypeptide structure prediction: real-value versus binary hybrid genetic algorithms. In: Proceedings of the 1997 ACM symposium on Applied computing, pp. 279–286. ACM Press, New York (1997)

    Chapter  Google Scholar 

  21. Starovasnik, M.A., Braisted, A.C., Wells, J.A.: Structural mimicry of a native protein by a minimized binding domain. Proc. Natl. Acad. Sci. USA 94, 10080–10085 (1997)

    Article  Google Scholar 

  22. Pollastri, G., Przybylski, D., Rost, B., Baldi, P.: Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins Structure Function and Genetics 47(2), 228–235 (2002)

    Article  Google Scholar 

  23. Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous framework for optimization of expensive functions by surrogates. Structural and Multidisciplinary Optimization 17(1), 1–13 (1999)

    Google Scholar 

  24. Audet, C., Booker, A.J., Dennis Jr., J.E., Frank, P.D., Moore, D.W.: A surrogate-model-based method for constrained optimization. AIAA Paper 4891 (2000)

    Google Scholar 

  25. Santner, T.J., Williams, B.J., Notz, W.: The design and analysis of computer experiments. Springer, Heidelberg (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Raffaele Giancarlo Sridhar Hannenhalli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nicosia, G., Stracquadanio, G. (2007). Generalized Pattern Search and Mesh Adaptive Direct Search Algorithms for Protein Structure Prediction. In: Giancarlo, R., Hannenhalli, S. (eds) Algorithms in Bioinformatics. WABI 2007. Lecture Notes in Computer Science(), vol 4645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74126-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74126-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74125-1

  • Online ISBN: 978-3-540-74126-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics