Skip to main content

Genomic Signatures in De Bruijn Chains

  • Conference paper
Book cover Algorithms in Bioinformatics (WABI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4645))

Included in the following conference series:

Abstract

Genomes have both deterministic and random aspects, with the underlying DNA sequences exhibiting features at numerous scales, from codons to regions of conserved or divergent gene order. This work examines the unique manner in which oligonucleotides fit together to comprise a genome, within a graph-theoretic setting. A de Bruijn chain (DBC) is a generalization of a finite Markov chain. A DNA word graph (DWG) is a generalization of a de Bruijn graph that records the occurrence counts of node and edges in a genomic sequence generated by a DBC. We combine the properties of DWGs and DBCs to obtain a powerful genomic signature demonstrated as information-rich, efficient, and sufficiently representative of the sequence from which it is derived. We illustrate its practical value in distinguishing genomic sequences and predicting the origin of short DNA sequences of unknown origin, while highlighting its superior performance compared to existing genomic signatures including the dinucleotides odds ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carbone, A., Kepes, F., Zinovyev, A.: Codon bias signatures, organization of micro-organisms in codon space, and lifestyle. Molecular Biology and Evolution 22(3), 547–561 (2005)

    Article  Google Scholar 

  2. Coenye, T., Vandamme, P.: Use of the genomic signature in bacterial classification and identification. Systematic and Applied Microbiology 27(2), 175–185 (2004)

    Article  Google Scholar 

  3. Deschavanne, P.J., Giron, A., Vilain, J., Fagot, G., Fertil, B.: Genomic signature: Characterization and classification of species assessed by chaos game representation of sequences. Molecular Biology and Evolution 16(10), 1391–1399 (1999)

    Google Scholar 

  4. Dufraigne, C., Fertil, B., Lespinats, S., Giron, A., Deschavanne, P.: Detection and characterization of horizontal transfers in prokaryotes using genomic signature. Nucleic Acids Research 33(1), 12 pages (2005)

    Google Scholar 

  5. Fertil, B., Massin, M., Lespinats, S., Devic, C., Dumee, P., Giron, A.: GENSTYLE: exploration and analysis of DNA sequences with genomic signature. Nucleic Acids Research 33(Web Server issue), W512–W515 (2005)

    Google Scholar 

  6. Jernigan, R.W., Baran, R.H.: Pervasive properties of the genomic signature. BMC Genomics 3, 9 pages (2002)

    Google Scholar 

  7. Karlin, S., Burge, C.: Dinucleotide relative abundance extremes — A genomic signature. Trends in Genetics 11(7), 283–290 (1995)

    Article  Google Scholar 

  8. Karlin, S., Mrazek, J., Campbell, A.M.: Compositional biases of bacterial genomes and evolutionary implications. Journal of Bacteriology 179(12), 3899–3913 (1997)

    Google Scholar 

  9. Sandberg, R., Branden, C.I., Ernberg, I., Coster, J.: Quantifying the species-specificity in genomics signatures, synonymous codon choice, amino acid usage, and G+C content. Gene 311, 35–42 (2003)

    Article  Google Scholar 

  10. Teeling, H., Meyerdierks, A., Buaer, M., Amann, R., Glockner, F.O.: Application of tetranucleotide frequencies for the assignment of genomic fragments. Environmental Microbiology 6, 938–947 (2004)

    Article  Google Scholar 

  11. van Passel, M.W.J., Bart, A., Thygesen, H.H., Luyf, A.C.M., van Kampen, A.H.C., van der Ende, A.: An acquisition account of genomic islands based on genome signature comparisons. BMC Genomics 6, 10 pages (2005)

    Article  Google Scholar 

  12. Pevzner, P.A.: DNA physical mapping and alternating Eulerian cycles in colored graphs. Algorithmica 13(1-2), 77–105 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pevzner, P.A., Tang, H.X., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proceedings of The National Academy of Sciences of the United States Of America 98(17), 9748–9753 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zhang, Y., Waterman, M.S.: An Eulerian path approach to global multiple alignment for DNA sequences. Journal of Computational Biology 10(6), 803–819 (2003)

    Article  Google Scholar 

  15. Raphael, B., Zhi, D.G., Tang, H.X., Pevzner, P.: A novel method for multiple alignment of sequences with repeated and shuffled elements. Genome Research 14(11), 2336–2346 (2004)

    Article  Google Scholar 

  16. Zhang, Y., Waterman, M.S.: An Eulerian path approach to local multiple alignment for DNA sequences. Proceedings of The National Academy of Sciences of the United States Of America 102(5), 1285–1290 (2005)

    Article  MathSciNet  Google Scholar 

  17. Heath, L.S., Pati, A.: Genomic signatures from DNA word graphs. LNCS (LNBI), vol. 4463, pp. 317–328. Springer, Heidelberg (2007)

    Google Scholar 

  18. Fickett, J.W., Torney, D.C., Wolf, D.R.: Base compositional structure of genomes. Genomics 13(4), 1056–1064 (1992)

    Article  Google Scholar 

  19. Rosenberg, A.L., Heath, L.S.: Graph Separators, With Applications. Frontiers of Computer Science. Kluwer Academic/Plenum Publishers, Dordrecht (2000)

    Google Scholar 

  20. Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn., vol. I. John Wiley & Sons Inc., New York (1968)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Raffaele Giancarlo Sridhar Hannenhalli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heath, L.S., Pati, A. (2007). Genomic Signatures in De Bruijn Chains. In: Giancarlo, R., Hannenhalli, S. (eds) Algorithms in Bioinformatics. WABI 2007. Lecture Notes in Computer Science(), vol 4645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74126-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74126-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74125-1

  • Online ISBN: 978-3-540-74126-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics